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Abstract 
Nowadays, the industrial control system has become open and interconnected, and informatization also 
increases the risk of network attacks and damage due to frequent intrusion. Research on industrial 
intrusion detection is ongoing, but many current methods need to consider the characteristics of industrial 
control flow. Therefore, this paper proposes an industrial network intrusion detection algorithm based on 
IGWO-GRU: starting from the timing of industrial control network traffic, select the simple architecture 
of the gated recurrent unit (GRU) as the network model; in view of the problem of the number of network 
parameters such as neurons and the learning rate, the Grey Wolf Optimizer (GWO) is integrated with 
conducting autonomous learning to find the optimal parameters of the model and solve the problem of 
slow convergence rate caused by a large amount of data volume of the industrial control network traffic. 
However, due to the slow convergence speed and low optimization accuracy of the GWO algorithm and 
data imbalance, this paper improves an improved grey Wolf optimization algorithm (IGWO) by 
improving the nonlinear convergence factor and weight adjustment strategy to increase the convergence 
rate of the algorithm further and avoid falling into the local optimal solution. With the data set of the 
natural gas pipeline control system, the intrusion detection system is simulated for classifying abnormal 
flow attacks. The experimental results show that the IGWO-GRU algorithm has obvious advantages in 
accuracy, false alarm rate, and false report rate, which improves the safety protection ability of industrial 
control systems. 

Keywords: industrial control network traffic; intrusion detection; GRU; Grey Wolf Optimizer 
 

1 Introduction 

1.1 The research background 

Industrial Control System (ICS) is widely used 
in many modern industries, such as sewage 
treatment, power generation, water conservancy, 
petrochemical, etc. With the development of 
computer technology, new technologies and new 
tools for implementing various attacks of 
industrial control systems emerge endlessly, and 
the research on abnormal flow detection of 
industrial control systems has become a hot topic 
in the field of industrial control security. 

So far, domestic and foreign scholars have put 
forward many different types of network traffic 
anomaly detection methods. The anomaly 
detection method of network traffic can be 
divided into four categories [1]: classification, 
information theory, clustering, and statistics. 
Among them, the anomaly detection method 
based on classification for network traffic is the 
most important, with common supervised 
machine learning models such as decision tree 
(DT) and support vector machine (SVM). With 
the development of deep learning ideas, a large 
number of neural network models use network 
traffic classification-based methods for detection, 
such as Back Propagation (BP), Long Short Term 
Memory (LSTM), etc. First, the specific number 
and category of classification are determined, and 
then the model is trained with the labeled network 
traffic data, and then the new traffic is classified, 
and the classification result is the detection result. 

In order to further improve the efficiency of 
abnormal traffic detection, the group intelligence 

optimization algorithm also began to combine 
with the commonly used algorithms. Swarm 
Intelligence Algorithm is to construct the 
stochastic optimization algorithm by simulating 
the group behavior of natural organisms. Now, it 
has become a hot topic of interdisciplinary topics 
such as artificial intelligence. Compared with the 
traditional calculation method, there are more 
outstanding advantages of an intelligent 
optimization algorithm, such as no centralized 
control, multiple agent mechanism, simple 
structure, and implicit parallelism. These 
advantages promote its development in 
application optimization technology and make 
use of group advantages to provide new ideas for 
finding solutions to complex problems in the 
absence of centralized control and no global 
model. 

1.2 The research work 

This paper uses the excellent feature learning 
ability of deep learning to carry out network 
traffic classification research. In the construction 
process of a neural network, the improved grey 
Wolf optimization algorithm is combined to find 
the optimal parameters of the model, which 
improves the convergence speed of the algorithm 
and the performance of anomaly detection. The 
details are as follows: 
1. For the late iteration of the traditional grey 
Wolf optimization algorithm, poor population 
diversity, and slow convergence rate, this paper 
proposes an adaptive position adjustment strategy 
based on weight to solve the optimal, excellent, 
and suboptimal solution and average fitness by 
establishing a probability distribution 



proportional to the fitness. The way of location 
update is selected by the relationship of individual 
fitness to average fitness. 
2. The Grey Wolf algorithm is easy to fall into 
the local optimal solution. Therefore, the linear 
decay of the original parameter α is modified to 
make a nonlinear decay to increase the proportion 
of the global search times. The more global search 
times, the stronger the global search ability of the 
algorithm, and the less likely it is to fall into the 
local optimal solution. 
3. A new anomalous flow detection algorithm 
is proposed. For the industrial controlled flow, the 
anomalous detection model combining the gating 
cycle unit and the adaptive grey Wolf 
optimization algorithm is used to classify the 
anomalous flow.  Using the improved grey Wolf 
optimization algorithm to optimize the neural 
network parameters and the network structure can 
improve the detection speed and accuracy. 

1.3 The organizational structure 

The subsequent sections of this paper are 
organized as follows. In Section 2, this paper 
introduces related work. Section 3 introduces the 
improvement ideas of the optimization algorithm 
and the algorithm applied to intrusion detection. 
Section 4 presents the experimental setting. 
Section 5 evaluates the improvement of the 
optimization algorithm and its application to the 
intrusion detection algorithm. Section 6 
concludes this paper. 

2. Related Work 

2.1. Intrusion Detection Algorithm 

With the development of machine learning and 
deep learning technology, a large number of 
relevant algorithms are used in abnormal traffic 
detection in industrial control systems. Lee J H et 
al. used the ID3 algorithm to generate a decision 
tree to detect [2] abnormal traffic. In the 
experiment, the ID3 decision tree generation 
algorithm was used to establish a decision tree for 
each type of attack behavior in the DARPA 
dataset and achieved good accuracy in the 
detection of DoS, R2L, U2R, and scan attacks. 
However, decision tree-based models are highly 
prone to the problem of overfitting during training. 
Shang et al. proposed a clustering algorithm and 
support vector machine combined abnormal 
traffic detection method [3]; the method 
combines supervised support vector machine 
algorithm (SVM) and unsupervised fuzzy C mean 
clustering algorithm (FCM), by calculating the 
distance between industrial control network 

traffic data and cluster center, part of the data will 
meet the threshold condition through the support 
vector machine for further classification. 
Experimental results show that this method can 
effectively reduce the training time and improve 
the classification accuracy rather than the 
conventional anomaly flow detection method 
without knowing the classification label of the 
data prior. 

Due to the time series properties in the network 
traffic data, the recurrent neural network (RNN) 
is a good choice. Fang et al. [4] proposed an 
intrusion detection model based on hybrid CNN 
and RNN models that can accurately identify the 
types of network traffic and solve high-level 
persistent threats in power information networks. 
Goh et al. proposed an unsupervised anomaly 
detection model based on RNN [5], which can 
detect the vast majority of intrusion behavior 
designed by experimenters with a very low false 
positives rate, applied to the industrial water 
processing dataset. The algorithm is very 
competitive, but a large number of parameters 
increase the training time and the use of resources. 
Yu et al. [6] raised the problem of needing more 
ability to improve RNN temporal memory based 
on LSTM. Xu et al. [7] introduced a novel 
intrusion detection system consisting of an RNN 
with a GRU to simplify the memory cell structure 
of the LSTM and reduce the computation time of 
the algorithm while maintaining classification 
accuracy. 

The above methods use neural networks to 
train the models, but these processes easily fall 
into the local optimal solution during the model 
training. This study combines optimization 
algorithms to help train better models. 

2.2 Intelligent optimization algorithm 

The group intelligent optimization algorithm is 
to transform the engineering optimization 
problem into a function optimization problem, 
establishes the objective function, and finds the 
optimal solution of the objective function. 
Common algorithms include the ant colony 
algorithm (ACO), the particle swarm algorithm 
(PSO), and other methods inspired by biological 
groups, such as the Grey Wolf Optimizer (GWO). 

2.2.1 Particle Swarm Optimization 

Particle Swarm Optimization (PSO) [8], which 
was proposed by Eberhart and Kennedy in 1995, 
is a population-based stochastic optimization 
technique inspired by the clustering behavior of 
insects, herds, birds, and fish groups. The core 
idea is to constantly adjust the position of the 
particle itself to approach it to the direction of the 



optimal solution through the mutual cooperation 
between the particles and the sharing of 
information. 

Each particle in a particle population represents 
a possible solution to a problem, realizing the 
intelligence of the problem solution through 
information interaction through the simple 
behavior of individual particles. Since the PSO is 
simple to operate and has a fast convergence 
speed, it has been widely used in many fields, 
such as function optimization, image processing, 
and geodetic measurement. With the expansion of 
the application scope, the PSO algorithm has 
some problems, such as early convergence, 
dimension disaster, and easily falling into the 
local extrema. 

2.2.2 Grey Wolf Optimization  

The Grey Wolf Optimization algorithm (GWO) 
[9], proposed by Mirjalili et al. in 2014, is a new 
group intelligent optimization algorithm inspired 
by the social hierarchy mechanism of grey Wolf 
populations and the process of hunting their prey 
in nature. It has the characteristics of strong 
convergence performance, few parameters, 
simple principle, and ease of realization, and it is 
widely used in neural network parameter 
optimization. 

The Grey Wolf is a social animal. The social 
hierarchy within the grey Wolf population is 
shown in Fig. 1. The first layer of the pyramid is α, the leader of the entire grey Wolf population, 
also known as the head wolf. The second layer of 
the pyramid is the 𝛽, which obeys the commands 
of the 𝛼, and so on. 

 

Fig. 1 Social hierarchy of grey Wolf 
In the simulation, the three wolves with the best 

fitness are selected and defined as 𝛼, 𝛽, and 𝛿, 
which will guide the other individuals in the grey 
Wolf population to search in the direction of the 
optimal solution. Other individuals in the grey 
wolf population, where the candidate solution is 
defined as the ω , are position-updated in the 
direction guided by the 𝛼, 𝛽, and 𝛿. 

2.3 Application of optimization algorithm 

To further improve the efficiency of anomaly 
flow detection, the optimization algorithm begins 

to combine with commonly used anomaly 
detection algorithms. For the security of the 
Internet of Things, Yang et al. proposed an LM-
BP neural network model [10] for intrusion 
detection systems, using its fast optimization 
speed, generalization ability of the LM algorithm 
to optimize the weight and threshold of the 
traditional BP neural network; compared with the 
traditional BP neural network model, the model 
has higher detection rate in DOS, R2L, U2L and 
detection attack and lower false alarm rate. 

Different from traditional optimization 
algorithms, group intelligent optimization 
algorithm is a probabilistic search algorithm with 
strong self-study habits, self-organization and 
other intelligent characteristics, simple structure, 
fast convergence, good global convergence, and 
other advantages. Shang et al. proposed an 
abnormal flow detection algorithm based on 
single class support vector machine [11] and 
designed the particle swarm optimization 
algorithm to optimize the model parameters; it 
was not only efficient and reliable but also met the 
requirements of real-time performance; however, 
it had only the basic vector processing of Modbus 
functional code and did not model all the obtained 
data, which affected the reliability of intrusion 
detection to a certain extent. Chen et al. [12] 
propose a network intrusion detection method 
based on a one-dimensional convolutional neural 
network and the Grey Wolf optimization 
algorithm. A one-dimensional convolutional 
neural network is used to extract high-level 
features from the intrusion detection data. Then a 
support vector machine is used to classify the 
extracted high-level features, where the 
parameters of the support vector are optimized 
using the grey Wolf optimization algorithm. 

The above research status shows that the 
computing model combining group intelligent 
optimization algorithm and intrusion detection 
algorithm has high research value in the field of 
industrial control system security. Therefore, 
starting from the characteristics of industrial 
control network traffic, this paper proposes an 
industrial network intrusion detection algorithm 
based on IGWO-GRU, selects GRU as the basic 
model and uses the improved grey Wolf 
optimization algorithm to continuously adjust the 
model weight to improve the convergence speed 
of the algorithm and avoid falling into the local 
optimal solution. 

3 Methodology 

3.1 The method of GWO 



Step 1: Initialize the grey wolf population and 
calculate the parameters. 

In Eqs. (1) to (3), t represents the current 
number of iterations, 𝐴  and 𝐶  represent the 
coefficient vector, and 𝑎⃗  is the convergence 
factor. The convergence factor changes linearly 
from 2 to 0 as the number of iterations rises. The 
value of 𝐴  controls whether the grey wolf 
individual is searching in the neighborhood of the 
current optimal solution or in the global range. 
The change of value 𝐴  is controlled by the 
change of 𝑎⃗, which is linearly reduced, so |𝐴| >1 and |𝐴| < 1 each occupy half of the iterations. 
The module of 𝑟1 and 𝑟2 is the random number 
between [0,1]. 𝐴 = 2𝑎⃗ ⋅ 𝑟1 − 𝑎⃗ (1) 𝐶 = 2 ⋅ 𝑟2 (2) 𝑎 = 2 − 2𝑡𝑇  (3) 

Step 2: Update the grey Wolf position. If the 
maximum number of iterations is not reached, 
repeat steps 1-2 until the maximum number of 
iterations is reached. 

 

Fig. 2 grey wolf location Update Diagram 

The three grey wolves with the best 
adaptability are selected as 𝛼 , 𝛽 , and 𝛿 , and 
infer the exact location of the prey by 𝛼, 𝛽, and 𝛿. Moreover, update the location information of 
the remaining individuals in the population to 
complete the approximation of the prey. The 
location update method of individual grey wolves 
is shown in Fig. 2. 

{𝐷⃗⃗⃗𝛼 = |𝐶1 ⋅ 𝑋⃗𝛼 − 𝑋|𝐷⃗⃗⃗𝛽 = |𝐶2 ⋅ 𝑋⃗𝛽 − 𝑋|𝐷⃗⃗⃗𝛿 = |𝐶3 ⋅ 𝑋⃗𝛿 − 𝑋| (4) 

{𝑋⃗1 = 𝑋⃗𝛼 − 𝐴1 ⋅ (𝐷⃗⃗⃗𝛼)𝑋⃗2 = 𝑋⃗𝛽 − 𝐴2 ⋅ (𝐷⃗⃗⃗𝛽)𝑋⃗3 = 𝑋⃗𝛿 − 𝐴3 ⋅ (𝐷⃗⃗⃗𝛿) (5) 

𝑋⃗(𝑡 + 1) = 𝑋⃗1 + 𝑋⃗2 + 𝑋⃗33  (6) 

In Eq. (4), 𝐷⃗⃗⃗𝛼 ,  𝐷⃗⃗⃗𝛽 , and 𝐷⃗⃗⃗𝛿  represent the 
distance from another individual in the grey wolf 
population to 𝛼 , 𝛽 , and 𝛿 . 𝑋⃗𝛼 , 𝑋⃗𝛽 , and 𝑋⃗𝛿  
represent the current location information of 𝛼, 𝛽 , and 𝛿 . 𝐶1 , 𝐶2 , and 𝐶3  are random vectors, 
and X⃗⃗⃗ represents the current location of the grey 
wolf individuals. Eq. (5) describes the direction 
and step length of the individual ω  moving 
towards 𝛼, 𝛽, and 𝛿. Eq. (6) represents the final 
position of the individual ω. 

3.2 The method of IGWO 

A thorough analysis of the principle of the Grey 
Wolf optimization algorithm shows that the 
algorithm has the characteristics of fast 
convergence speed and strong global search 
ability in the early stage of iteration. However, the 
value of the parameter a in the Grey Wolf 
optimization algorithm changes linearly, resulting 
in half of the iterations being used for the local 
optimal search, which makes the global search of 
the algorithm weak and easy to fall into the local 
optimum. And the Grey Wolf optimization 
algorithm only uses 𝛼, 𝛽, and 𝛿 to update the 
location of the population. In the process of 
location update without considering the optimal, 
excellent, and suboptimal solution, with the 
increase of iterations, the late population diversity, 
the convergence of the algorithm will slow, also 
more easily into local optimal solution, for the 
optimization of multiple peak function cannot 
find the global optimal solution. Considering the 
above issues, this paper proposes an improved 
grey Wolf optimization algorithm (IGWO). 

3.2.1 Nonlinear convergence factor 

Finding the global minimum is a common and 
challenging task in all minimization algorithms. 
In group search-based optimization algorithms, 
ideal solutions converging to the global minimum 
can be divided into two fundamental stages. In the 
early stages of optimization, individuals should 
be scattered as much throughout the search space 
as possible. In other words, they should try to 
search in the entire search space rather than the 
neighboring rows around the local minimum, 
which can help jump out of the local optimal 
solution; in the later stages of optimization, 
individuals must approach the [13] to the global 



minimum using the information collected during 
the global search. 

In the grey Wolf optimization algorithm, the 
two stages of global search and local search are 
controlled by the value of |𝐴| , when |𝐴| < 1 
individuals in the neighborhood of the current 
optimal solution, namely, local search, when |𝐴| > 1, the individual in the search far from the 
current optimal solution, the global search. 
Generally speaking, the higher the exploration of 
the search space, the lower the possibility of 
falling into the local optimal solution and thus 
stagnation, and excessive local search will make 
the algorithm more likely to fall into the local 
optimal solution. Therefore, the two phases of 
global search and local search can be balanced by 
fine-tuning the values of the parameters 𝑎⃗  and 𝐴 , thus accelerating the search speed for the 
global minimum value. As shown in Eq. (7), if 𝑓𝑖 > 𝑓𝑎𝑣𝑔 , the original formula is used, and if 𝑓𝑖 ≤ 𝑓𝑎𝑣𝑔, the original linear change changes to a 
nonlinear change. 

𝑎 = {2 − 2𝑡2𝑇2 , 𝑓𝑖 ≤ 𝑓𝑎𝑣𝑔2 − 2𝑡𝑇 , 𝑓𝑖 > 𝑓𝑎𝑣𝑔  (7) 

Where 𝑇  is the maximum number of 
iterations, and 𝑡  is the current number of 
iterations. Since the original formula, the value of 𝑎  is linearly reduced. As shown in Fig. 3, the 
number of iterations for both the global search 
and the local search is 50%, which makes the 
GWO algorithm lacks the searchability of the 
global optimal solution, and it is easy to fall into 
the local optimal solution. 

In the improved algorithm, 70% of the 
iterations were used for the global search, and 30% 
of the iterations were used for the local element 
searches, as shown in b in Fig. 3. The improved 
algorithm is used for the global search more 
frequently, increasing the ability of the global 
search, and thus it is less likely to fall into the 
local optimal solution.

 

Fig. 3 Variation curve of parameter a 

 

3.2.2 Adjustment strategy for the weights 

In the grey Wolf optimization algorithm, the 
fitness of the individual grey Wolf can describe 
the quality of the current position. The 𝛼, 𝛽, and 𝛿  stand for the optimal, excellent, and 
suboptimal solution of the Grey Wolf population, 
which play an equally important role as the Grey 
Wolf population approaches the target. But their 
influence is not reflected in Eq. (6), so when 
searching within a neighborhood range with low 
fitness, its convergence efficiency is low and 
easily into the local optimal solution. In the Grey 

Wolf optimization algorithm, all the Grey Wolf 
location updates are moved in the direction where 𝛼  is located, resulting in the reduction of 
population diversity in the later stage and making 
it easy to fall into the local optima. To further 
increase the convergence rate of the algorithm, 
While avoiding the problem of poor population 
diversity in later stages. This paper proposes a 
new method to update the location of the grey 
Wolf population: firstly, calculate the average 
fitness 𝑓𝑎𝑣𝑔  of the grey Wolf population. Then 
compare the fitness 𝑓𝑖 of the current grey wolf 
individual with the mean fitness 𝑓𝑎𝑣𝑔 . If 𝑓𝑖 >



𝑓𝑎𝑣𝑔 , update the location information using the 
location update strategy of the original Grey Wolf 
optimization algorithm; if 𝑓𝑖 ≤ 𝑓𝑎𝑣𝑔 , update the 

Grey Wolf location with a new location update 
method. The improved location update is 
described in Eqs. (8) to (9):

𝑋⃗(𝑡 + 1) =
{  
  (1𝑓𝛼)𝑋⃗1 + ( 1𝑓𝛽)𝑋⃗2 + (1𝑓𝛿)𝑋⃗31𝑓 , 𝑓𝑖 ≤ 𝑓𝑎𝑣𝑔

𝑋⃗1 + 𝑋⃗2 + 𝑋⃗33 , 𝑓𝑖 > 𝑓𝑎𝑣𝑔
 (8) 

1𝑓 = 1𝑓𝛼 + 1𝑓𝛽 + 1𝑓𝛿  (9) 

3.3 The model of GRU  

  The gated recurrent unit (GRU) [14] is also a 
variant of the recurrent neural network, whose 
main purpose is also to deal with the gradient 
disappearance and explosion phenomenon 
occurring during the long sequence of the training 
process. Since the structures of the GRU and the 
LSTM are very similar, the GRU can be seen as a 
variant of the LSTM. In some cases, GRU and 
LSTM can produce the same results, but 
compared with LSTM, GRU has a simpler 
architecture with fewer parameters, so it has a 
faster training speed and requires fewer resources. 
Unlike LSTM, which controls which information 
is output through input, output, and forgetting 
doors, there are only two updates and reset doors 
inside. Compared to the LSTM, the GRU has a 
simpler architecture and fewer parameters, thus 
having a faster training speed and requiring fewer 
resources. The specific structure of the GRU is 
shown in Fig. 4. 

 

Fig. 4 The structure of GRU  

 𝑧𝑡  represents the update gate (see Fig. 4), 
which is used to control the degree to which the 
state information of the previous moment is 
introduced into the current state. The larger the 
value of the update gate is, the higher the degree 
to which the state information of the previous 
moment is introduced into the current state. The 𝑟𝑡  represents a reset gate to control state 

information at the previous moment, which is 
written to the current candidate set ℎ̃𝑡. 

The update gate in the GRU is equivalent to 
integrating the input gate and the forgetting gate 
in LSTM, making its structure simpler and having 
fewer parameters than LSTM. The mathematical 
description of the GRU is given in Eqs. (10) to 
(13): 𝑧𝑡 = 𝜎(𝑊𝑧 ⋅ [ℎ𝑡−1, 𝑥𝑡]) (10) 𝑟𝑡 = 𝜎(𝑊𝑟 ⋅ [ℎ𝑡−1, 𝑥𝑡]) (11) 

ℎ̃𝑡 = 𝑡𝑎𝑛ℎ(𝑊 ⋅ [𝑟𝑡 ⊙ ℎ𝑡−1, 𝑥𝑡]) (12) 

ℎ𝑡 = (1 − 𝑧𝑡) ⊙ ℎ𝑡−1 + 𝑧𝑡⊙ ℎ̃𝑡 (13) 
where 𝜎  is the sigmoid function, which can 
change the input data into values between [0,1], 
and can therefore be used as a gating signal. 

Eq. (12) defines the state of the candidate 
hidden layer, where ℎ𝑡−1  contains the past 
information, and 𝑟𝑡  is the reset gate, defining 
how to combine the new input information with 
the previous memory. The 𝑟𝑡 ⊙ℎ𝑡−1 represents 
the magnitude of the hidden information at the 
previous moment in predicting the future. The 
more the value of 𝑟𝑡 tends to be 0, and the more 
hidden information in the past is discarded. When 
the value of 𝑟𝑡  is 0, only the current input 
information is retained, and all the past hidden 
information will be discarded; when the value of 𝑟𝑡  is 1, all the past hidden information will be 
retained and added to the current input 
information. 

Eq. (13) defines the final state of the hidden 
layer, ℎ𝑡−1  in the formula is also the state 
information of the past, and ℎ̃𝑡  represents the 
hidden layer state of the current candidate. The 𝑧𝑡  represents the update gate, describing the 
remaining content of the previous memory saved 
to the current step. This step is to forget some data 
in ℎ𝑡−1 and add some of the data input from the 
current node. The value of 𝑧𝑡 is between 0 and 1. 
The closer 𝑧𝑡 is to 1, the more past information 
is inherited, the more long-term dependence 
remains, and the closer to 0, the more information 



in the hidden state is forgotten. 

3.4 Intrusion detection algorithm based 

on GRU 

The GRU algorithm has high accuracy and a 
fast training speed, which is very suitable for 
detecting the flow data generated by the industrial 
control system. As shown in Fig. 5, the steps of 
the GRU-based industrial control network 
intrusion detection algorithm are as follows: 
1. The data were normalized. Because of the 
order of magnitude difference in the data between 
the different characteristics of the industrial 
control flow rate, it is necessary to limit the data 
to a certain range through the normalization 
function to avoid the problem of gradient 
disappearance and gradient explosion. The 
common normalization method is the min-max 
normalization, which linearly transforms the raw 
data to map the results between the [0,1]. The 
convergence rate of the model increases after 
normalization and may improve its accuracy. The 
min-max normalization is defined as shown in Eq. 
(14). 𝑥 ′ = 𝑥 −𝑀𝑖𝑛𝑀𝑎𝑥 − 𝑀𝑖𝑛 (14) 

Each column of the data was processed using 
the min-max normalization method, with max 
representing the maximum value in a column and 
min representing the minimum value in a column. 
2. Determine the structure of the GRU network, 
including the input layer, hidden layer, and output 
layer; input the normalized training set to the 
GRU network for training parameters; the GRU 
network parameters include the network learning 
rate, the hidden layer, and the number of neurons 
of the hidden layer; each initial value is 
determined according to step one; the output layer 
uses softmax as the activation function, and the 
output result is a certain type of traffic prediction 
classification label. The softmax function is 
defined as shown in Eq. (15), where ei represents 
the output value of node i and j is the number of 
output nodes, which is also the number of the 
categories classified. 𝑆𝑖 = 𝑒𝑖∑ 𝑒𝑗𝑗  (15) 

3. The GRU network was trained using the 
normalized training set, and the cross-entropy 
was used as a loss function for the multi-
classification task to change the weight values of 
the network by backpropagation. The cross-
entropy loss function is defined as shown in Eq. 
(16): 

𝐿 =∑𝑦𝑖 𝑙𝑜𝑔( 𝑝𝑖)𝑘
𝑖=1  (16) 

where k is the number of species, yi is the label, 
and pi is the output of the neural network 
prediction. 
4. The trained GRU network was verified by 
using the normalized test set to assess the 
accuracy of the model classifier. 

 
Fig. 5 Flowchart of intrusion detection algorithm 

based on GRU 

3.5 Intrusion detection algorithm based 

on IGWO-GRU 

The industrial control network intrusion 
detection algorithm model based on GRU 
includes three parts: input layer, hidden layer, and 
output layer. Among them, the parameters such as 
the number of hidden layers, the number of 
hidden layer neurons, and the learning rate can 
greatly affect the training effect of the GRU 
network. Theoretically, the more layers, the more 
neurons, the more complex the structure of the 
network, the better the fit to the data. However, in 
practice, too many hidden layers and the number 
of hidden layer neurons will not only increase the 
training difficulty of the model but also appear the 



phenomenon of overfitting to reduce the accuracy 
of the model. If the structure of the network is 
simple enough, the ability to fit the data will be 
seriously insufficient, which will also lead to low 
accuracy problems. Therefore, when training the 
network, it is necessary to optimize the number of 
hidden layers and the number of neurons in the 
hidden layer, and find the appropriate number of 
hidden layers and the number of hidden layer 
neurons, so as to achieve the optimal effect of the 
model. Usually, the parameters such as the 
number of hidden layers, the number of neurons, 
and the learning rate are set according to the 
experience, which is greatly influenced by 
subjectivity. 

Therefore, this paper proposes the IGWO-
GRU model to automatically learn the number of 
hidden layer neurons and the learning rate of the 
network through the IGWO algorithm. As shown 
in Fig. 6, the steps of the IGWO-GRU are as 
follows: 
1. Initialize the grey wolf populations and 
parameters such as 𝑎⃗ , 𝐴 , and 𝐶 . Let the grey 
Wolf location information include the number of 
neurons in the hidden layer u and the learning rate 
l of the network. 
2. The number of hidden layer neurons in the 
grey Wolf location information and the learning 

rate of the network is brought into the GRU 
network, and the training set is used to complete 
the model training. 
3. Calculate the fitness of individual grey 
wolves. The test set uses the accuracy of the 
model test as the fitness value of the individual 
grey wolves. The top three individuals with 
fitness are served as 𝛼 , 𝛽  and 𝛿 , while the 
remaining individuals are ω. Then calculated the 
average fitness of the grey wolf population. 
4. If the current fitness of the individual grey 
wolf is greater than the average fitness, the GWO 
algorithm is used to update the location 
information and the values of the parameters 𝛼, 𝛽  and 𝛿 . Otherwise, the IGWO algorithm is 
used to update the location information and the 
values of parameters 𝛼 , 𝛽 , and 𝛿  using the 
IGWO algorithm. The values of u and l will 
change accordingly when the location 
information is updated. 
5. If the maximum number of iterations is 
reached, the position information of the IGWO-
GRU model and α  is output. At this time, the 
model is the optimal model, and the optimal 
values of u and l can be obtained from the position 
information of 𝛼. Otherwise, jump to 2 until the 
iteration is completed, and then output the 
position information of the model and the α.



 

Fig. 6 Flowchart of intrusion detection algorithm based on IGWO-GRU 

 



4 Experiment and Evaluation 

4.1 Experimental settings of the 

optimization algorithm  

In order to verify the effectiveness of the 
improved grey Wolf optimization algorithm 
(IGWO) proposed in this paper, six test functions 
(see Table 1) are used to test the test results are 
compared with the standard grey Wolf 
optimization algorithm (GWO) [12] and particle 
swarm optimization algorithm (PSO) [11]. 
Among the six test functions, 𝐹1, 𝐹2, and 𝐹3 are 
unimodal functions, which are suitable for 
benchmarking the algorithm development; the 
performance of the algorithm in unimodal 

functions can effectively measure the quality of 
the optimization algorithm. 𝐹4 , 𝐹5 , and 𝐹6  are 
multimodal functions, which can better simulate 
the situation encountered in reality generation, 
and can also be used to measure the ability of the 
algorithm to avoid falling into the local optimal 
solution. During the course of the experiment, the 
population number of IGWO, GWO, and PSO 
was set to 30, and the dimensions of the test 
function were set to 30, with the learning factor 𝑐1 = 𝑐2 = 2  and the inertia weight 𝜔 = 0.9 . 
The maximum number of iterations of the three 
swarm intelligent optimization algorithms was set 
to 3000. Thirty times were then run independently 
for each algorithm to obtain the mean and 
standard deviation of the optimal solution. The 
following table is the information for the six test 
functions.

Table 1 Description of benchmark function 

Function Dim Range 𝑓𝑚𝑖𝑛 

𝐹1(𝑥) =  ∑|𝑥𝑖|𝑛
𝑖=1 +∏|𝑥𝑖|𝑛

𝑖=1  30 [-10,10] 0 

𝐹2(𝑥) =  ∑[100(𝑥𝑖+1 − 𝑥𝑖2)2 + (𝑥𝑖 − 1)2]𝑛
𝑖=1  30 [-30,30] 0 

𝐹3(𝑥) =  ∑𝑖𝑥𝑖4𝑛
𝑖=1 + 𝑟𝑎𝑛𝑑𝑜𝑚(0,1) 30 [-1.28,1.28] 0 

𝐹4(𝑥) =  ∑[𝑥𝑖2 − 10 cos(2𝜋𝑥𝑖) + 10]𝑛
𝑖=1  30 [-5.12,5.12] 0 

𝐹5(𝑥) =  −20 exp(−0.2√1𝑛∑𝑥𝑖2𝑛
1 )− exp(1𝑛∑cos(2𝜋𝑥𝑖)𝑛

1 )
+ 2 + 𝑒 

30 [-32,32] 0 

𝐹6(𝑥) =  14000∑𝑥𝑖2𝑛
1 −∏cos (𝑥𝑖√𝑖)𝑛

1 + 1 30 [-600,600] 0 

 

4.2 Performance of IGWO 

As can be seen from Table 2, the optimization 
effect of IGWO and GWO is better than that of 
PSO, the average optimization effect of the 
IGWO algorithm is better than that of the 
standard GWO algorithm, and the standard 
deviation of IGWO is smaller than GWO, 
indicating that IGWO algorithm has less volatility 
and higher stability than GWO algorithm. 

As can be seen from Fig. 7, in functions 𝐹1 

and 𝐹3, the optimization effect of the IGWO and 
GWO algorithms is much better than that of the 
PSO algorithm. In function 𝐹2 , although the 
convergence rate of the PSO algorithm is much 
slower than that of IGWO and GWO, the best 
optimization effect found is less than the 
minimum value of the IGWO algorithm and 
GWO algorithm. In functions 𝐹1 , 𝐹2 , and 𝐹3 , 
the IGWO optimization effect is better than the 
GWO effect; however, in the three functions, 
IGWO has in early convergence rate than GWO, 
but with the number of iterations increased GWO 



algorithm population diversity, an individual 
position no longer change, cause algorithm 
stagnation, while  IGWO can keep better in the 
late population diversity so that can find a better 

solution. The comprehensive analysis of Table 2 
and Fig. 7 shows that the IGWO algorithm is 
well-optimized on the unimodal function. 

Table 2 Results of unimodal benchmark functions. 

F 
PSO[11] GWO[12] IGWO 

Avg. Std. Avg. Std. Avg. Std. F1 2.3333333 5.5876848 1.75E-106 3.22E-106 6.11E-137 1.38E-136 F2 43.146866 28.591404 26.541513 0.8925144 26.1337732 0.7858325 F3 5.2956747 5.8987453 0.0003133 0.0002535 0.00014661 0.0000987 

 

Table 3 Results of multimodal benchmark functions. 

F 
PSO[11] GWO[12] IGWO 

Avg. Std. Avg. Std. Avg. Std. F4 65.989211 24.582439 0 0 0 0 F5 1.13E-11 4.75E-11 8.027E-15 1.77E-15 7.5495165 0 F6 0.0106723 0.0103677 0.0019507 0.0059364 0 0 

 

Fig. 7 Convergence graph of unimodal benchmark functions. 

 

Fig. 8 Convergence graph of multimodal benchmark functions. 
 

As can be seen from Table 3, both IGWO and 
GWO outperform the PSO algorithm on three 
multimodal function optimization problems. For 

𝐹4  and 𝐹6 , the IGWO algorithm reaches the 
global best advantage, while the GWO algorithm 
only reaches the global optimum on the function 



𝐹4 , indicating that the IGWO algorithm 
outperforms the GWO algorithm in jumping out 
of the local optimum. 

As can be seen from Fig. 8, IGWO converges 
faster than the GWO algorithm on all three 
multimodal test functions. In function 𝐹4 , the 
IGWO finds the global optimal solution at around 
200 iterations, while the GWO algorithm finds 
the optimal solution at about 260 steps. In the 
function 𝐹5 , IGWO, and GWO all fall into the 
same local optimal solution, but IGWO converges 
even faster. In function 𝐹6, the IGWO algorithm 
finds the global optima at around 100 iterations, 
while the GWO falls into the local optima, 
indicating that the IGWO outperforms the GWO 
in its ability to jump out of the local optimal 
solution. Through the comprehensive analysis of 
Table 3 and Fig. 8, the IGWO algorithm has a 
very good optimization effect on the multipeak 
function. 

By testing on unimodal and multimodal test 
functions, we show that the proposed IGWO 
algorithm has better optimization ability than the 
standard GWO algorithm and a better ability to 
jump out of the local optima. 

4.3 Experimental settings of an intrusion 

detection algorithm 

The industrial control system network data 
used in the experiment process of this paper is the 
Natural Gas Pipeline Control System dataset [15] 
published by Mississippi State University in 2014. 
This dataset is a general standard dataset in the 
field of industrial control security, whose traffic 
data is captured through a network data logger. 
Compared with the KDD99 data set, the data set 
is updated and generated by simulating the real 
industrial control system environment, which can 
truly reflect the characteristics of the industrial 
control network traffic, so it can more effectively 
compare the advantages and disadvantages of 
various industrial control system abnormal traffic 
detection schemes. 

The dataset contains normal traffic and 
abnormal traffic generated through 28 attacks, 
with a total of 97,019 items. The 28 modes of 
attack can be summarized into seven classes, as 
shown in Table 4. There are 26 features and one 
taxonomic label for each data bar in the dataset, 
and the amplitude varies greatly between the 
different features in the real data in the dataset, so 
the data needs to be processed using the 
normalization function. 

Table 4 Description of data 

type   label  quantity description 

Normal 0 61156 normal 

NMRI 1 2763 Simple malicious response injection attack 

CMRI 2 15466 Complex malicious response injection attack 

MSCI 3 782 Malicious state command Inject attack 

MPCI 4 7637 Malicious parameter command injection attack 

MFCI 5 573 Malicious feature command inject attack 

DOS 6 1837 denial of service attack 

Reconnaissance 7 6805 Reconnaissance attack 

 

All the experiments in this chapter use the 
Windows platform; the processor is Intel Core i7-
7700HQ, 32G memory, graphics card, and 4G 
video memory is NVIDIA GeForce GTX 1050Ti. 
The programming language was implemented 
using Python, and the GRU model was 
implemented using TensorFlow.  

Eighty percent of the data from the 
experimental dataset was used for model training 
and 20% for testing. The number of hidden layers 
of the algorithm is set to 2. The number of hidden 
layer neurons u has a value range of [8,128]. The 
range of values of the learning rate l is [0.001,0.1]. 
Population size is set to 30, with a maximum of 
500 iterations. 

If the abnormal flow is regarded as positive and 
normal flow as negative, the following four 
situations will occur: true positive (TP), false 
negative (FN), true negative (TN), and false 
positive (FP). The confusion matrix is shown in 
Table 5. 

Table 5 Confusion matrix 

 
Predicted as 

abnormal 
Predicted as 

normal 
abnormal TP FN 

normal FP TN 

 

The overall accuracy (ACC), false positive rate 
(FPR), and false negative rate (FNR) are 



generally used as the evaluation criteria of the 
model. Under a certain accuracy rate, the lower 
the missing alarm rate and false alarm rate, the 
better the detection effect of the model is. In 
general, the false positive rate and the false 
negative rate cannot be reduced at the same time. 
The calculation formulas are determined as in Eqs. 
(17) to (19): 𝐴𝐶𝐶 = 𝑇𝑃 + 𝑇𝑁𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁 (17) 

𝐹𝑁𝑅 = 𝐹𝑁𝐹𝑁 + 𝑇𝑃 (18) 

𝐹𝑃𝑅 = 𝐹𝑃𝐹𝑃 + 𝑇𝑁 (19) 

4.4 Performance of IGWO-GRU 

This experiment first verifies that the basic 
model GRU is more suitable for the intrusion 
detection of industrial control network traffic 
compared with other algorithms BP, DT, and 
SVM. The experimental results are shown in 
Table 6, and it can be seen that GRU has the 
highest accuracy and the lowest underreporting 
rate, while the false alarm rate is slightly worse 
than BP. However, in terms of the characteristics 
of the data set time series, GRU is generally more 
appropriate. 

Table 6 Comparison of experimental results 

Algorithm ACC FPR FNR 

GRU[14] 94.51% 2.90% 5.56% 

BP[10] 91.26% 2.53% 11.61% 

DT[2] 88.43% 3.47% 9.33% 

SVM[3] 86.79% 4.00% 10.32% 

The GRU is selected as the basic model, and 
the improved optimization algorithm IGWO is 
used for the model optimization. From Table 7, 
compared to the GRU algorithm, the IGWO-
GRU algorithm improves the accuracy rate by 
3.11% and reduces the false positive rate and false 
negative rate by 2.01% and 4.03%. Due to the use 
of IGWO, the algorithm has significantly better 
accuracy, false alarm rate, and omission rate. 

Table 7 Comparison of experimental results 

Algorithm ACC FPR FNR 

IGWO-GRU 97.62% 0.89% 1.53% 

GRU[14] 94.51% 2.90% 5.56% 

To further illustrate that the abnormal flow 
detection algorithm based on IGWO-GRU is 
better than that based on GRU. In this paper, we 
compare the convergence curves and the accuracy 
curves of the two algorithms. The convergence 
curve is shown in Fig. 9, showing from the 
convergence curve that the IGWO-GRU 
algorithm converges faster and converges better. 
The accuracy curve is shown in Fig. 10. It can 
also be seen from the accuracy curve that the 
convergence rate of the IGWO-GRU algorithm is 
faster, and compared with the GRU algorithm, the 
IGWO-GRU algorithm has higher accuracy, less 
volatility, and more stability.

 

 

Fig. 9 Convergence curve. 



 

Fig. 10 Accuracy curve. 
This paper compares IGWO-GRU with GRU, 

BP, DT, and SVM. The results are shown in Fig. 
11. It can be seen that the IGWO-GRU has the 
highest accuracy, 97.62%; the lowest accurate 
algorithm is SVM, whose accuracy is 86.79%. 
The algorithm with the lowest false alarm rate is 
IGWO-GRU, with 0.89%, and the highest alarm 
algorithm is SVM, with a false alarm rate of 
4.00%. The algorithm with the lowest omission 

rate was IGWO-GRU, with a miss rate of 1.53%, 
and the algorithm with the highest omission rate 
was BP, with a miss rate of 11.56%. 

The accuracy, false alarm rate, and under-
report rate of the IGWO-GRU algorithm are 
optimal among the compared algorithms, 
indicating that the advantages of the IGWO-GRU 
algorithm in abnormal traffic detection in 
industrial control systems are superior.

 

Fig. 11 Bar graph of the models’ performance. 

5 Conclusion 

This paper proposes an industrial control 
network intrusion detection algorithm based on 
the IGWO-GRU model, with two improvements 
for the GWO algorithm. Through comparative 
experiments, the effectiveness of the proposed 
algorithm is verified. 

1. Proposes the weight-based adaptive 
adjustment strategy and divides the two methods 
to update particles, enrich the diversity of the 
population, and ensure a fast convergence rate;  

2. The parameter changing from linearity to 
nonlinearity can improve the global search 
capability of the algorithm and avoid falling into 
local optimum.
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