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Abstract： In unknown and dynamic emergency 
scenarios, achieving the collaboration of autonomous 
group robots for search and rescue operations can be 
regarded as resource allocation among robots at the 
micro-level. The resource allocation problem for 
autonomous group robots can be abstracted as a 
non-cooperative game, and in a dynamically 
changing environment, pricing becomes a critical 
factor for effective resource allocation.This paper 
starts from the perspectives of uniform pricing 
strategy and differential pricing strategy, respectively. 
It establishes master-slave game models for these 
two pricing strategies to describe resource allocation 
between resource providers and resource consumers. 
Furthermore, the paper utilizes game theory to model 
the competition for computational resources between 
resource-providing robots and resource-consuming 
robots, and solves for their Nash equilibrium 
solution, demonstrating its existence and 
uniqueness.Additionally, performance analysis and 
numerical analysis are conducted on both the 
uniform pricing model and the differential pricing 
model, thereby highlighting the advantages and 
disadvantages of different pricing models for 
dynamic adjustment of pricing strategies. Meanwhile, 
the differential pricing model introduces a fairness 
factor to enhance collaboration between robots and 
prevent resource accumulation. Simulation results 
indicate that under the same CPU cycle, the average 

processing time is shorter in the uniform pricing model, 
while in the differential pricing model, the 
resource-providing robots yield higher profits. Hence, 
the suitable pricing strategy can be chosen based on 
specific requirements.Simultaneously, as the CPU 
cycle increases, the cost for resource-consuming 
robots decreases, average processing time reduces, and 
the payment enthusiasm of resource-consuming robots 
increases. Therefore, the CPU cycle is related to the 
overall well-being of the autonomous group robot 
system. 
Keywords: Game Theory, Autonomous Group Robots, 
Dynamic Pricing Strategy, Resource Allocation, 
Differential Pricing Model 

1、Introduction 

The concept of autonomous swarm robotics 
draws inspiration from the self-organized behaviors of 
social animals[1]. Its design aims to employ a multitude 
of simple-structured robots to accomplish complex 
tasks that a single robot cannot complete, all while 
striving for minimal cost, robust stability, and high 
efficiency[2-3]. As technology advances, autonomous 
group robots are garnering increased attention due to 
their potential for diverse applications in various 
environments. However, at the current research stage, 
scholars are predominantly focused on aspects such as 
robot design and implementation, with insufficient 
emphasis on the collaboration and cooperation among 



robots. 
The issue of collaboration and cooperation 

among autonomous group robots is essentially a 
decision problem within a distributed multi-agent 
system[4]. Game theory, coincidentally, serves as a 
mathematical tool for studying and analyzing the 
interactions among decision-makers in distributed 
multi-agent systems[5]. It aids in capturing strategic 
interactions, incentives, and conflicts that arise in 
such systems. Autonomous group robots, being 
typical distributed systems, are characterized by 
moments of games between service providers and 
users, as well as between different users.In 
competitive markets, the quantity of resources 
produced by service providers depends on factors 
such as demand, costs, market conditions, and the 
objectives of the providers themselves[6]. 
Furthermore, the pricing of computational resources 
by service providers is also crucial in achieving their 
ultimate goals. Given these dynamics, game theory 
becomes a valuable framework for understanding the 
complex decision-making processes and interactions 
inherent in the collaboration and competition among 
autonomous group robots. 

In this realm, numerous efforts have been 
directed towards optimal resource allocation for 
computational offloading among swarm robot 
devices[7]-[20]. Within these studies, optimization 
problems have been formulated and solved to 
achieve optimal resource allocation, aiming to 
maximize energy efficiency or minimize latency. 
The resources in question can encompass 
computational capacity, transmission power, and 
bandwidth, among other factors. However, most of 
these endeavors primarily focus on enhancing the 
overall system performance, which has led to various 
fairness issues within autonomous group robots.In 
response, many studies have emerged to address 
these fairness concerns[21]-[30]. Nonetheless, the 
approaches aimed at rectifying fairness problems 
may not accurately meet the preferences of certain 
robots. Some robots might strongly prefer to use a 
central robot, even if it comes at a higher cost 
(referred to as non-pricing edge computing systems). 

As a result, considering the system-level performance 
and varying expectations of different robots, pricing 
mechanisms can be a viable option for differentiating 
resource allocation strategies. 

In the context of an autonomous group robot 
system, resource-providing robots possess a certain 
amount of computational resources, while 
resource-consuming robots require the use of 
computational resource blocks provided by the former. 
Taking into consideration the equilibrium benefits of 
both resource-providing robots and 
resource-consuming robots in an incomplete 
information scenario, this paper initially abstracts the 
competition process among resource-consuming 
robots for the resources provided by 
resource-providing robots into a leader-follower game 
model. In this model, the resource-providing robots act 
as leaders, and the resource-consuming robots act as 
followers. Due to issues such as the substantial 
computational task volume and computational costs, 
resource-consuming robots choose between locally 
offloading a portion of their computational tasks or 
sending them to resource-providing robots for 
offloading.In this leader-follower game, 
resource-providing robots set prices considering 
factors like computational task volume, CPU cycles, 
and task types. They aim to maximize their own 
revenue by selling resources to resource-consuming 
robots. On the other hand, resource-consuming robots 
optimize their offloading strategy to minimize their 
costs. Each resource-consuming robot acts 
independently without interference from others, while 
resource-providing robots share resource demands 
among themselves, achieving a form of local 
coordination.Unlike traditional models that separate 
resource allocation from pricing, this paper combines 
both concepts and proposes a pricing-based group 
robot resource allocation model. Specifically, the 
contributions of this work are as follows:  

1) This paper represents the resource allocation 
problem of group robots as an economic resource 
purchase problem. It explicitly introduces the unified 
pricing model and the differential pricing model. It 
rigorously analyzes these two pricing models using 



game theory methods. 
2) The unified pricing model and the 

differential pricing model are defined as 
leader-follower games with a single leader 
(resource-providing robots) and multiple followers 
(resource-consuming robots). The paper calculates 
the Nash equilibrium solutions for both models and 
proves their existence and uniqueness. 

3) In the differential pricing model, to ensure 
that the price difference does not exceed a certain 
level, the paper introduces a fairness factor. 
Specifically, in the differential pricing model, a more 
thorough analysis is conducted to determine how 
much fairness factor the resource provider should set 
to achieve higher total revenue compared to the 
unified pricing model. This analysis benefits the 
resource provider by allowing them to predict the 
revenue difference compared to the unified pricing 
model as long as the purchasers do not complain. 

4) Starting from performance analysis and 
numerical analysis, the paper compares the 
advantages and disadvantages of the two pricing 
schemes. Through this analysis, resource-providing 
robots can choose an appropriate pricing strategy 
based on different environmental conditions. 
The remaining structure of the paper is as 
follows.Section 2 discusses related research and 
work in the field to provide context for the current 
study.Section 3 presents the system model that forms 
the foundation for the subsequent analysis. It defines 
the framework within which the autonomous group 
robot resource allocation and pricing strategies will 
be examined. Section 4 establishes the game models 
used to analyze the pricing strategies. It defines the 
utility functions for both resource-providing robots 
and resource-consuming robots, incorporating 
factors that influence their decisions.Section 5 
calculates the optimal pricing strategies for both the 
unified pricing model and the differential pricing 
model. It outlines the process of determining prices 
that maximize the objectives of resource-providing 
and resource-consuming robots in each 
scenario.Finally, Section 6 draws the conclusion. 

2、Related work 

In existing research on resource allocation 
strategies, the main optimization objectives have 
centered around minimizing task processing latency 
and system energy consumption.In terms of optimizing 
task processing latency, there have been notable 
contributions. For example, in [31], a study focused on 
vehicular edge computing networks and designed a 
vertically and horizontally coordinated network 
architecture. It analyzed the relationships between 
communication, caching, and computational resources, 
proposing a joint optimization model. This model was 
solved using asynchronous distributed reinforcement 
learning to determine task offloading and resource 
management strategies. The results demonstrated a 
significant reduction in overall latency.Similarly, [32] 
addressed the problem of heterogeneous task 
offloading in a distributed edge computing 
environment as a multi-player game. Participants 
made offloading decisions based on incomplete 
information. Building upon this, Abbas et al. devised a 
minority game-based strategy for heterogeneous edge 
computing task offloading, forming subtask groups 
that compete for resources. This approach substantially 
reduced task processing latency.These studies 
highlight the efforts to optimize task processing 
latency through resource allocation strategies, 
incorporating elements such as edge computing, 
reinforcement learning, and game theory to achieve 
more efficient and effective outcomes. 

In the realm of optimizing system energy 
consumption, various research efforts have been 
undertaken:In [33], a convex optimization problem 
was introduced to minimize the weighted sum of 
mobile device energy consumption. A priority function, 
based on offloading priority, was utilized to solve the 
problem. This priority function was determined by 
individual users' channel gains and local 
computational energy consumption. Mustafa et al. also 
proposed a low-complexity suboptimal strategy using 
average subchannel gains to address the corresponding 
mixed-integer optimization problem, leading to 
significant improvements in energy consumption 
optimization.In [34], a joint optimization was 
conducted considering two distinct resource allocation 



strategies. The first strategy focused on inter-user 
fairness, while the second prioritized system energy 
efficiency. Additionally, [34] framed energy 
optimization as a non-convex fractional 
programming problem in cooperative strategies. A 
low-complexity optimization approach was 
employed to achieve optimal allocation, enhancing 
the energy efficiency of wireless mobile edge 
computing systems.In [35], a combination of local 
edge cloud and remote edge cloud computational 
resources were offloaded jointly using a genetic 
algorithm to search for optimal offloading strategies. 
This approach effectively reduced total system 
energy consumption while moderately decreasing 
task latency.[36] introduced the use of sparse code 
multiple access (SCMA) in designing algorithms for 
strategy development. Compared to conventional 
multicast strategies, this approach exhibited superior 
system performance in terms of energy 
efficiency.These studies collectively contribute to the 
exploration of resource allocation strategies that aim 
to minimize system energy consumption while 
optimizing other relevant parameters like task 
latency and efficiency. They utilize a range of 
techniques such as convex optimization, cooperative 
strategies, and genetic algorithms to achieve their 
objectives. 

Indeed, the mentioned research works assume a 
scenario where price-based service providers 
unconditionally fulfill any computational tasks from 
service recipients without considering their own 
profit. This assumption implies that all service 
providers accept complete scheduling, which is an 
idealized condition that might not be feasible in 
certain real-world applications.In practical scenarios 
where there are different service recipients, each of 
them seeks to maximize their own benefits. 
Moreover, service providers have limited resources 
to offer. Consequently, competition among service 
providers arises due to these factors. In such 
situations, it's crucial to consider the interplay of 
pricing strategies, resource limitations, and the 
diverse objectives of both service providers and 
recipients to achieve a more realistic and effective 

resource allocation approach. This approach takes into 
account the complex dynamics of resource availability, 
competition, and individual utility maximization. 

In recent years, there have been several studies 
that consider optimizing resource pricing strategies:In 
[37], a unified pricing approach was considered in an 
edge computing system where buyers take into 
account energy efficiency and costs. The authors 
established a Stackelberg game model between users 
and edge sellers, determining an optimal unit price to 
maximize the seller's revenue.In [38], an algorithm 
was proposed to find Nash equilibrium among users 
by considering energy efficiency, cost, and latency 
under a given fixed pricing policy.[39] introduced a 
Stackelberg game model between users, considering 
latency and seller costs. They presented two 
algorithms to maximize the seller's revenue using both 
unified and differential pricing strategies.Additionally, 
[40] presented a differential pricing scheme that 
maximized the overall welfare of both users and 
sellers.In [41], differential pricing was considered in a 
joint system model involving device users and edge 
servers.Finally, [42] introduced a bidding-based 
auction-style pricing mechanism by considering joint 
communication and computational resource 
allocation.These studies demonstrate the growing 
interest in optimizing resource pricing strategies to 
enhance overall system performance and stakeholder 
satisfaction. The diverse methods and models 
proposed reflect the complex nature of balancing the 
objectives of both buyers and sellers in resource 
allocation scenarios. 

Indeed, certain studies have considered edge 
computing pricing strategies in specific scenarios:In 
[43]-[47], authors simulated a case where mobile users 
employ edge computing to run blockchain applications 
for mining blocks. Both unified pricing and 
differential pricing were taken into account.In [43], a 
dual auction system for edge computing was discussed. 
Two different systems were proposed: a profit-loss 
balanced Double Auction and a dynamic pricing-based 
Double Auction. The efficiency of these systems was 
analyzed.In [44], resource management was 
formulated as a double auction game and subjected to 



analysis.[45] considered a system involving mobile 
users, edge clouds, and remote clouds.In [46], the 
concept of general equilibrium was introduced in a 
system comprising edge nodes with capacity limits 
and service providers with budget 
constraints.Moreover, [47] focused on a specific case 
where sellers offer edge-cloud-based caching 
services to users. A Stackelberg equilibrium between 
sellers and users was considered when providers 
offer cache space at a fixed price.These studies delve 
into nuanced scenarios, showcasing how edge 
computing pricing strategies can be adapted to 
various specific contexts. The different models and 
analyses highlight the versatility and applicability of 
pricing mechanisms in edge computing 
environments. 

Absolutely, the mentioned studies have 
predominantly focused on optimal pricing 
mechanisms within specific scenarios or for specific 
metrics (such as energy efficiency, latency, fairness, 
etc.). However, there is a lack of comprehensive 
comparative analysis among different pricing 
strategies. Furthermore, the majority of edge 
computing research has primarily considered a single 
pricing scheme.In the context of autonomous group 
robots, where information is incomplete and 
dynamic, it is indeed essential to delve into pricing 
strategies under incomplete information scenarios. 
This enables a more nuanced understanding of how 
varying levels of information availability can impact 
the effectiveness of pricing mechanisms. Such 
analysis is crucial for tailoring pricing strategies that 
can accommodate the real-world dynamics and 
uncertainties inherent in autonomous group robot 
applications. 

3、Business model and Game Model 
Absolutely, in scenarios involving incomplete 

information, the absence or uncertainty of certain 
data points, variables, or factors can significantly 
impact the decision-making process. Robots may 
lack complete understanding of their environment, 
the capabilities of other robots, or the exact resource 
requirements. The lack of complete information can 

make it challenging to determine the optimal pricing 
strategy or resource allocation plan. Consequently, 
researching effective pricing strategies that address 
such incomplete information is crucial for ensuring 
efficient operations in dynamic and uncertain 
environments. The ability to make informed decisions 
despite incomplete information is essential for the 
successful functioning of autonomous systems like 
group robots. 

This paper initiates by establishing a network 
model for autonomous group robots that offers 
services such as communication and computation. 
Subsequently, it incorporates the popularity of services 
to construct a business model. Lastly, utilizing the 
network and business models as foundational elements, 
a game-theoretic model is formulated. This approach 
appears to integrate various components to create a 
comprehensive framework that considers both the 
technical aspects of the network and the demand for 
services through the business model. The 
game-theoretic model built upon this foundation likely 
aims to optimize resource allocation, pricing, or other 
strategic decisions in the context of autonomous group 
robots. If you need further elaboration or specific 
details about any of these models, please feel free to 
ask. 

3.1Network model 
In the context of an unknown scenario, this paper 

proposes a network model capable of providing 
communication and computation services. The 
topology of this model is depicted in Figure 1. From 
the perspective of resource allocation, the group robots 
are divided into resource-providing robots and 
resource-consuming robots.Among these, the 
resource-providing robots possess more computational 
resources, storage capacity, and higher computational 
capabilities. They can sell computational resources to 
neighboring robots that require them. On the other 
hand, the resource-consuming robots have relatively 
fewer computational resources and weaker 
computational capabilities. In collaborative scenarios, 
they need to purchase computational resources from 
robots that have more resources available.This model 
seems to address the resource distribution dynamics 



within the context of group robots in an unknown 
environment. By categorizing the robots into 
providers and consumers and considering their 
varying resource capacities, it likely aims to create 
an effective mechanism for resource exchange and 
allocation. If you need more detailed information or 
have specific questions about this model, please feel 
free to ask. 

 

Fig1 Network Model Diagram 

The group of robots comprises one type of 

resource-providing robot and M , where M ∈{1,2,⋯ ,M},types of resource-consuming robots. The 

resource-providing robot has a limited amount of 

computational resources and aims to maximize its 

revenue. On the other hand, the resource-consuming 

robots seek to minimize their costs. These two 

objectives are interdependent, and they ultimately 

strive to achieve equilibrium in their interactions. 

The dynamics between the resource-providing and 

resource-consuming robots likely form the core of 

the research, exploring strategies that achieve a 

balance between revenue maximization and cost 

minimization in this complex system. If you require 

further elaboration or have specific inquiries, please 

don't hesitate to ask. 

3.2Business model 
Assuming that resource-consuming robot m 

requires Cm CPU cycles to compute 1 bit of input 

data and that it needs to process a total of Rm bits 

of input data. Among these, 0 ≤ ℓm ≤ Rm bits are 

computed by the resource-providing robot, while the 

remaining  （Rm − ℓm）bits are locally processed 

by the resource-consuming robot's CPU at a frequency 

denoted as Fm, measured in CPU cycles per second. 

This translates to a local computation time of tloc,m =
（Rm − ℓm）Cm Fm⁄ for the resource-consuming 

robot.When resource-consuming robot m sends a 

request to the resource-providing robot, the time spent, 

denoted as toff,m, encompasses various phases: tu,m 

is the time taken by the resource-consuming robot to 

send the request, tc,m represents the time taken by the 

resource-providing robot to prepare the resource, and td,m  accounts for the time taken to transmit the 

resource from the resource-providing robot to the 

resource-consuming robot. 

Therefore, the time cost, denoted as toff,m , 

incurred by the resource-consuming robot to purchase 

computational resources from the resource-providing 

robot is as follows: toff,m = tu,m + tc,m + td,m                (1) 
Due to the concurrent execution of local 

computation and the process of purchasing resources 
from the resource-providing robot and performing 
computation, the resource-consuming robot m can 
execute all Rm  bits of data within a time period 
represented as tm = max{tloc,m, toff,m}. 

The size of the computation result feedback to 
resource-consuming robot m is denoted as αmℓm . 
Among these parameters, αm(αm > 0)represents the 
ratio of the output bits purchased on the 
resource-providing robot to the input bits. This ratio is 
determined by the application of the 
resource-consuming robot. Additionally, there are 
parameters tu,m = ℓm rm⁄  and td,m = αmℓm rB,m⁄ , 

with 𝑟𝑚 = 𝐵𝐾 log2(1 + 𝑝𝑚ℎ𝑚𝐵 𝑀𝑁0⁄ ) and 𝑟𝐵,𝑚 = 𝐵𝐾 log2(1 +𝑃𝐵,𝑚ℎ𝑚𝐵 𝑀𝑁0⁄ ) respectively representing the uplink and 

downlink transmission rates of the resource-providing 
robot. 

Among these, 𝑁0  represents the noise power 
spectral density, while ℎ𝑚 signifies the channel gain 
between the resource-providing robot and 
resource-consuming robot m. 𝑃𝐵,𝑚 and 𝑝𝑚 
respectively denote the downlink power and uplink 
power of resource-consuming robot m. Let 𝑓𝑐,𝑚 



represent the computation speed allocated to 
resource-consuming robot m by the 
resource-providing robot. Consequently, tc,m =ℓm Cm 𝑓𝑐,𝑚⁄ . For simplicity, we assume an equal 
allocation 𝑓𝑐,𝑚 , denoted as 𝑓𝑐,𝑚 = 𝑓𝐶 M⁄  in this 
case, where 𝑓𝐶  represents the total computation 
speed of the resource-providing robot." 

Taking into account the limited computational 
capability of the resource-providing robot, which 
restricts the robot to compute received data within 
each computational cycle and imposes a CPU cycle 
limit of �̅� , this constraint can be represented as ∑ ℓmCm𝑀𝑚=1 ≤ �̅�. 

Where �̅�  and 𝑓𝐶  respectively represent the 
computational workload and the speed of CPU 
cycles for the resource-providing robot. 

3.3Service Popularity 

In the system model, considering real-world 
scenarios, the computational resources of the 
resource-providing robot often have varying 
purchase frequencies, meaning their popularity 
differs. Therefore, the probability of 
resource-consuming robots purchasing 
computational resources, denoted as Qc, follows a 
Zipf distribution. 𝑄𝑐 = 𝑐−𝛼∑ 𝑘−𝛼𝑐𝑘=1                          (2) 

In the equation, α  represents the popularity 
level of computational resources. The larger α is, 
the more popular the computational resources are. 
Conversely, the smaller α is, the less popular the 
computational resources are. 

Considering real-world situations, different 
resource-consuming robots have varying demands 
for purchasing computational resources, and their 
preferences also differ. Hence, the probability of 
resource-consuming robots requesting to buy 
computational resources is diverse. The interest 
preferences of resource-consuming robots can be 
expressed as follows: 𝑄𝑢 = 𝑒1 𝐺𝑖𝑎𝑣𝑔𝐺𝑖 + 𝑒2 𝑁𝑖𝑁                     (3) 

In the equation:𝐺𝑖𝑎𝑣𝑔 represents the average 
evaluation of computational resource i by the 

resource-consuming robots in the model 
region.𝐺𝑖stands for the highest possible evaluation of 
computational resource i.𝑁𝑖 signifies the number of 
times resource-consuming robot purchases 
computational resource i.𝑁represents the total number 
of purchases of computational resources by 
resource-consuming robots. 𝑒1 and 𝑒2  respectively 
denote coefficients for evaluations and purchase 
frequencies. 

Construct the purchasing probability of 
computational resource by resource-consuming robot 
m in the model by weighting the resource popularity 
and the popularity based on the preferences of 
resource-consuming robots as follows: 𝑄 = 𝑘1𝑄𝑐 + 𝑘2𝑄𝑢                     (4) 

Where 𝑘1 and 𝑘2 are coefficients for resource 
popularity and the resource popularity based on the 
preferences of resource-consuming robots, respectively. 
If 𝑘1 > 𝑘2  holds true, it indicates that the 
resource-providing robot is more interested in popular 
computational resources. Otherwise, it suggests that 
resource-consuming robots purchase computational 
resources in pursuit of their own interests. 
Consequently, 𝑄 can represent the latent purchasing 
interest of resource-consuming robots in popular 
computational resources within the model, enhancing 
the model's alignment with real-world logic. 

3.4Game Model 
In this paper, resource-consuming robots utilize 

resources provided by resource-providing robots to 
perform computational tasks, while resource-providing 
robots must ensure that their total computation 
workload stays within the available CPU cycles. 
Therefore, to balance the supply and demand of 
computational resources, it's considered that 
resource-providing robots set a price, denoted as ℓmCm , for the CPU cycles they provide to each 
resource-consuming robot, denoted as K. As a result, a 
leader-follower game model can be employed to 
depict the interaction between resource-providing 
robots and resource-consuming robots, where 
resource-providing robots act as leaders, and 
resource-consuming robots act as followers.The 
resource-providing robots (leaders) start by pricing the 



CPU cycles for resource-consuming robots. 
Subsequently, resource-consuming robots (followers) 
engage in local computations and purchase 
computational resources for computation based on 
the prices announced by the resource-providing 
robots. 

The price of CPU cycles for 
resource-consuming robots is denoted as μ =
（μ1，μ2，⋯，μM） . The objective of 
resource-providing robots is to sell their limited 
computational resources to resource-consuming 
robots in order to maximize their revenue. 

In conclusion, the utility function of 
resource-providing robots can be optimized as 
follows: 

P1:max  𝑈𝐵(μ) = ∑ μmℓmCm𝑀𝑚=1 , s. t. μ ≥ 0. 
Note: The data A of computational resources 

purchased by resource-consuming robot K is actually 
a function of B, as the amount of data each 
resource-consuming robot is willing to purchase 
depends on the price allocation. 

On the resource-consuming robot side, the cost 
for each resource-consuming robot is defined as its 
latency plus the fee charged by the 
resource-consuming robot, which can be expressed 
as:  𝑈𝑘(ℓm, μm) = 𝑄 ∙ 𝛾 ∙ (tm + μmℓmCm)，   

(5) 
This is equivalent to: 𝑈𝑘(ℓm, μm) ={𝑄 ∙ 𝛾 ∙ {(μm − 1𝐹𝑚)ℓmCm + RmCm𝐹𝑚 },0 ≤ ℓm ≤ mm𝑄 ∙ 𝛾 ∙ (βmℓm + μmℓmCm),mm < ℓm ≤ Rm  

(6) 

Where βm = 1𝑟𝑚 + Cm𝑓𝑐,𝑚 + αm𝑟𝐵,𝑚  and 0 < mm <
Rm  are defined as mm = CmRmβmFm+Cm , and 𝛾  is a 

coefficient related to the revenue. 
The goal of each resource-consuming robot is 

to minimize its cost by selecting the optimal data 
size ℓm for purchase, given the price μm set by the 
resource-providing robot. Therefore, the cost 

function for a resource-consuming robot can be 
expressed as: 

P2:min 𝑈𝑘(ℓm, μm), s. t. 0 ≤ ℓm ≤ Rm. 
From the perspective of net utility, the payment 

conditions in problems P1 and P2 can offset each other. 
The coupling between problems P1 and P2 in the 
leader-follower game is quite intricate. In other words, 
the pricing strategy of the resource-providing robots 
will affect the data purchase quantity of the 
resource-consuming robots, which in turn impacts the 
revenue of the resource-providing robots. 

4Pricing Model  

In order to analyze the considered leader-follower 
game, each resource-consuming robot independently 
solves problem P2 by given price μ to determine its 
purchase strategy ℓ𝑚∗ . Resource-providing robots are 
aware of the purchase decisions ℓ𝑚∗ (μm)  of each 
resource-consuming robot, and they determine their 
optimal price 𝜇∗ by solving problem P1. This process 
is known as backward induction. This study considers 
two optimal pricing strategies: uniform pricing and 
differential pricing. Next, we will investigate these two 
pricing schemes separately. 

4.1Uniform Pricing 

For the uniform pricing scheme, 
resource-providing robots set and broadcast a uniform 
price 𝜇1 = 𝜇2 = ⋯𝜇𝑀  for all resource-consuming 
robots. With the given uniform price μ, the objective 
function 𝑈𝑚  is a piecewise linear function of ℓm , 
with linearity in each interval starting from (6). With 
the structure of 𝑈𝑚 , we can obtain the optimal 
solution for problem P2 in the following proposition: 

Proposition 1: The optimal offloading strategy for 
each user in problem P2 follows a threshold-based 
strategy, where ℓ𝑚∗ (μ) = 𝑚𝑚𝑥𝑚,   ∀k,                 (7) 

where the binary variable 𝑥𝑚 is defined as 

𝑥𝑖 = {1, μ ≤ 1𝐹𝑚0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                 (8) 

Proof: See Appendix A. 
Based on Proposition 1, it can be inferred that 



there exists a threshold 1/μ  for purchasing 
computational resources. Specifically, if the CPU 
frequency 𝐹𝑚  of resource-consuming robot m is 
less than or equal to this threshold, it tends to 
procure 𝑚𝑚  bits of resources from the 
resource-providing robot; otherwise, it retains all bits 
for local computation. In other words, when 
resource-consuming robot m possesses a relatively 
lower computational speed 𝐹𝑘and has the potential 
for local computation, procuring computational 
resources proves beneficial. 

Next, shifting our focus to Proposition 1, by 
substituting equation (7) into problem P1, we can 
reformulate the optimization problem for 
resource-providing robots under the unified pricing 
scheme as follows: 
P3:max UB(μ) = μ∑ mmxmCmMm=1         (9) s. t. ∑ mmxmCm ≤ F̅Mm=1                (10) 

Proposition 2: Without loss of generality, the 
optimal unified price 𝛼∗  must belong to the set {1 𝐹1 < ⋯ < 1 𝐹𝑀−1 < 1 𝐹𝑀⁄⁄⁄ } , after sorting 1 𝐹1 < ⋯ < 1 𝐹𝑀−1 < 1 𝐹𝑀⁄⁄⁄  in ascending order. 

Proof: See Appendix B. 
According to Proposition 2, the problem of 

maximizing revenue in P3 is simplified to a 
one-dimensional search problem on the n values in {1 𝐹𝑀⁄ }𝑚=1𝑀 . Algorithm 1 summarizes the entire 
approach. Specifically, resource-providing robots 
announce prices in decreasing order of {1 𝐹𝑀⁄ }𝑚=1𝑀  
to negotiate with resource-consuming robots. As a 
result, the total required CPU cycles sum ∑ ℓmCm𝑀𝑚=1  decreases as the price μ  decreases. 
Negotiations with other price candidates are 
unnecessary as long as the computational constraint 
(10) holds valid. This concludes the price negotiation 
process. 

Clearly, the total complexity of Algorithm 1's 
search for μ∗ is 𝒪（ logM） . For the uniform 
pricing scheme, resource-providing robots require 
limited network information, namely 𝐹𝑚 and Cm , 
which were collected before the algorithm's 
execution. In each iteration, every 
resource-consuming robot makes an independent 
offloading decision ℓm  upon knowing the 

broadcasted price α from resource-providing robots 
and reports it back to update the price. Hence, the 
cloud broadcasts the price μ , each 
resource-consuming robot reports its purchase 
decision ℓm, and this is the information exchanged 
between resource-providing and resource-consuming 
robots in each iteration. Therefore, Algorithm 1 is a 
fully distributed algorithm. 

Table1 Optimal Uniform Pricing Policy for Problem P3 

Algorithm1  Optimal Uniform Pricing Policy for Problem P3  

1:Resource provision robot initializaties τ = K  and μτ =1 Fτ⁄ . 

2:Repeat 

3:Each resource consumption robot determines the optimal 

purchase data size ℓ𝑚∗ (μτ) based on (7) 
4:Resource provision robots calculate their revenue 𝑈𝐵(μτ) 
based on (9). 

5:if ∑ ℓ𝑚∗ (μτ)𝐶𝑚𝑀𝑚=1 ≤ �̅� then 

6:  Update the price μ𝜏−1 = 1 𝐹𝜏−1⁄  and τ ← τ − 1; 

7:else 

8:   Set 𝑈𝐵(μτ) = 0;break; 

9:end if 

10:until τ ≤ 0. 
11:Output μ∗ ← 𝑎𝑟𝑔𝑚𝑎𝑥μτ𝑈𝐵(μτ). 
4.2Differentiated pricing 

In this context, we consider the general case 
where resource-providing robots charge different types 
of resource-consuming robots at different prices. 
Similar to the uniform pricing case, the optimal 
solution to Problem P2 is still given by (7), with the 
substitution of μ  in xm  being replaced by μm . 
Problem P1 can be formulated as: 

P4:max UB(μm) = ∑ μmmmxmCmMm=1  s. t. μ ≥ 0                           (11) 
In particular, for resource-consuming machine m, 

the price μm  is actually a function of xm . More 
specifically, the optimal price xm = 1 , denoted as μm ≤ 1 𝑓𝑖⁄ for resource-consuming machine m, is 
determined by μ𝑚∗ = 1 𝑓𝑚⁄  since the objective 
function of Problem P4 is a monotonically increasing 
function of μm . When xm = 0  occurs, 
resource-providing robots set the price for 
resource-consuming machine m to 𝜇𝑚∗ = ∞, without 
earning any profit. Based on the above analysis, 



Problem P4 can be equivalently represented as: 𝑃4‘:𝑚𝑎𝑥 𝑈𝐵(𝑥𝑚) = ∑ mmxmCm𝐹𝑚𝑀𝑚=1 , s. t. 0 ≤ xm ≤ 1                        
(12) 

Problem 𝑃4’  is actually a 0/1 knapsack 
problem with weights given by mmcm and values 
corresponding to resource-consuming machine m 
denoted as mmCm 𝐹𝑚⁄ . Since this problem is 
NP-complete, there is no efficient algorithm to solve 
it optimally. However, we can apply dynamic 
programming to solve the aforementioned 0/1 
knapsack problem in pseudo-polynomial time. 

To solve Problem 𝑃4’ , each 
resource-consuming machine needs to report mm, Cm , and 𝐹𝑚  to the resource-providing machine. 
There is no need for iteration between 
resource-consuming machines and 
resource-providing machines. Upon obtaining the 
optimal price μ𝑚∗ , resource-consuming machine m 
decides its optimal strategy based on Equation (7). 
Therefore, the differential pricing scheme is also a 
distributed algorithm, but it requires more 
information and has higher complexity compared to 
the uniform pricing scheme. 

5Simulation and discussion 

In this section, we provide several numerical 
results for both the uniform pricing algorithm and 
the differential pricing algorithm to analyze their 
performance. All simulations in this section are 
based on Python 3.5. 

Consider a set of resource-consuming robots as 
{1, 2, 3, 4, 5}, and contemplate the following 
scenario: Two resource-consuming robots (Robot 1 
and Robot 2) are engaged in executing terrain 
exploration algorithms, while another two robots are 
concurrently running speech recognition programs. 
Additionally, one particular robot (Robot 5) is 
currently performing image detection 
algorithms.Suppose the sizes of data associated with 
their respective tasks are represented by the 
collection (a1, a2, a3, a4, a5) = (1, 2, 8, 10, 15) MB. 
Furthermore, let's assume that each 

resource-consuming robot's constant µi is defined by 
(µ1, µ2, µ3, µ4, µ5) = (1, 1.5, 2, 3, 5). The total 
allocation of CPU cycles for computing resources is 
set at 8 GHz. Notably, in a reference [26], the 
processing densities for speech recognition algorithms 
and 400-frame videos are measured at 31680 and 2640 
cycles per bit, respectively. Consequently, it is 
reasonable to attribute a processing density of 31680, 
31680, and 264 cycles per bit to resource-consuming 
robots 3, 4, and 5, respectively. Similarly, we assume a 
processing density of 20000 cycles per bit for the 
speech recognition program. 

 

Fig 2 Absolute Value of Utility Function 

In Figure 2, the absolute values of the utility 
functions are visualized using a 3D graph, with the 
average values represented by gray bars. The results 
indicate that the absolute values of the utility functions 
exhibit an increasing trend in the order of the uniform 
pricing algorithm and the differentiated pricing 
algorithm. This implies that the actual values decrease 
in the same order. 



 
Fig3 Payment situation of consumer robots 

Furthermore, Figure 3 depicts the payment 
scenarios for users in both models, illustrating the 
trend of increasing payments in the order of the 
uniform pricing algorithm and the differentiated 
pricing algorithm. 

 

Fig 4 Distributed CPU cycles and total 

As evident from Figure 4, it can be observed 
that when the payment for the third 
resource-consuming robot shifts from point 0.5μ∗(137.5) to point 1.5μ∗(412.5), the utility of 
the third resource-consuming robot reaches its 
maximum value of -1354 at point μ3 = 275.0 , 
which corresponds to the computed Nash 
equilibrium. 

 

Fig5: Changes in the number of resource consuming robots in 

each model as the unit price increases 

In addition, a simulation with randomly generated 
resource-consuming robots was also designed to 
emulate real-world scenarios. It was assumed that in 
emergency situations, the total CPU cycles allocated 
for resource allocation is 100, with each robot 
requiring 10 CPU cycles. The fairness coefficient was 
set to 3.5. Furthermore, each resource-consuming 
robot was generated and assigned a random value of µ 
(constant) and its data size within the range of 0 to 10. 
We differentiated the number of resource-consuming 
robots and plotted the unit prices for both models for 
each user count. Figure 5 effectively presents the 
results. 

In the above analysis, two models were analyzed 
based on the same set of robots, while also increasing 
the total CPU cycles allocated for resource allocation. 
It can be intuitively predicted that as the CPU cycles 
increase, the utility of resource-consuming robots will 
increase, and the overall latency for 
resource-consuming robots will decrease. Additionally, 
according to the principle of supply and demand, it can 
be anticipated that pricing will decrease. 

 



Fig 6: Changes in average processing time of resource 

consuming robots as CPU cycles increase 

 

Fig 7: Changes in payment pricing for resource consumption 

robots as CPU cycles increase 

 

Fig 8: Changes in the number of resource consuming robots 

as CPU cycles increase 

Increasing the allocated CPU cycles from 2GHz 
to 8GHz has been depicted in the changes in average 
processing time, pricing, and social welfare, as 
shown in Figures 7, 8, and 9. Figures 7 and 8 
illustrate that the average processing time and 
pricing for resource-consuming robots tend to 
decrease with the increase in the total CPU cycles, 
following a trend that resembles an inverse 
relationship. Consequently, the average utility of 
resource-consuming robots often increases with the 
increase in the CPU cycles allocated by 
resource-providing robots, implying that enhancing 
the total CPU cycles allocated by resource-providing 
robots can lead to greater satisfaction among 
resource-consuming robots. These numerical results 
establish a direct correlation between the allocated 
CPU cycles for resource allocation and the overall 
well-being of the system. 

6Conclusion 

This paper investigates the problem of resource 
allocation for autonomous group robots in an 
incomplete information scenario based on pricing 
strategies. To achieve this, the paper models the 
computation resource allocation from a 
game-theoretical perspective, introducing both the 
uniform pricing model and the differential pricing 
model and conducting a rigorous comparative analysis 
between them. The introduction of a fairness factor in 
the differential pricing model enhances collaboration 
among robots. It is concluded that different pricing 
mechanisms result in varying degrees of collaboration 
and stability within autonomous group robots. 
Furthermore, the paper conducts performance and 
numerical analyses on the two pricing models, 
outlining their respective advantages and 
disadvantages. This enables autonomous group robots 
to adaptively select different pricing strategies in 
response to changing environmental conditions in an 
incomplete information setting. 

Appendix A 

For a given α, the optimal solution of problem 
P2 is determined by 

ℓ𝑚∗ (μ){ 
 = 𝑚𝑚,           μ < 1𝐹𝑚 ,∈ [0,𝑚𝑚],        μ = 1𝐹𝑚, = 0           𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.               (17) 

For all resource-providing robots, the probability of 
event μ = 1 𝐹𝑚⁄  occurring is 0. In this scenario, let ℓm = mm. Proof is complete. 

Appendix B 

Using the method of proof by contradiction, the 
following is demonstrated: Suppose the optimal price μ∗ exists within the interval （1 𝐹𝑖 , 1 𝐹𝑖+1⁄⁄ ), ∀𝑖 ∈{1,⋯ ,𝑀 − 1}. Next, consider scenario μ̃ = 1 𝐹𝑖+1⁄ . 
According to equation (6), it is evident that for values μ̃andμ∗, when condition m = 1,⋯ iholds true, 𝑥𝑚 =0occurs; similarly, when condition m = i + 1,⋯M is 
satisfied, 𝑥𝑖 = 1 follows. Hence, the total CPU cycles 
for the summation of data ∑ 𝑚𝑚𝑥𝑚𝑐𝑚𝑀𝑚=1 are equal to 



the CPU cycles for data μ̃ in scenario μ∗. Given 
that the objective function 𝑈𝐵(μ) , provided in 
equation (7), is a monotonically increasing linear 
function of price μ, it is always possible to achieve 
higher profits in scenario μ̃ = 1 𝐹𝑖+1⁄ than in 
scenario μ∗. This contradicts the assumption of the 
optimal solution for problem P3 when condition 1 𝐹𝑖 < μ∗ < 1 𝐹𝑖+1⁄⁄  is valid. As a result, the 
optimal price 𝛼∗ must necessarily belong to the set {1 𝐹1, ⋯ 1 𝐹𝑀−1, 1 𝐹𝑀⁄⁄⁄ }. 
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