[1] M. Volmer-Thole, R. Lobmann, Neuropathy and Diabetic Foot Syndrome, International journal of molecular sciences, 17 (2016).
[2] N. Singh, D.G. Armstrong, B.A. Lipsky, Preventing foot ulcers in patients with diabetes, Jama, 293 (2005) 217-228.
[3] P.D. Sinwar, The diabetic foot management - recent advance, International journal of surgery (London, England), 15 (2015) 27-30.
[4] N. Nakamura, K. Naruse, Y. Kobayashi, T. Matsuki, Y. Hamada, E. Nakashima, H. Kamiya, M. Hata, T. Nishikawa, A. Enomoto, M. Takahashi, T. Murohara, T. Matsubara, Y. Oiso, J. Nakamura, High glucose impairs the proliferation and increases the apoptosis of endothelial progenitor cells by suppression of Akt, Journal of diabetes investigation, 2 (2011) 262-270.
[5] G.P. Fadini, S. Sartore, C. Agostini, A. Avogaro, Significance of endothelial progenitor cells in subjects with diabetes, Diabetes care, 30 (2007) 1305-1313.
[6] J.S. Silvestre, Vascular progenitor cells and diabetes: role in postischemic neovascularisation, Diabetes & metabolism, 34 Suppl 1 (2008) S33-36.
[7] Z.J. Liu, O.C. Velazquez, Hyperoxia, endothelial progenitor cell mobilization, and diabetic wound healing, Antioxidants & redox signaling, 10 (2008) 1869-1882.
[8] J. Yan, G. Tie, B. Park, Y. Yan, P.T. Nowicki, L.M. Messina, Recovery from hind limb ischemia is less effective in type 2 than in type 1 diabetic mice: roles of endothelial nitric oxide synthase and endothelial progenitor cells, Journal of vascular surgery, 50 (2009) 1412-1422.
[9] G.P. Fadini, M. Miorin, M. Facco, S. Bonamico, I. Baesso, F. Grego, M. Menegolo, S.V. de Kreutzenberg, A. Tiengo, C. Agostini, A. Avogaro, Circulating endothelial progenitor cells are reduced in peripheral vascular complications of type 2 diabetes mellitus, Journal of the American College of Cardiology, 45 (2005) 1449-1457.
[10] N. Krankel, V. Adams, A. Linke, S. Gielen, S. Erbs, K. Lenk, G. Schuler, R. Hambrecht, Hyperglycemia reduces survival and impairs function of circulating blood-derived progenitor cells, Arteriosclerosis, thrombosis, and vascular biology, 25 (2005) 698-703.
[11] K.A. Gallagher, Z.J. Liu, M. Xiao, H. Chen, L.J. Goldstein, D.G. Buerk, A. Nedeau, S.R. Thom, O.C. Velazquez, Diabetic impairments in NO-mediated endothelial progenitor cell mobilization and homing are reversed by hyperoxia and SDF-1 alpha, The Journal of clinical investigation, 117 (2007) 1249-1259.
[12] C.J. Loomans, R. van Haperen, J.M. Duijs, C. Verseyden, R. de Crom, P.J. Leenen, H.A. Drexhage, H.C. de Boer, E.J. de Koning, T.J. Rabelink, F.J. Staal, A.J. van Zonneveld, Differentiation of bone marrow-derived endothelial progenitor cells is shifted into a proinflammatory phenotype by hyperglycemia, Molecular medicine (Cambridge, Mass.), 15 (2009) 152-159.
[13] Y. Cao, X. Gang, C. Sun, G. Wang, Mesenchymal Stem Cells Improve Healing of Diabetic Foot Ulcer, Journal of diabetes research, 2017 (2017) 9328347.
[14] C. Kanduri, Long noncoding RNAs: Lessons from genomic imprinting, Biochimica et biophysica acta, 1859 (2016) 102-111.
[15] Y. Zhan, H. Zang, J. Feng, J. Lu, L. Chen, S. Fan, Long non-coding RNAs associated with non-small cell lung cancer, Oncotarget, 8 (2017) 69174-69184.
[16] P. Riva, A. Ratti, M. Venturin, The Long Non-Coding RNAs in Neurodegenerative Diseases: Novel Mechanisms of Pathogenesis, Current Alzheimer research, 13 (2016) 1219-1231.
[17] W. Xia, L. Zhuang, X. Deng, M. Hou, Long noncoding RNAp21 modulates cellular senescence via the Wnt/betacatenin signaling pathway in mesenchymal stem cells, Molecular medicine reports, 16 (2017) 7039-7047.
[18] A. Leung, R. Natarajan, Long Noncoding RNAs in Diabetes and Diabetic Complications, Antioxidants & redox signaling, 29 (2018) 1064-1073.
[19] M.H. Bao, V. Szeto, B.B. Yang, S.Z. Zhu, H.S. Sun, Z.P. Feng, Long non-coding RNAs in ischemic stroke, Cell death & disease, 9 (2018) 281.
[20] R. Dong, G.B. Liu, B.H. Liu, G. Chen, K. Li, S. Zheng, K.R. Dong, Targeting long non-coding RNA-TUG1 inhibits tumor growth and angiogenesis in hepatoblastoma, Cell death & disease, 7 (2016) e2278.
[21] X. Yu, L. Hu, S. Li, J. Shen, D. Wang, R. Xu, H. Yang, Long non-coding RNA Taurine upregulated gene 1 promotes osteosarcoma cell metastasis by mediating HIF-1alpha via miR-143-5p, Cell death & disease, 10 (2019) 280.
[22] Y. Wang, G. Liu, L. Ren, K. Wang, A. Liu, Long non-coding RNA TUG1 recruits miR29c3p from its target gene RGS1 to promote proliferation and metastasis of melanoma cells, International journal of oncology, 54 (2019) 1317-1326.
[23] C. Lu, X. Zhang, D. Zhang, E. Pei, J. Xu, T. Tang, M. Ye, G. Uzan, K. Zhi, M. Li, K. Zuo, Short time tripterine treatment enhances endothelial progenitor cell function via heat shock protein 32, Journal of cellular physiology, 230 (2015) 1139-1147.
[24] Chunlian, Ma, Jinju, Wang, Hua, Liu, Yanyu, Chen, Xiaotang, Shuzhen, Moderate Exercise Enhances Endothelial Progenitor Cell Exosomes Release and Function, Medicine & Science in Sports & Exercise, (2018).
[25] H. Jin, Z. Zhang, C. Wang, Q. Tang, X. Wang, Melatonin protects endothelial progenitor cells against AGE-induced apoptosis via autophagy flux stimulation and promotes wound healing in diabetic mice, (2018).
[26] Nager, Mireia, Sallan, Marta, C., Visa, Anna, Pushparaj, Charumathi, Santacana, Inhibition of WNT-CTNNB1 signaling upregulates SQSTM1 and sensitizes glioblastoma cells to autophagy blockers, Autophagy, (2018).
[27] Z. Wu, S. Zhao, C. Li, C. Liu, LncRNA TUG1 serves an important role in hypoxia-induced myocardial cell injury by regulating the miR1455pBinp3 axis, Molecular medicine reports, 17 (2018) 2422-2430.
[28] Y.N. Xue, Y. Yan, Z.Z. Chen, J. Chen, F.J. Tang, H.Q. Xie, S.J. Tang, K. Cao, X. Zhou, A.J. Wang, J.D. Zhou, LncRNA TUG1 regulates FGF1 to enhance endothelial differentiation of adipose-derived stem cells by sponging miR-143, Journal of cellular biochemistry, 120 (2019) 19087-19097.
[29] X.Y. Zhou, F. Zhang, X.T. Hu, J. Chen, R.X. Tang, K.Y. Zheng, Y.J. Song, Depression can be prevented by astaxanthin through inhibition of hippocampal inflammation in diabetic mice, Brain research, 1657 (2017) 262-268.
[30] M.E. Edmonds, The diabetic foot: pathophysiology and treatment, Clinics in endocrinology and metabolism, 15 (1986) 889-916.
[31] E.B. Friedrich, K. Walenta, J. Scharlau, G. Nickenig, N. Werner, CD34-/CD133+/VEGFR-2+ endothelial progenitor cell subpopulation with potent vasoregenerative capacities, Circulation research, 98 (2006) e20-25.
[32] O.M. Tepper, R.D. Galiano, J.M. Capla, C. Kalka, P.J. Gagne, G.R. Jacobowitz, J.P. Levine, G.C. Gurtner, Human endothelial progenitor cells from type II diabetics exhibit impaired proliferation, adhesion, and incorporation into vascular structures, Circulation, 106 (2002) 2781-2786.
[33] W. Zhang, J. Zheng, X. Hu, L. Chen, Dysregulated expression of long noncoding RNAs serves as diagnostic biomarkers of type 2 diabetes mellitus, Endocrine, 65 (2019) 494-503.
[34] K.M. Michalik, X. You, Y. Manavski, A. Doddaballapur, M. Zornig, T. Braun, D. John, Y. Ponomareva, W. Chen, S. Uchida, R.A. Boon, S. Dimmeler, Long noncoding RNA MALAT1 regulates endothelial cell function and vessel growth, Circulation research, 114 (2014) 1389-1397.
[35] C. Voellenkle, J.M. Garcia-Manteiga, S. Pedrotti, A. Perfetti, I. De Toma, D. Da Silva, B. Maimone, S. Greco, P. Fasanaro, P. Creo, G. Zaccagnini, C. Gaetano, F. Martelli, Implication of Long noncoding RNAs in the endothelial cell response to hypoxia revealed by RNA-sequencing, Scientific reports, 6 (2016) 24141.
[36] H. Lei, Y. Gao, X. Xu, LncRNA TUG1 influences papillary thyroid cancer cell proliferation, migration and EMT formation through targeting miR-145, Acta biochimica et biophysica Sinica, 49 (2017) 588-597.
[37] J. Cao, X. Han, X. Qi, X. Jin, X. Li, TUG1 promotes osteosarcoma tumorigenesis by upregulating EZH2 expression via miR-144-3p, International journal of oncology, 51 (2017) 1115-1123.
[38] P. Guo, G. Zhang, J. Meng, Q. He, Z. Li, Y. Guan, Upregulation of Long Noncoding RNA TUG1 Promotes Bladder Cancer Cell Proliferation, Migration, and Invasion by Inhibiting miR-29c, Oncology research, 26 (2018) 1083-1091.
[39] H. Cai, X. Liu, J. Zheng, Y. Xue, J. Ma, Z. Li, Z. Xi, Z. Li, M. Bao, Y. Liu, Long non-coding RNA taurine upregulated 1 enhances tumor-induced angiogenesis through inhibiting microRNA-299 in human glioblastoma, Oncogene, 36 (2017) 318-331.
[40] X.J. Zang, L. Li, X. Du, B. Yang, C.L. Mei, LncRNA TUG1 inhibits the proliferation and fibrosis of mesangial cells in diabetic nephropathy via inhibiting the PI3K/AKT pathway, European review for medical and pharmacological sciences, 23 (2019) 7519-7525.
[41] H.Y. Yan, S.Z. Bu, W.B. Zhou, Y.F. Mai, TUG1 promotes diabetic atherosclerosis by regulating proliferation of endothelial cells via Wnt pathway, European review for medical and pharmacological sciences, 22 (2018) 6922-6929.
[42] T. Liang, L. Zhu, W. Gao, M. Gong, J. Ren, H. Yao, K. Wang, D. Shi, Coculture of endothelial progenitor cells and mesenchymal stem cells enhanced their proliferation and angiogenesis through PDGF and Notch signaling, FEBS open bio, 7 (2017) 1722-1736.
[43] H. Wang, Y. Yin, W. Li, X. Zhao, Y. Yu, J. Zhu, Z. Qin, Q. Wang, K. Wang, W. Lu, J. Liu, L. Huang, Over-expression of PDGFR-beta promotes PDGF-induced proliferation, migration, and angiogenesis of EPCs through PI3K/Akt signaling pathway, PloS one, 7 (2012) e30503.
[44] J. Takahashi, M. Orcholski, K. Yuan, V. de Jesus Perez, PDGF-dependent beta-catenin activation is associated with abnormal pulmonary artery smooth muscle cell proliferation in pulmonary arterial hypertension, FEBS letters, 590 (2016) 101-109.
[45] W. Kamprom, P. Kheolamai, U.P. Y, A. Supokawej, M. Wattanapanitch, C. Laowtammathron, S. Issaragrisil, Effects of mesenchymal stem cell-derived cytokines on the functional properties of endothelial progenitor cells, European journal of cell biology, 95 (2016) 153-163.
[46] M.B. Schaaf, D. Houbaert, O. Mece, P. Agostinis, Autophagy in endothelial cells and tumor angiogenesis, Cell death and differentiation, 26 (2019) 665-679.
[47] Z. Hu, M. Cai, Y. Zhang, L. Tao, R. Guo, miR-29c-3p inhibits autophagy and cisplatin resistance in ovarian cancer by regulating FOXP1/ATG14 pathway, Cell Cycle, 19 (2019) 1-13.
[48] H. Hu, B. Liu, Y. Zuo, D. Liu, R. Xie, W. Cui, dl-3-n-butylphthalide suppresses PDGF-BB-stimulated vascular smooth muscle cells proliferation via induction of autophagy, Life Sciences, 151 (2016) 182-188.
[49] W.D. Li, D.M. Zhou, L.L. Sun, L. Xiao, Z. Liu, M. Zhou, W.B. Wang, X.Q. Li, LncRNA WTAPP1 Promotes Migration and Angiogenesis of Endothelial Progenitor Cells via MMP1 Through MicroRNA 3120 and Akt/PI3K/Autophagy Pathways, Stem cells (Dayton, Ohio), 36 (2018) 1863-1874.
[50] P. Zhou, Y.Z. Tan, H.J. Wang, G.D. Wang, Hypoxic preconditioning-induced autophagy enhances survival of engrafted endothelial progenitor cells in ischaemic limb, Journal of cellular and molecular medicine, 21 (2017) 2452-2464.