Physical and rheological characterizations of mSC
Physical characteristics of mSC have been reported by Chen et al [33]. It was summarized as the following. mSC was measured by particle size analyzer to show an average effective diameter of 2.06 µm with a mid-range polydispersity index (0.459). But when it was observed under SEM, it shows no sign of particles but appearing to be more like the gel matrix (Fig. 1). This indicated that those short fibers of mSC was so small in both length and diameter that they could be hydrated to become nanogel when mSC was dispersed in aqueous medium. Rheological characteristics of mSC nanogel have also been reported by Chen et al [33]. Please also see supporting information for details.
Proliferation of Pax7 + SCs isolated from the TA muscle was significantly enhanced by 200 µg/mL mSC
The concentration of mSC could possibly vary its effect [29]; therefore, we determined its optimal concentration, which could effectively promote SC proliferation. The primary cultured myogenic cells, which were isolated from the TA muscle, were cocultured in growth media that contained different concentrations of mSC, such as 2 mg/mL, 200 µg/mL, and 20 µg/mL. Coimmunostaining using anti-Pax7 antibody and BrdU assay was performed 2 days after cell plating. Pax7 is an SC marker and BrdU assay is commonly used in the detection of proliferating cells; therefore, the number of Pax7+BrdU+ cells in each assessed mSC concentration could be referred to as actively proliferating SC (Fig. 1A). The results revealed that 200 µg/mL mSC possessed the optimal effectiveness among the three concentrations for promoting Pax7+ cell proliferation (200 µg/mL mSC relative to control, 1.160 ± 0.96 and 1.000 ± 0.062 respectively, p < 0.01, n = 6, Fig. 1B). This was confirmed by evaluation of MyHC protein levels in SCs, maintained in different concentrations of mSCs, after 8 days of cell plating through Western blotting. As expected, medium with 200 µg/mL mSC had the highest MyHC protein expression (0.459 ± 0.068 and 0.314 ± 0.032 respectively, p < 0.01, n = 3, Fig. 1C); this result was compatible with the Pax7+BrdU+ coimmunostaining result. Therefore, 200 µg/mL mSC was used for later experiments.
TLR2 and TLR4 were expressed on SC and the signals of its downstream, TAK1- JNK but not p38, ERK was activated by mSC
Here, 200 µg/mL mSC was the optimal condition to promote SC proliferation, the signaling pathway involved was investigated with this enhancement. According to the previous studies, TLR2 and TLR4 (TLR2/4) express on the surface of myocytes, and their downstream protein kinase MAPK is closely associated with the proliferation of SC [33]. However, the presence of TLR2/4 on SC was not yet confirmed. Therefore, immunostainings were performed to investigate the presence of TLR2/4 on SCs (Pax7+) and the results were as expected (Fig. 2A). After confirming the presence of TLR2/4 on SC, the phosphorylation status of TAK1 (p-TAK1) and its downstream molecules, namely p38/MAPK (p-P38), JNK/MAPK (p-JNK), and ERK/MAPK (p-ERK), which form the MAPK signaling pathway, were examined for medium containing 200 µg/mL mSC. As expected, a significant elevation was observed for p-TAK1 (0.716 ± 0.057, p < 0.05, n = 3, Fig. 2B). The significant elevation was observed for only p-JNK in MAPK signaling pathway, but not for p-p38 or p-ERK (0.858 ± 0.036, p < 0.05; 0.576 ± 0.061, p = 0.258; and 0.765 ± 0.038, p = 0.384, respectively; n = 3; Fig. 2C).
The proliferation of SC induced by mSC was effectively suppressed by JNK inhibitor but not by p38 or ERK inhibitor
The capability of mSC to activate a specific MAPK signaling pathway was further confirmed by experiments using inhibitors of JNK, p38, and ERK. The effective blockage of the enhanced SC proliferation under the effect of 200 µg/mL mSC was observed with JNK inhibitor (SP600125) only and not with p38 inhibitor (SB203580) nor ERK inhibitor (U0126) (mSC + IH relative to IH, Fig. 3A, JNK inhibitor, 0.330 ± 0.057 and 0.463 ± 0.054, p = 0.0570; Fig. 3B, p38 inhibitor, 1.131 ± 0.051 and 1.131 ± 0.051 and 0.389 ± 0.046, p < 0.0001; Fig. 3C, ERK inhibitor, 0.994 ± 0.044 and 0.500 ± 0.068, p < 0.0001, respectively; n = 3). These results were compatible to the previous results of the phosphorylation status of MAPK signaling pathway molecules, which were induced by mSC. Both results indicated that the JNK/MAPK signaling pathway was the sole pathway to be activated by mSC.
mSC-induced JNK phosphorylation was predominantly initiated by the activation of TLR2 and mediated by TAK1
Immunostaining of TLR2 and TLR4 with Pax7 antibody revealed that the TLR2 and/or TLR4 were expressed on SC. Therefore, it was rational to hypothesize that this mSC-induced enhanced SC proliferation was through the activation of TLR2 and/or TLR4. To confirm this hypothesis, the protein levels of p-TAK1 and p-JNK, which were known to be located downstream of TLR2/4, were evaluated under the conditions of mSC-containing medium added with either TLR2/4 inhibitor (TLR2/4 IH) or TLR4 inhibitor (TLR4 IH). The protein levels of p-TAK1 and p-JNK were significantly suppressed by TLR2/4-inhibitor (1.10 ± 0.05, p = 0.07 and 0.55 ± 0.06, p = 0.13, respectively, n = 3, Fig. 4) and not by TLR4-inhibitior (1.903 ± 0.016 and 1.106 ± 0.052, respectively, p < 0.05; n = 3; Fig. 4), although TLR4-inhibitor also exhibited a trend of SC proliferation suppression. These results suggested that the signal transduction induced by mSC was predominantly through the activation of TLR2.
AP-1 transcriptional activity was significantly enhanced by mSC
Lastly, the changes in AP-1 transcriptional activity of the myogenic cells isolated from TA muscle, included Pax7+ population which were cultivated with mSC (200 µg/mL) contained medium was evaluated. The AP-1 transcriptional activity of the myogenic cells in mSC-containing medium was significantly enhanced in relation to that of the control (1.713 ± 0.095, p < 0.05, n = 3, Fig. 5A). On the other hand, there was no remarkable increase in phosphorylation of NF-κB (p-NF-kB, 0.786 ± 0.045, p = 0.481, n = 3, Fig. 5B).