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Abstract

Kinetic process models are widely applied in science and engineering, including atmospheric, physio-
logical and technical chemistry, reactor design, or process optimization. These models rely on numerous
kinetic parameters such as reaction rate, diffusion or partitioning coefficients. Determining these
parameters by experiments can be challenging, especially for multiphase systems, and researchers
often face the task of intuitively selecting experimental conditions to obtain insightful results. We
developed a kinetic compass (KC) method that integrates kinetic models, global optimization, ensem-
ble methods, and machine learning to identify experimental conditions with the greatest potential to
constrain kinetic parameters. The approach is based on the quantification of model output variance in
an ensemble of solutions that agree with experimental data. The utility of the KC method is demon-
strated for the kinetic parameters in a multi-layer model describing the heterogeneous ozonolysis of
oleic acid aerosols. We show how neural network surrogate models of the multiphase chemical reaction
system can be used to accelerate the application of the kinetic compass for a comprehensive mapping
and analysis of experimental conditions. The code is openly available and can be adapted to various
types of process models.

Keywords: Chemical Kinetics, Experiment Design, Global Optimization, Inverse Problem, Ensemble
Methods, Multiphase Chemistry, Machine Learning

1 Introduction1

In multiphase chemical kinetics, the rate of change2

in complex systems can be described by resolv-3

ing mass transport and chemical reactions at the4

molecular process level [1, 2]. While the underlying5

physical and chemical principles are well under-6

stood, the individual processes are inherently7

coupled and the chemical and physical parame-8

ters, such as reaction, diffusion, or partitioning9

coefficients, are often unknown or poorly con-10

strained [3, 4]. The integration of these processes11

occurring in parallel or in sequence often requires12
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computational kinetic models (KM). KM return13

the concentration time profiles of reactants or14

products under specified environmental or exper-15

imental conditions [5–10]. However, the input16

parameters for KM may not be known a priori,17

and their determination can be challenging [11–18

14]. The deduction or constraint of model input19

parameters from model output is known as solving20

the inverse problem. In practice, researchers often21

utilize statistical approaches to solve the inverse22

problem with global optimization techniques [15–23

18]. Such techniques determine sets of parameter24

values, so-called fits, that lead to model outputs25

in agreement with previously acquired experimen-26

tal data. In ill-posed problems, Berkemeier et al.27

2021 [19] proposed the consideration of ensem-28

bles of sufficiently well-fitting parameter sets to29

extract information from the corresponding range30

of kinetic model solutions in underdetermined31

optimization problems. All kinetic parameter sets32

in such a fit ensemble represent valid solutions33

that match the experiments taken into account,34

within a specified error margin.35

Surrogate models (SM) are machine learning36

models that are trained on inputs and outputs37

of a template model. A SM can be used to sub-38

stitute the template model in applications that39

benefit from low computational cost in exchange40

for slightly increased model uncertainty. Satisfac-41

tory model accuracy can be ensured by a suffi-42

cient size of the training data set, and therefore43

depends on the initial investment of computa-44

tional resources [20]. SM have helped solving45

the issue of computational cost in many fields46

of research, e.g. in geoscientific and atmospheric47

modelling [21–27], chemical process engineering48

[28], water resources modelling [29, 30], or opti-49

mization in supply chain management [31]. SM50

can also aid inverse modelling approaches. Berke-51

meier et al. 2023 [20] showed that SM-supported52

fit ensemble acquisition greatly outperforms regu-53

lar sampling with the kinetic multi-layer model of54

aerosol surface and bulk chemistry (KM-SUB) [5]55

in terms of acquired fits for a given computational56

effort. However, it remains unclear how SM uncer-57

tainty affects the reliability of inverse modelling58

techniques.59

Among model input parameters, we differen-60

tiate between kinetic parameters that define the61

physical and chemical properties of the modelled62

system (e.g. reaction rate coefficients), and param-63

eters that define the environmental or experi-64

mental conditions (e.g. initial concentrations or65

temperature). When a model is evaluated for66

experimental conditions that differ from those for67

which its kinetic parameters were derived, model68

uncertainty may strongly increase [2]. This sit-69

uation may arise in particular when the data70

underlying the model is limited, or when condi-71

tions in the laboratory experiment (e.g. a test72

reactor) deviate from the real-world application of73

interest (e.g. the atmosphere, an industrial plant,74

or an engine). Furthermore, when extrapolating a75

model to conditions outside its calibration range,76

not all fits in a fit ensemble may behave in the77

same way. This ensemble variance associated with78

a fit ensemble can be used to assess the model’s79

fit uncertainty over a range of experimental condi-80

tions [19]. The ensemble variance at a specific set81

of experimental conditions may also be an indica-82

tor for parameter sensitivity, and of the potential83

to constrain the model if experimental data was84

available for these conditions. Thus, while data85

from any additional experiment may decrease the86

fit uncertainty of an associated model, this pro-87

cess can be optimized by selecting experimental88

conditions associated with high ensemble variance.89

These conditions are most likely to constrain the90

underlying model and its physical and chemical91

parameters.92

For experimenters, it is difficult to guess such93

optimal conditions a priori. In the fields of engi-94

neering and materials science, so-called calibration95

experiment design optimization techniques opti-96

mize experimental inputs to maximize the infor-97

mation obtained with a limited testing budget98

[32–34]. However, to our knowledge, there are99

no general, quantitative tools available that uti-100

lize kinetic process models to guide laboratory101

experiments. In this study, we present the kinetic102

compass (KC), a method that optimizes the selec-103

tion of future laboratory experiments to minimize104

a model’s fit uncertainty. The KC is used alongside105

the kinetic multi-layer model of aerosol surface106

and bulk chemistry (KM-SUB), and a neural net-107

work SM for it, to demonstrate its functionality in108

experiment design and inverse modelling.109
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2 Method110

We present the kinetic compass (KC), a method111

for experiment prioritization and reduction of112

a model’s fit uncertainty. The method requires113

a process model, data from previous laboratory114

experiments, and a set of variable experimen-115

tal parameters that describe future experiments116

of interest. The individual steps of the proposed117

workflow are displayed in Fig. 1.118

2.1 Inverse modelling solutions and119

uncertainty120

The KC can be described as a method for uncer-121

tainty quantification. A kinetic model’s uncer-122

tainty can be based on model inadequacy, i.e.123

lack of knowledge of the underlying physics or124

chemistry, or model parametric uncertainty, i.e.125

insufficient knowledge of its input parameters.126

Parametric uncertainty is caused by the coupled127

nature of parameters and by underdetermination128

of the modelled system. To estimate parametric129

uncertainty, inverse modelling can be extended to130

an ensemble of kinetic parameter sets that return131

sufficient agreement with multiple experimental132

data sets [15, 19]. All possible sets of chemical133

and physical parameter values that lead to a suf-134

ficiently low residual between model output and135

experimental data, so-called fits, form the solu-136

tion space of a kinetic model. In practice, we use137

a finite collection of fits, referred to as fit ensem-138

ble, as representation of the model solution space.139

Additional experimental data can help to narrow140

down the fit ensemble and thus decrease model141

parametric uncertainty.142

2.2 Operating principle143

The KC is a framework to optimize the deduction144

or constraint of kinetic parameters with experi-145

ments. In general, the information gained from146

new experimental data can be used to reject fits147

from a fit ensemble. The KC finds experimental148

conditions with the highest constraint potential,149

optimizing the reduction of model solution space150

and model parametric uncertainty. For this pur-151

pose, the method computes ensemble solutions152

under experimental conditions that have not been153

considered previously, and determines the ensem-154

ble variance under these conditions. We present155

two metrics evaluating the ensemble variance, the156

ensemble spread of model solutions (Sect. 2.3)157

and the parameter (boundary) constraint poten-158

tial (Sec. 2.4). By sampling the space of feasible159

experiments, constraint potential maps (Sec. 2.5)160

of these metrics are obtained. Maxima on these161

maps represent prospective experiments that are162

most likely to achieve large constraints of the163

model. After fit ensemble filtering based on the164

new experimental data, the KC method can be165

repeated to suggest the next experiment. In this166

study, we simulate the suggested laboratory exper-167

iments with the model KM-SUB to showcase the168

alternating application of the KC with laboratory169

experiments. For more detailed and mathematical170

definitions of process models, their solution space,171

as well as fit ensembles and ensemble solutions, see172

Suppl. Note 1. For the specifications of fit ensem-173

ble acquisition and error calculation in this study,174

see Suppl. Note 2.175

2.3 Ensemble spread176

The ensemble spread is a measure for the vari-177

ance between a multitude of model predictions.178

Resembling similar concepts in weather and cli-179

mate forecasting [35], we calculate the ensemble180

spread (ES) as:181

ES =

∫
(Z(x) + σZ(x))dx−

∫
(Z(x)− σZ(x))dx∫

Z(x)dx
(1)

where (xm)m=1,...,nz
is the sequence of inde-182

pendent variables associated with the output183

sequence (zm)m=1,...,nz
, and

∫
Z,

∫
Z + σ and184 ∫

Z−σ are integrals of the interpolated sequences185

(Zm)m=1,...,nz
, (Zm + σm)m=1,...,nz

and (Zm −186

σm)m=1,...,nz
for nz model outputs with an ensem-187

ble mean Zm and ensemble standard deviation σm188

(Suppl. Note 3).189

In short, the ensemble spread describes the190

area enclosed by the curves of the ensemble mean191

± its standard deviation, normalized by the area192

under the ensemble mean curve. Visualizations of193

the ensemble spread as constraint potential metric194

are provided in Fig. 2D,E. A large ensemble spread195

is generally associated with a larger fraction of196

rejected fits during fit ensemble filtering.197
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Fig. 1 Workflow of the kinetic compass (KC) method presented in this study. The method relies on exchange between
laboratory experiments (left) and model calculations (right) to eliminate variance in model output. Data from laboratory
experiments are used for the acquisition of a fit ensemble, which are kinetic parameter sets that lead to model outputs in
agreement with the experimental measurements. Evaluating the model for the entire fit ensemble and over a defined range
of experimental parameters yields sets of ensemble solutions that serve as the basis for all calculations with the KC. The
KC offers two metrics for parametric uncertainty quantification: ensemble spread, and parameter (boundary) constraint
potential (Sec. 2.4). The metrics are used to build constraint potential maps, which highlight areas with large model output
variance in the experimental parameter range. These experimental parameters are suggested as next experiment as they
are likely to lead to rejection of a large number of fits during fit ensemble filtering. The KC can be used iteratively (dashed
arrow), using the ensemble solutions of the constrained fit ensembles.

2.4 Parameter boundary constraint198

potential199

The parameter (boundary) constraint potential200

allows an extension of the method to constraints201

of individual kinetic parameters. The metric quan-202

tifies the potential narrowing of an individual203

parameter’s boundaries in the constrained fit204

ensemble.205

In brief, the parameter constraint potential206

is calculated by iterating over predictions in an207

ensemble solution. In each iteration, we calculate208

the distribution of remaining kinetic parameters in209

a hypothetical constrained fit ensemble that would210

be obtained if one selected fit of the ensemble211

would represent the truth. The kinetic parameter’s212

boundaries in this distribution are normalized213

by its current boundaries in the fit ensemble to214
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compute a numerical value for the parameter’s215

constraint potential.216

To calculate the parameter (boundary) con-217

straint potential, we determine the subset C of the218

fit ensemble FE. C contains all fits that lead to219

model solutions within error threshold θ in com-220

parison to the model solution of subset-forming fit221

FEl:222

Cl = {FEr : ∆(ENSl,ENSr) < θ} (2)

where ENSl and ENSr are the model solutions223

using fits FEl and FEr in the evaluated ensemble224

solution (ENS). Hence, we obtain one subset Cl225

for each selected subset-forming fit FEl. If every226

fit is evaluated as subset-forming fit in turn, nFE227

subsets are generated for every ensemble solution.228

The parameter constraint potential (CP) for a spe-229

cific parameter λp and ensemble solution is then230

defined as:231

CPp =

nFE∑

l=1

(Q10λp,l −min(λp)) + (max(λp)−Q90λp,l)

(3)
where Q10λp,l and 90λp,l are the 10- and 90-232

percentiles of the distribution of λp in subset Cl,233

respectively. min(λp) and max(λp) are the global234

minimum and maximum of the selected kinetic235

parameter in the entire fit ensemble.236

Note that the computational effort associated237

with this method is large due to the pairwise com-238

parison of all predictions in an ensemble solution.239

Therefore, we suggest an approximation based on240

a reduced sample density. A detailed definition of241

the parameter constraint potential with reduced242

sample density is presented in Supplementary243

Note 4 and visualized in Fig. S4.244

2.5 Constraint potential maps245

The application of a metric for model constraint246

potential on a range of ensemble solutions (one for247

each tested experimental condition) can be visu-248

alized in a constraint potential map. This map249

is a n-dimensional hypersurface, where n is the250

number of varied experimental parameters, and251

whose maxima represent experimental conditions252

favorable for constraint of the underlying model.253

An example for a constraint potential map is pre-254

sented for two varied experimental parameters and255

the ensemble spread metric in Fig. 2. For further256

information on the chemical system (oleic acid257

ozonolysis) and the variable experimental parame-258

ters (particle radius, ozone concentration), as well259

as a description of the restrictions regarding exper-260

imental accessibility applied in this work, see Sec.261

2.6, Suppl. Note 5, and Fig. S5. Note that while262

we evaluate a full grid of combinations of experi-263

mental parameters for the purpose of testing and264

visualization, the constraint potential metrics can265

similarly be used with an optimization algorithm266

to reduce the required computational effort.267

2.6 Kinetic multi-layer model and268

neural network surrogate model269

In this study, we use the kinetic multi-layer model270

of aerosol surface and bulk chemistry (KM-SUB)271

[5] along with experimental data of the heteroge-272

neous ozonolysis of oleic acid from the literature.273

However, the KC method can be used with any274

process model and underlying chemical or physical275

system. Detailed information about KM-SUB can276

be found in previous publications [5, 12]. In brief,277

KM-SUB is a chemical flux model that explic-278

itly describes gas diffusion, accommodation of gas279

molecules to surfaces, surface-bulk exchange, bulk280

diffusion, as well as chemical reaction at the sur-281

face and in the bulk of a condensed phase. The282

resulting set of ordinary differential equations is283

solved numerically. KM-SUB input parameters284

include initial concentrations, chemical reaction285

rate coefficients, and mass transport coefficients,286

and are presented in Table 1. KM-SUB outputs287

are the concentration profiles over space and time288

for all chemical species.289

For the training of neural network surrogate290

models, KM-SUB output is simplified to nine291

points of reaction progress, i.e. the time required292

to reach 90 %, 80 %, 70 %, 60 %, 50 %, 40 %,293

30 %, 20 % and 10 % of the total number of oleic294

acid (OL) in a single aerosol particle, NOL,0. For295

comparability, we represent the output of the full296

KM-SUB model in this study in the same way. We297

train a fully-connected, feed-forward neural net-298

work on 1×106 KM-SUB outputs as training data.299

For further information on training of the surro-300

gate model see Berkemeier et al. 2023 [20] and301

Suppl. Note 6.302

The KC method requires evaluation of the303

underlying process model during fit ensemble304

acquisition and during calculation of ensemble305
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Fig. 2 Constraint potential map obtained with the kinetic compass (KC) method. The contour map in (A) shows an
exemplary constraint potential map using the ensemble spread metric. Model calculations are obtained with KM-SUB on
a 100×100 grid of two experimental parameters, ozone concentration and particle radius, and for a fit ensemble of 500 fits.
The teal box frames the area of experimentally accessible conditions with regards to particle radius, ozone concentration
and predicted experiment duration (Suppl. Note 5). Black crosses in (A) mark the experimental conditions of available
experimental data that were used to obtain the fit ensemble (cf. Fig. 3) and (B) shows the ensemble solution (gray lines) in
comparison to one of these experimental data sets (blue markers). The purple cross in (A) represents the ensemble spread
maximum within experimental accessibility and thus the recommended experiment. (C) illustrates the ensemble solution
at this ensemble spread maximum. New experimental data from the recommended experiment (purple markers) are used
to obtain the constrained fit ensemble (green lines) through rejection of fits. (D) and (E) showcase ensemble solutions with
a high ensemble spread of 1.446 and a low ensemble spread of 0.234, respectively. Here, colored lines visualize the mean of
the ensemble solution (blue line) and the mean ± 1 standard deviation (red lines).

solutions (Fig. 1). In this study, we test and306

compare three different approaches: using KM-307

SUB for both steps (KM-only), using the SM308

for both steps (SM-only), and a KM/SM-hybrid309

approach, in which KM-SUB is used for fit ensem-310

ble acquisition and the SM to obtain ensemble311

solutions.312

3 Results and Discussion313

3.1 Acquisition of fit ensembles314

We demonstrate the applicability of the kinetic315

compass (KC) for the heterogeneous ozonolysis316

of oleic acid aerosols using the kinetic multi-317

layer model of aerosol surface and bulk chemistry318

(KM-SUB), and a neural network surrogate model319

(SM) for it. Both models map seven kinetic and320
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Table 1 KM-SUB kinetic and experimental input parameters. The respective lower and upper boundaries indicate the
initial constraints of the fit ensemble and an estimate of experimentally accessible conditions in a laboratory for
atmospheric aerosol chemistry.

Parameter Lower boundary Upper boundary Description

kSLR 1.0 × 10−15 1.0 × 10−8 Rate coefficient of OL+O3 surface reaction (cm3 s−1)
kBR 1.0 × 10−20 1.0 × 10−11 Rate coefficient of OL+O3 bulk reaction (cm3 s−1)
Db,O3 1.0 × 10−11 1.0 × 10−5 Bulk diffusion coefficient of ozone (cm2 s−1)
Db,OL 1.0 × 10−12 1.0 × 10−6 Bulk diffusion coefficient of oleic acid (cm2 s−1)

Hcp,O3 5.0 × 10−6 5.0 × 10−3 Henry’s law solubility coefficient of ozone
(mol cm−3 atm−1)

τd,O3 1.0 × 10−9 1.0 × 10−2 Desorption lifetime of O3 (s)

αs,0,O3 1.0 × 10−4 1
Surface accommodation coefficient of ozone on an
adsorbate-free surface ( )

rp 2.5 × 10−6 1.0 × 10−3 Particle radius (cm)
[O3]g,0 1.0 × 1011 1.0 × 1015 Initial gas phase number concentration of ozone (cm−3)
[OL]b,0 1.0 × 1019 2.0 × 1021 Initial bulk number concentration of oleic acid (cm−3)

three experimental input parameters (Tab. 1) onto321

the concentration-time profile of oleic acid. For322

each model, we obtained fit ensembles (N=500)323

in compliance with seven experimental data sets324

[8, 36–38] as shown in Fig. 3. Each kinetic param-325

eter set in the fit ensemble is associated with one326

model output (gray lines) for each experimental327

condition. Both fit ensembles (of KM-SUB and328

the SM) have a minimal mean-squared logarith-329

mic error (MSLE) of 0.0085; the median MSLE330

are 0.0102 for KM-SUB and 0.0099 for the SM.331

3.2 Ensemble spread332

Figure 4 displays constraint potential maps for333

the ensemble spread metric and the variable334

experimental parameters of particle radius (rp)335

and ozone concentration ([O3]g,0). The conditions336

associated with the experimental data used to337

obtain the fit ensemble (black crosses) are, nat-338

urally, located in areas of low ensemble spread.339

Maxima of the ensemble spread, i.e. regions asso-340

ciated with large model variance, occur at very low341

particle radii (< 50 nm), and for the combination342

of large radii (> 10 µm) with high ozone concen-343

trations (> 100 ppm). The constraint potential344

maps obtained with the KM-only approach (panel345

A) and the KM/SM-hybrid approach (panel B)346

appear similar overall. The absolute ensemble347

spread maxima are both located at maximal348

particle radii and ozone concentrations (purple349

crosses). As main difference, isopleths appear less350

smooth for the SM. A constraint potential map of351

the SM-only approach is displayed in Fig. S6. The352

computationally less expensive SM-only method353

leads to slightly larger differences to the KM-354

SUB constraint potential map. In particular, the355

ensemble spread maximum at low particle radii is356

less pronounced.357

3.3 Parameter boundary constraint358

potential359

In addition to the ensemble spread, we apply the360

KC using both models with the parameter con-361

straint potential (Sec. 2.4). This method aims362

for a minimization of a chosen kinetic parame-363

ter’s uncertainty range in the solution space. Figs.364

5A and C display parameter constraint potential365

maps for the kinetic parameters kSLR and Db,OL,366

respectively. The maximum of the kSLR constraint367

potential matches the maximum of the ensemble368

spread at low particle radii in Fig. 4, whereas369

the maximum of the Db,OL constraint potential370

matches the maximum of the ensemble spread at371

large radii and high ozone concentrations. Hence,372

high ensemble spreads appear to be necessary373

but not sufficient conditions for high parameter374

constraint potentials.375

We simulate the suggested experiments with376

KM-SUB, using the best fit in the KM-SUB fit377

ensemble as simulated truth. Under consideration378

of the original data and the new synthetic experi-379

ment, we filter the fit ensembles using the MSLE380

7
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Fig. 3 Ensembles of kinetic multi-layer model of aerosol surface and bulk chemistry (KM-SUB) outputs (N=500, gray
lines) with a mean square logarithmic error (MSLE) < 0.0105 in comparison with seven literature data sets (markers) of
oleic acid aerosol ozonolysis displayed as normalized oleic acid concentrations (NOL,t/NOL,0).

threshold of θ = 0.0105. Figs. 5B and D show381

frequency distributions of five kinetic parameters382

in the fit ensemble before (blue) and after (red)383

fit filtering. The experiments suggested by the384

constraint potential metrics achieve a significant385

reduction in the uncertainty range for their asso-386

ciated parameters, kSLR and Db,OL, respectively.387

Simultaneously, constraints are achieved for other388

parameters, e.g. kBR in Fig. 5B, following the sim-389

ilarity between the parameter constraint potential390

maps (Fig. S7). Parameter constraint potential391

maps and simulated constraints for the SM-only392

approach (Fig. S8) are very similar to those using393

the KM-only approach.394

3.4 Statistical testing of the kinetic395

compass method396

The KC can be applied repeatedly to narrow down397

model solutions in iterative fashion. Here, we sim-398

ulate this procedure using synthetic experimental399

data, which is obtained by assuming that a single400

fit from the fit ensemble is the true solution of the401

modelled system (the simulated truth). The sim-402

ulation is repeated for each fit in the ensemble as403

simulated truth. Detailed information on the sim-404

ulation of experimental data is presented in Suppl.405

Note 7.406

Fig. 6 shows the statistics of a total of 500 of407

these simulations with five iterations of the KC,408
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Black crosses represent the experimental parameters of the seven real experiments that are used for the initial acquisition of
the fit ensemble. Purple crosses represent the ensemble spread maximum in each grid with satisfied experimental constraint
conditions.

and compares the performance of three numerical409

experiment selection methods: ensemble spread410

using KM-SUB (blue), ensemble spread using the411

KM/SM-hybrid approach (orange), and random412

selection (green) within the boundaries of experi-413

mental accessibility. Fig. 6A shows the decreasing414

number of accepted fits in the fit ensemble. The415

median numbers of fits after the five iterations are416

(121, 49, 38, 31, 28) for the KM-SUB ensemble417

spread, (121, 53, 39, 35, 29.5) for the KM/SM-418

hybrid ensemble spread and (421.5, 355, 307, 301,419

291) for the random selection. Hence, statistically,420

the KC leads to a significantly larger constraint421

of the fit ensemble compared to random selec-422

tion, irrespective of using the full KM or the423

SM-assisted hybrid approach. Figs. S10 - S13 show424

examples of individual trajectories of the KC, i.e.425

simulations including numerical experiment selec-426

tion, synthetic experimental data generation, and427

fit filtering.428

4 Conclusion429

This study demonstrates the application of com-430

putational models to guide experiment design and431

prioritization based on the anticipated reduction432

of a model’s solution space. The method extrap-433

olates current ensemble solutions to conditions of434

potential future experiments and identifies con-435

ditions under which ensemble variance, and thus436

model parametric uncertainty is largest. In com-437

parison with random selection, the reduction of438

fits in the fit ensemble, representing reduction439

of model variance, is much larger for the kinetic440

compass (KC) guided numerical selection of exper-441

iments.442

In our simulations, experiments associated443

with the maximum of the constraint potential444

map for the ensemble spread metric led to large445

constraints of the fit ensemble. However, the446

same experiments did not achieve a significant447

constraint of the uncertainty ranges of some448

kinetic parameters. By evaluating the KC with the449

parameter constraint potential metric and select-450

ing the experiment accordingly, the constraint of451

individual parameter uncertainty ranges can be452

optimized more effectively.453

The computational effort of the KC can be454

strongly reduced by training a neural network sur-455

rogate model (SM), with nearly identical results.456

After consideration of the computational effort457

of SM training, and for the system at hand, we458

observe an acceleration of the evaluation of the459

KC by a factor of ∼5 using a KM/SM-hybrid460

approach, and an acceleration by a factor of ∼7.5461

using only the SM (Suppl. Note 8). While SM462

for multiphase kinetic models have already proven463

useful in forward modelling applications [20], we464

here further demonstrate their utility in an inverse465

modelling approach.466

For the kinetic multi-layer model of aerosol467

surface and bulk chemistry (KM-SUB) and the468

heterogeneous ozonolysis of oleic acid, the KC sug-469

gests experiments with either very small particles470
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(< 50 nm) or with exceptionally large particles471

(≈ 100 µm) and high ozone concentrations (≈472

1000 ppm) (Sec. 3.2). The first suggestion seems473

logical: experiments with nano-sized particles of474

oleic acid have not been conducted and extrapo-475

lation to these conditions will be associated with476

model uncertainty. The method predicts that mea-477

surements using nano-sized particles would help478

especially to constrain the surface reaction rate479

coefficient kSLR. The second suggestion of the KC480

may seem counter-intuitive, as these large par-481

ticle - high ozone conditions are far away from482

atmospheric relevance. In fact, these experiments483

likely offer a constraint on the diffusion coef-484

ficient of oleic acid, Db,OL, a parameter that485

is rather unimportant under typical atmospheric486

conditions. Note, however, that the simple model487

used in this analysis does not consider changes in488

Db,OL upon formation of oxidation products.489

Overall, this analysis of the oleic acid - ozone490

reaction system shows that additional experiments491

measuring the loss of oleic acid under conditions492

typical for the atmosphere will not improve our493

knowledge of this well-studied system any further.494

More extreme conditions are needed to narrow495

down the model solution space, however, this will496

not come with an improvement of the predictive497

power of our models for atmospheric conditions498

(other than small nano-particles). Conversely, any499

solution in the fit ensemble obtained in this study500

and in Berkemeier et al. 2021 [19] should per-501

form well under atmospherically-relevant condi-502

tions. More knowledge about the system can also503

be derived by changing the experimental observ-504

able. For the heterogeneous ozonolysis of alkenes,505

for example, product analyses have recently pro-506

vided additional constraints for kinetic models507

[38, 39]. Extending the KC method from experi-508

mental conditions to experimental observables will509

be a subject of future studies.510
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Kinetic regimes and limiting cases of gas685

uptake and heterogeneous reactions in atmo-686

spheric aerosols and clouds: a general classi-687

fication scheme. Atmos. Chem. Phys. 13(14),688

6663–6686 (2013) https://doi.org/10.5194/689

acp-13-6663-2013690

[13] Taylor, C.J., Booth, M., Manson, J.A., Willis,691

14

https://doi.org/10.1029/2002GL015542
https://doi.org/10.1029/2002GL015542
https://doi.org/10.1029/2002GL015542
https://doi.org/10.5194/acp-7-5989-2007
https://doi.org/10.5194/acp-7-5989-2007
https://doi.org/10.5194/acp-7-5989-2007
https://doi.org/10.5194/acp-10-10561-2010
https://doi.org/10.5194/acp-10-10561-2010
https://doi.org/10.5194/acp-10-10561-2010
https://doi.org/10.1039/C2CS35052A
https://doi.org/10.5194/acp-10-3673-2010
https://doi.org/10.5194/acp-10-3673-2010
https://doi.org/10.5194/acp-10-3673-2010
https://doi.org/10.5194/acp-12-2777-2012
https://doi.org/10.5194/acp-12-2777-2012
https://doi.org/10.5194/acp-12-2777-2012
https://doi.org/10.5194/acp-14-7953-2014
https://doi.org/10.5194/acp-14-7953-2014
https://doi.org/10.5194/acp-14-7953-2014
https://doi.org/10.1002/2016JD026221
https://doi.org/10.1021/acs.jpca.2c03559
https://arxiv.org/abs/https://doi.org/10.1021/acs.jpca.2c03559
https://doi.org/10.5194/gmd-15-7139-2022
https://doi.org/10.5194/gmd-15-7139-2022
https://doi.org/10.5194/gmd-15-7139-2022
https://doi.org/10.1021/jp004439p
https://doi.org/10.1021/jp004439p
https://doi.org/10.1021/jp004439p
https://doi.org/10.5194/acp-13-6663-2013
https://doi.org/10.5194/acp-13-6663-2013
https://doi.org/10.5194/acp-13-6663-2013


M.J., Clemens, G., Taylor, B.A., Cham-692

berlain, T.W., Bourne, R.A.: Rapid, auto-693

mated determination of reaction models and694

kinetic parameters. Chem. Eng. J. 413,695

127017 (2021) https://doi.org/10.1016/j.cej.696

2020.127017697

[14] Willis, M.D., Wilson, K.R.: Coupled Interfa-698

cial and Bulk Kinetics Govern the Timescales699

of Multiphase Ozonolysis Reactions. J. Phys.700

Chem. A 126(30), 4991–5010 (2022) https:701

//doi.org/10.1021/acs.jpca.2c03059702

[15] Berkemeier, T., Ammann, M., Krieger, U.K.,703

Peter, T., Spichtinger, P., Pöschl, U., Shi-704
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