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EEG Signals Classification related to Visual Objects using Long Short-Term Memory Network 

and Nonlinear Interval Type-2 Fuzzy Regression 

Hajar Ahmadieh1. Farnaz Gassemi2. Mohammad hasan Moradi3 

Abstract 

By comprehending how brain activity is encoded and decoded, we can better comprehend how the brain functions. This study 

presents a method for classifying EEG signals from visual objects that combines an LSTM network with nonlinear interval 

type-2 fuzzy regression (NIT2FR). Here, ResNet is used to extract features from the images, the LSTM network is used to 

extract features from the EEG signal, and NIT2FR is used to map the features from the images to the features from the EEG 

signal. In this paper, type-2 fuzzy logic is utilized to handle this type of uncertainty due to the nonlinearity and noise of the 

EEG signals, the short sample size of the data, and the varied mental backgrounds of the experiment participants. The Stanford 

database was used to implement the research technique, and its effectiveness was assessed using the classification accuracy, 

precision, recall, and F1 score. The LSTM network successfully categorized images using raw EEG data with an accuracy of 

55.83%, according to the findings. When compared to classification accuracy obtained with linear type-2, linear and nonlinear 

type-1 fuzzy, neural network, and polynomial regression, NIT2FR and SVM classifier performed better (68.05%). NIT2FR 

can therefore perform better in settings with high levels of uncertainty. Additionally, the accuracy outcomes using NIT2FR 

are 6.03% better than the top outcome of the most recent study that made use of the same dataset. The same process was 

followed to get the same result for the other performance raters.  

Keywords: LSTM network, ResNet network, visual image classification, EEG signal, nonlinear fuzzy regression. 

1. Introduction 

One of the most important concerns in neuroscience is 

neural coding, which describes the relationship between 

stimulus and response of a single neuron or the neuronal 

group and the electrical activity of nerves in this group 

(Brown, Kass, and Mitra 2004). Human brain data can be 

utilized to decode human thoughts and actions, as well as 

to diagnose mental diseases. Machine learning (ML) 

method is one of the important techniques in research 

fields, therefore, it has been widely used in fields other than 

artificial intelligence such as medicine to extract 

information from brain data  (Janssen, Mourão-Miranda, 

and Schnack 2018). Deep learning methods are used in 

several EEG-based brain computer interface (BCI) 

devices. For example, consider a person with paralysis 

controlling mobility assistance  (Münßinger et al. 2010; 
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Nijboer et al. 2008; Tonin et al. 2011).  These are also used 

to aid rehabilitation in stroke and treat epilepsy (Gadhoumi 

et al. 2016; Malmivuo, Ahokas, and Välkky 2014). The use 

of machine learning to decode fMRI and EEG data, as well 

as the number and quality of decoding, has increased 

dramatically in this area. Decoding the relationship 

between stimuli and neuronal responses has been used  with 

applications such as classifying (Kamitani and Tong 2005) 

or recognizing and reconstructing the image seen by the 

participant (Miyawaki et al. 2008). EEG signal is one of 

the most important biological signals that encodes 

information about the human internal states. Because of its 

accessibility, low cost, and ease of use, EEG signals have 

garnered considerable attention. Given the high temporal 

resolution of electroencephalogram (EEG) signals and the 

unique patterns in the EEG signal when a person is 

watching images, detecting and classifying images with 
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this signal appears to be a viable method (Malmivuo, 

Ahokas, and Välkky 2014; Yu et al. 2019). The number of 

research that have employed the EEG signal for this 

purpose, however, is quite small. We propose to introduce 

a new method in this article that employs the EEG signal 

class to identify the visuals shown to the individual. 

In general, the classification of visual images with EEG 

consists of four phases. Preprocessing, feature extraction, 

feature selection, and classification are the four phases.  

Prior to 2017, shallow methods were used for this purpose. 

Wavelet (Taghizadeh-Sarabi, Daliri, and Niksirat 2015), 

event-related potentials (Daliri, Taghizadeh, and Niksirat 

2013), amplitude-amplitude coupling (AAC), phase–phase 

coupling (PPC), phase–amplitude coupling (PAC) 

(Jafakesh, Jahromy, and Daliri 2016), and Functional 

connectivity measures (Tafreshi, Daliri, and Ghodousi 

2019)   were used as features extraction methods in these 

studies. Deep learning technologies were first used for this 

purpose by researchers in 2017. Spampinato et al., for 

example, used Long Short-Term Memory (LSTM) and 

Recurrent Neural Networks (RNN) to extract features from 

the EEG signal and Convolutional Neural Network (CNN) 

to extract features from images, followed by a CNN 

regression to map the extracted image features on the 

extracted signal features in (Spampinato et al. 2017). Based 

on the results, the classification accuracy for 40 classes was 

82.9%. Following that, in (Fares, Zhong, and Jiang 2018), 

researcher employed bi-directional LSTM instead of 

simple LSTM in (Spampinato et al. 2017) and ICA for 

classification. In addition, in (Zheng et al. 2020), LSTM 

with Swich activity function was used instead of simple 

LSTM, ResNet instead of CNN and K-Nearest Neighbor 

(KNN) regression, Random Forest (RF) and Support 

Vector Regression (SVR) instead of CNN regression in 

(Spampinato et al. 2017). The classification accuracy in 

these two papers was 97.1% in (Fares, Zhong, and Jiang 

2018) and 97.13% in (Zheng et al. 2020) for 40 classes. 

Using LSTM and Generative Adversarial Networks 

(GANs), The authors were able to classify the images seen 

by the participants with an average classification accuracy 

of 43% for 40 classes in (Palazzo et al. 2017; Tirupattur et 

al. 2018). Also, they reconstructed the images using the 

mentioned network. 

In (Alazrai et al. 2022), the authors proposed a new method 

for decoding imagined numbers and letters in the minds of 

participants. This method is divided into two parts. The 

Choi-Williams time-frequency distribution (CWD) is used 

in the first part to represent the time, frequency and spatial 

(TFS) structure of EEG signal. In the second step, a deep 

network is used to extract features from the previously 

obtained distribution. In this way, the classification 

accuracy for numbers and letters was 95.47 ± 2.3%. 

Another approach for classifying the visual image has been 

presented in (McCartney et al. 2019). The dataset used in 

this paper is Trento and Stanford (Kaneshiro et al. 2015; 

Murphy, Baroni, and Poesio 2009). To extract features 

from images, the Gabor filter, the Scale Invariant Feature 

Transform (SIFT), the color histogram -hue, saturation, 

and value- (HSV), and Global Vectors (GloVe) have been 

used. These four models were combined to form  a structure 

that is similar to the structure of the brain's visual cortex 

under visual stimulation. The Pearson correlation 

coefficient was applied for extracting features from the 

EEG signals. The third step involved using linear 

regression to map features extracted from images onto 

features extracted from EEG signals.  The Cumulative 

Match Curve (CMC) is used in this evaluation method to 

represent the percentage of cases in which the target image 

is the closest distance to the predicted properties in the 

feature space. Finally, the Area Under Curve (AUC)  is 

provided. Another paper that recently used these two 

databases (Kaneshiro et al. 2015; Murphy, Baroni, and 

Poesio 2009) for the same purpose is (McCartney, 

Devereux, and Martinez-del-Rincon 2022). In this paper, 

Inception V3 network is used to extract features from 

images and a deep neural network with different layers is 

used to extract features from EEG signal. A learning metric 

is then used to map these two features together. The 

classification accuracy in different modes has been 

obtained between 53.8 and 56.95. 

In this research, the method employed in (Ahmadieh et al. 

2023)  is utilized to extract the feature from the EEG data, 

and a type of CNN network called ResNet is used to extract 

the feature from the images. The novelty of this paper lies 

in the feature mapper, which makes use of Nonlinear 

Interval Type-2 Fuzzy Regression (NIT2FR). Classic 

Takagi-Sugeno fuzzy models typically use zero- or one-

degree polynomials in their consequent part (Takagi and 

Sugeno 1985).  Researchers in  (Ahmadieh et al. 2023)  have 

used this fuzzy model to map the features extracted from 

visual images on the features extracted on the EEG signal. 

Nonlinear systems, as we know, can better approximate the 

desired function in a nonlinear environment. Thus, 

nonlinear Takagi-Sugeno fuzzy models, which are 

generalized classical models, can be a good alternative to 

classical models and produce better results (Park, Kim, and 

Oh 2000). As a result, we used this method to classify 

visual images. This paper consists of four sections. 

Materials and Methods is presented in the following 

section. Section 3 report on the experimental results and 

discussion. Last section is conclusion. 



2. Materials and Methods  

2.1. Type-2 fuzzy logic system background 

Professor Lotfi Asgarzadeh introduced the fuzzy set in 

1965. These sets were the basis for an effective method for 

modeling uncertainty and ambiguity (Zadeh 1965). The 

membership degrees in fuzzy systems are crisp. Therefore, 

it has limited ability to express uncertainty.  In 1975, Prof. 

Zadeh introduced type-2 fuzzy sets as the development of 

type-1 fuzzy sets (Zadeh 1975). Unlike type-1 fuzzy sets, 

which have crisp membership functions, type-2 fuzzy sets 

have fuzzy membership functions, which can reduce the 

noise effect (Coupland and John 2008; Hisdal 1981). Fig. 

1 depicts the structure of a general T2FLS. The structure of 

type-2 fuzzy is similar to that of a type-1 fuzzy logic 

system, with the exception that in the antecedent part of 

this structure, there is also type reduction in addition to the 

presence of a defizzifier. 

 

Fig.1 General structure of a T2FLS 

2.1.1. Interval type-2 fuzzy logic system 

Type-2 fuzzy systems are basically based on type-2 fuzzy 

sets. A general type-2 fuzzy set is depicted in Fig. 2. The 

interval type-2 fuzzy set is used for simplicity because the 

calculations for the general type-2 fuzzy set are so 

complex. Degrees of membership in an interval type-2 

fuzzy set are expressed as interval for the third dimension's 

value. In other words, in interval type-2 fuzzy sets the third 

dimension is considered the same everywhere and is 

omitted. The only Footprint of Uncertainty (FOU) (The 

region bounded by upper membership function (UMF) and 

lower membership function (LMF) of the IT2FS is 

called FOU shown in Fig. 2) is used in interval type-2 

fuzzy sets (Nguyen et al. 2015).  

2.1.2. Takagi-Sugeno fuzzy logic systems 

Takagi-Sugeno fuzzy system (Takagi and Sugeno 1985) 

was introduced in 1985 as a new fuzzy system. The Takagi-

Sugeno fuzzy system's output is simple to compute, and its 

parameters can be modified using adaptive optimization 

techniques, particularly gradient descent algorithms. 

Takagi-Sugeno type-2 fuzzy system is an interval fuzzy 

structure that employs type-2 membership functions in the 

antecedent and the zero and one polynomial in the 

consequent. The learning operation, like adaptive networks 

in the Takagi-Sugeno system with orders zero and one, is a 

process that leads to the determination of the parameters of 

the input membership functions and the coefficients of the 

functions of the sequence of rules. In this case, the obtained 

fuzzy system can calculate the output value by receiving 

the new input values with the least difference from the 

estimated function values. 

 

Fig. 2 Membership function of a general type-2 fuzzy set in 

three dimensions.  

2.1.3. Nonlinear interval type-2 fuzzy regression 

(NIT2FR) 

Regression expresses the relationship between independent 

and dependent variables statistically rather than 

mathematically. This means that the value of y for every x 

is not completely clear and precise, and determining its 

value is associated with an error value. The type of the 

relationship between independent and dependent variables 

varies.  But in general, the statistical model is considered 

as �̂�𝑖 = 𝑓(𝑥𝑖 , 𝐵) where 𝑦𝑖 = �̂�𝑖 + 𝜖𝑖, 𝑥𝑖 represents the 

independent variable, �̂�𝑖 is the estimated dependent 

variable, 𝑦𝑖   is the actual value of a dependent variable, B is 

the parameters, and 𝜖𝑖 is the error. After determining the 

type of relationship, the first step is to estimate the model’s 
unknown parameters, this completes the model and allows 

it to predict the values of y as a function of the new x. 

NIT2FR is used as a function in this paper to map the 

features extracted from the image to the features extracted 

from the EEG signal. As a result of combining these 

features with the unknown function, the NIT2FR can be 

trained to be an approximation of this function with the 

shortest distance to the feature values. 



In this paper, we use an input variable with 100 dimensions 

that is the features extracted from the EEG signal. As 

previously stated, only the first part of the system, not the 

yi part of the fuzzy system, has a linguistic interpretation. 

Fig. 3 depicts the structure of a type-2 fuzzy network, 

which is made up of five layers as follows: 

 

Fig. 3 The structure of the type-2 fuzzy network  

Layer 1: Input variables pass through membership 

functions. Gaussian membership functions were chosen 

because they use only two parameters for learning (mean 

and variance), which reduces computation time and 

simplifies optimization (Wu 2012) . Fig. 4 depicts the 

Gaussian membership function. 

 

Fig. 4 A sample interval type-2 Gaussian with lower and upper 

fuzzy set 

Layer 2: This layer defines fuzzy rules (firepower). Eq. 1 

defines the ith fuzzy rule: 

(1)  𝑊𝑖 = [𝑤𝑖(𝑥), 𝑤𝑖(𝑥)]              𝑖 = 1,2, … , 𝑟   

 
Where  𝑤𝑖(𝑥), 𝑤𝑖(𝑥) are defined as Eq. 2  

(2) 
𝑤𝑖 = ∏ �̃�𝑎𝑖(𝑥𝑎)𝑛

𝑎=1  

𝑤𝑖 = ∏ �̃�𝑎𝑖(𝑥𝑎)𝑛
𝑎=1  

Where �̃�𝑎𝑖  , �̃�𝑎𝑖   are lower and upper grades of membership 

that are calculated at layer 1 and n is the number of network 

inputs.  Here because there is only one input, upper and 

lower membership are equivalent to the upper and lower 

firepower.  

Layer 3: The normalized firepower of any rule is calculated 

in this layer by Eq. 3: 

 (3)   ℎ𝑖 = 𝑤𝑖 + 𝑤𝑖∑ 𝑤𝑖𝑟𝑖=1 + ∑ 𝑤𝑖𝑟𝑖=1  

Layer 4: The normalized firepower is multiplied by the 

function of the consequent variables (here is a third-degree 

polynomial) in this layer as Eq. 4: 

(4) 𝑦𝑖 = ℎ𝑖 ∗ ∑ 𝜃𝑑𝑖𝑥𝑑3
𝑑=0  

Where 𝜃 corresponds to the polynomial coefficients used 

in the consequent part. 

Layer 5: The output of the NIT2FR is obtained with Eq. 5: 

(5) 𝑌𝑇𝑆𝐾 = ∑ y𝑖𝑟
𝑖=1  

2.2. NIT2FR combined with LSTM and ResNet for 

EEG signal classification 

The goal of this paper is to develop methods for classifying 

visual objects. The class of images that the participant is 

watching has been identified using EEG data evoked by 

visual object stimuli. Because RNN networks are useful for 

signal temporal analysis, this network was used to learn the 

features of the EEG signal. Of course, expecting this 

network to achieve high classification accuracy on its own 

is unrealistic. As a result, the next step is to use the ResNet 

network to extract the visual image features, which will 

then be transferred to EEG features. The image features are 

then mapped to the EEG signal features using nonlinear 

interval type-2 and type-1 fuzzy regressions to improve 

classification accuracy in the first step, which is only from 

the LSTM network. Finally, for classifying new features, a 

support vector machine (SVM) will be used. Fig. 5 depicts 

the steps described above. 

It should be noted that the preceding steps are related to the 

training phase, and in the test phase, part 2 in Fig. 5 is 

removed, and the class related to each new EEG signal is 

detected using the trained LSTM network, regression, and 

classifier. According to our knowledge, this is the first time 

that nonlinear interval type-2 and type-1 fuzzy regression 



have been used as image feature mappers to EEG features, 

and these regressions have been compared with linear type-

1 and-2 fuzzy, neural network, and polynomial regression 

in this paper. 

2.2.1. LSTM Network 

Recurrent neural networks (RNN) are so-called memory 

because the output of each layer depends on the parameters 

of the previous layer This network is ideal for time series 

analysis due to its memory and ability to predict time 

series. These networks were created to overcome the 

limitations of feedforward networks. Although this 

network can store sequence information, it can only do so 

for a finite number of previous sequences. In other words, 

it has limited memory.  Hochreiter and Schmidhuber 

(Hochreiter and Schmidhuber 1997)introduced LSTM 

(depicted in Fig. 6) to develop and solve this problem. The 

ability to learn long-term dependencies, which was not 

possible with recursive neural networks, is the most 

important feature of LSTM. Furthermore, the vanishing 

gradient problem, which is solved by LSTM networks with 

self-connected linear recurrent units called constant error 

carousel (CECs), is one of the problems with RNN 

networks (Gers 2001). 

The activation calculation method in LSTM differs 

significantly from that in conventional RNN cells. In step 

t, activation is calculated using the cell state and three types 

of gates: input gate, forget gate, and output gate (Fang and 

Yuan 2019). 

 

Fig. 6 The long short-term memory (LSTM) unit contains an 

input gate, a forget gate, and an output gate. 𝜎 represents the 

sigmoid activation function while tanh represents a tangent 

hyperbolic activation. 

In step t, the values of the input, forget, and output gates 

are calculated using Eq.s 6, 7, and 8 respectively: 

𝑖𝑡 = 𝜎(𝑊𝑖𝑎 . ℎ𝑡−1 + 𝑊𝑖𝑥 . 𝑥𝑡) (6) 𝑓𝑡 = 𝜎(𝑊𝑓𝑎 . ℎ𝑡−1 + 𝑊𝑓𝑥 . 𝑥𝑡) (7) 𝑜𝑡 = 𝜎(𝑊𝑜𝑎 . ℎ𝑡−1 + 𝑊𝑜𝑥 . 𝑥𝑡) (8) 

Where 𝜎 is a nonlinear function like the sigmoid function. 𝑊𝑖𝑎 , 𝑊𝑓𝑎, and 𝑊𝑜𝑎 are weight matrices that connect ℎ𝑡−1 

to ℎ𝑡 and 𝑊𝑖𝑥 , 𝑊𝑓𝑥 , and 𝑊𝑜𝑥 are weight matrices that 

connect 𝑥𝑡 to ℎ𝑡, respectively in input, forget, and the 

output gate. 

 

 

Fig. 5 Visual image classification process. Brain activity is recorded by the EEG signal when seeing an image, and the visual image is 

then classified from brain data using a computational model. 

https://en.wikipedia.org/wiki/Recurrent_neural_network


The input of the cell is calculated as Eq. 9: 𝐶𝑡 = 𝑓𝑡 . 𝐶𝑡−1 + 𝑖𝑡 . 𝑘𝑡 (9) 

Where 𝐶𝑡−1 is cell state information from the previous step 

and 𝑘𝑡 is calculated as Eq. 10: 𝑘𝑡 = tanh (𝑊𝑐𝑎 . ℎ𝑡−1 + 𝑊𝑐𝑥 . 𝑥𝑡) (10) 

Finally, ℎ𝑡 is calculated as Eq. 11: ℎ𝑡 = 𝑜𝑡 . 𝑡𝑎𝑛ℎ(𝐶𝑡) (11) 

Because of its ability in time series analysis, this network 

is used in this paper to extract the EEG time series feature. 

The LSTM network, like any other network, has its own 

parameters that must be set before training.  These 

parameters include the recurrent depth, batch size, number 

of training periods, LSTM hidden layer size, dropout rates 

applied after the input layer, and the LSTM layer's L2 

matrix weight adjustment factor. Adam's approach is used 

for network optimization in this article (Kingma and Ba 

2014). 

2.2.2. ResNet 

The convolutional network is inspired by the visual cortex 

of the brain. The layers of this network are so similar to 

the cerebral cortex that a one-to-one relationship can be 

found between the activity of neurons in the cortical layers 

and the layers of convolutional networks such as AlexNet 

convolutional neural networks (Krizhevsky, Sutskever, 

and Hinton 2012). This similarity in neuronal activity 

exists when the convolutional network is not optimized to 

predict brain activity and is trained to detect objects and 

images. Following research has revealed that this 

similarity exists even in more complex networks like 

ResNet  (He et al. 2016; Wen et al. 2018). According to 

numerous studies, as network depth increases, so does 

network accuracy (Piccialli et al. 2021). However, as the 

depth of the network increases, everything changes and the 

error begins to increase; this is known as "Degradation". 

To address this issue, the Microsoft group introduced the 

very deep Resent network with 152 layers in 2016 (He et 

al. 2016) . Instead of the main layer, blocks known as 

residuals have been used in this network. This residual 

block is made up of the sum of two residual mapping 

functions as well as the identity function (see Fig. 7). 

Given a learning map 𝐻(𝑥), the first layer of a residual 

block learns from the residual function F(x)=H(x)-x. 

While the second layer learns from the function 𝐺(𝑥) = 𝑥. 

By using this block in the Resent network, researchers 

were able to solve the problems related to the reduction of 

accuracy in relation to the classification of images. 

(Piccialli et al. 2021; Wang et al. 2017). Finally, by placing 

several residual blocks in a row to reduce the error, a very 

deep network can be designed that does not face the 

problem of degradation with increasing depth. Fig. 8 

shows the deep structure of the ResNet network. This Fig. 

shows a 50-layer model of this network . In this paper, we 

have used this 50-layer convolutional network that had 

been pre-trained on ImageNet images to extract image 

features. 

 

Fig. 7 An example of a residual block in the ResNet network. 

The deeper the network, the better the learning, but the 

calculations become more complicated and more training 

data is needed to train that network. Transfer learning 

involves training a very deep network on a large database, 

and then adapting this trained network to insufficient data 

for the desired application (Acharya et al. 2018; Byra et al. 

2018; Craik, He, and Contreras-Vidal 2019; Khan et al. 

2019; Shin et al. 2016). In other words, we transfer the 

trained network with trained parameters on a large 

database to an insufficient database for our application. 

This approach has advantages such as shorter learning 

time, lower computational load, less data and therefore 

weaker hardware.  In this method, images that were resized 

are presented as input to the network. Convolutional layer 

and poling layer of the Resent network are as feature 

extractor and fully connected layer and softmax layer as 

classification layer.  



Fig. 8 Example of ResNet network with 50-layer

2.2.3 Training NIT2FLS using gradient descent 

algorithm 

In this section, an error function was defined for mapping 

the features extracted from the images by ResNet to the 

features extracted from the EEG signal by LSTM in Eq. 

12 and tried to minimize this error: 

 (12) 𝐸 = 12 (𝑌𝑖𝑚𝑎𝑔𝑒 − 𝑌𝑇𝑆𝐾)2 

Where 𝑌𝑖𝑚𝑎𝑔𝑒 represents features extracted from the 

images and YTSK represents the features extracted from the 

EEG signal after passing through the NIT2FR. 

As previously stated, θ𝑑𝑖  in Eq. 4 is the consequent 

parameter.  𝑤𝑖   has two adjustable parameters including 

mean and variance (with Gaussian membership function), 

which are called antecedent parameters. The gradient 

descent  algorithm is used to obtain the parameters, 

including the antecedent and consequent. The antecedent 

parameters are then updated using Eq. 13: 

(13) 

𝜃(𝑡 + 1) = 𝜃(𝑡) − 𝛾 𝜕𝐸𝜕𝜃= 𝜃(𝑡) − 𝛾 𝜕𝐸𝜕𝑌𝑇𝑆𝐾 ∗ 𝜕𝑌𝑇𝑆𝐾𝜕𝑤𝑖 ∗ 𝜕𝑤𝑖𝜕𝜃+ 𝛾 𝜕𝐸𝜕𝑌𝑇𝑆𝐾 ∗ 𝜕𝑌𝑇𝑆𝐾𝜕𝑤𝑖   ∗ 𝜕𝑤𝑖   𝜕𝜃  

Where θ includes the mean and variance of fuzzy rules that 
are updated at each stage. Eq. 14 is then used to update the 

consequent parameters:  

(14) 
𝜃(𝑡 + 1) = 𝜃(𝑡) − 𝛾 𝜕𝐸𝜕𝜃= 𝜃(𝑡) − 𝛾 𝜕𝐸𝜕𝑌𝑇𝑆𝐾 ∗ 𝜕𝑌𝑇𝑆𝐾𝜕𝜃  

Where θ is consequent parameter and γ is the learning rate 

which is chosen empirically and is updated at each step. 

According to Eq.s 5 and 12, Eq.s 13 and 14 can be 

calculated. 

3. Experimental Results  

The obtained EEG signals are usually contaminated with 

noise due to the different mental backgrounds of people, 

involuntary motor activities such as blinking, etc.(Kappel 

et al. 2017).  Because the type-2 fuzzy system performs 

better in environments with more noise and higher 

uncertainty, in this paper, the type-2 fuzzy logic system 

method is used and compared with type-1. Fig. 5 depicts 

all of the steps involved in the classification of visual 

objects, as previously explained. These steps are 

implemented in MATLAB2021a software. 

3.1. Dataset 

The dataset used in this paper was collected by Stanford 

University  (Kaneshiro et al. 2015) and used in (McCartney 

et al. 2019) to classify visual images. Six groups of images 

including the human body, animal body, human face, 

animal face, fruits/vegetables and tools (12 images in each 

group) were randomly shown to the participants.   This was 

done in 2 sessions consisting of 3 blocks, which showed a 

total of 5184 images to each participant. There were 10 

participants, all of whom completed these two sessions 

and three separate EEG recordings per session so a total of 

51840 images were shown to the participants. In each of 

these iterations, an EEG signal with 128 channels and 32 

samples is recorded. The sampling frequency is 62.5 Hz. 

That is, each image is shown to the participant for about 

0.5 seconds. Data preprocessing is done offline using 

MATLAB software. See (Kaneshiro et al. 2015) for more 

details on preprocessing and tasks. 

3.2. Feature Extraction with LSTM, ResNet and 

NIT2FLS 

According to Fig. 5 Part 1, Out of a total of 5,184 signals 

per participant (including 72 images shown to participants 

72 times), one repetition of the signal obtained 

corresponding to each image is considered as test data and 

the rest as training data. So, in total there are 72 test signals 

for each person and 5112 training signals. Each of these 

samples has 128 (the number of electrodes) by 32 (the 



number of time samples) signals. Out of 128 channels, 5 

occipital channels according to Fig. 9 have been selected 

as LSTM network inputs (Visual Cortex). Therefore, 

LSTM network input is considered 5 by 32 in two 

dimensions. The number of features extracted from each 

EEG signal is considered to be 100. In this network, 

Adam, Sgdm, and Rmsprop’s optimization algorithms are 

used and the Initial Learning Rate is equal to 0.001, L2 

Regularization is equal to 0.005, and the loss model is 

cross entropy.  

 

Fig. 9 Electrode arrangement for EEG recording with 128-

channel EGI HCGSN 110 nets. The blue electrodes are the 

electrodes used to extract features from the EEG signal. 

According to Fig. 5 part 2, because of the similarity of the 

ResNet network to the cerebral cortex, this network (pre-

trained) is used to extract the features of the images.  Fig. 

10 depicts the 72 images shown to the participants. The 

number of features used in this section is 1000, which 

decreases to 100 after down-sampling.  

In this step, nonlinear interval type-2 and type-1 fuzzy 

regressions are trained by the gradient descent algorithm 

to map the features extracted from the image on the 

features extracted from the EEG signal. In the test stage, 

with a trained NIT2FR and new EEG signal data, we can 

obtain EEG signal features that also contain image 

information. Neural network regression and polynomial 

regression were used to compare the performance of 

nonlinear and linear fuzzy regression. Neural network 

regression was optimized using the Adam algorithm and 

three-order polynomial regression was optimized using the 

gradient descent algorithm.  

3.3. Classification Result 

To evaluate the classification results, accuracy, precision, 

recall(sensitivity), and F1 score are used those 

relationships are defined as Eqs. 15-18.  

(15) 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑇𝑃 + 𝑇𝑁𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁 

(16) 𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃𝑇𝑃 + 𝐹𝑁 

(17) 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃𝑇𝑃 + 𝐹𝑃 

(18) 𝐹1𝑆𝑐𝑜𝑟𝑒 = 2 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙= 2𝑇𝑃2𝑇𝑃 + 𝐹𝑁 + 𝐹𝑃 

Where TP, TN, FP, and FN are True Positive, True 

Negative, False Positive, and False Negative respectively.  

The most intuitive and main criterion used in this paper for 

evaluation is accuracy, which is defined as Eq. 15 but for 

further investigation precision and recall are used. 

precision is a measure of how many of the positive 

predictions made are correct and Recall is a measure of 

how many of the positive cases the classifier correctly 

predicted, over all the positive cases in the data (See Eqs. 

16, 17).  Another evaluation criterion is the F1 score, which 

is defined as the harmonic mean between the two criteria 

of precision and recall. 

 

Fig. 10 Six groups of images (each group contains 12 images) 

were shown to the participants. (Kaneshiro et al. 2015). 



Fig. 11 and Table 1 show the comparison of all the seven 

algorithms’ performance in terms of accuracy, precision, 

recall, and F1 score for all participants (subject 

independent). As can be seen, the classification accuracy 

results of the proposed method of this article (the last two 

columns of Table 1) are better than the other 5 methods 

(the results obtained in the article (Ahmadieh et al. 2023)). 

This shows that by changing the activity function in the 

consequent part of the fuzzy network, this network was 

able to give better results in the environment with high 

uncertainty.  

As we described before this in the LSTM network, Adam, 

Sgdm, and Rmsprop methods are used for optimization. 

Fig. 12 shows a comparison between these three 

optimizers. As can be seen, Adam's optimizer with the 

same conditions has higher accuracy than other optimizers 

in the case where all participants are present. Therefore, 

Adam's optimizer was used in continuing.  

The results of the classification accuracy when the LSTM 

network is feature extractor and Softmax is classification 

are shown in Table 2, Row 1 for different participants 

(subject-dependent), all participants (subject-

independent), and the average of all participants 

(Ahmadieh et al. 2023). 

The features extracted from the LSTM output and the 

features extracted from ResNet for each image are then 

given to a nonlinear interval type-2 and -1 fuzzy 

regressions as input. Classification accuracy for each 

participant, all participants, and the mean of all 

participants with SVM classification is shown in Table 2 

(rows 2, 3, 4, 5, 6, and 7). The classification accuracy in 

nonlinear interval type-2 and type-1 fuzzy regression is 

higher than the other regressions. Because the EEG signal 

has noise including ambient noise and blinking noise, etc. 

type-2 fuzzy performs better in environments with higher 

uncertainty and also has a higher degree of freedom than 

type-1, so NIT2FR outperforms nonlinear type-1 fuzzy 

regression. For linear type -1 and -2 fuzzy regression, the 

same results have been obtained too (Ahmadieh et al. 

2023).  

Table 3 shows the other three classifier evaluations 

(accuracy, recall and F1 score). As you can see, nonlinear 

fuzzy type 2 regression, which had higher accuracy, had 

higher precision and recall in different classes on average, 

and as a result, the F1 score was higher.  Also, these 

evaluators show a higher value in two nonlinear type 1 and 

type 2 fuzzy algorithms than type 1 and 2  fuzzy on 

average. As you see in Fig. 13 nonlinear fuzzy regression 

in two modes (fuzzy 1 and 2) has better performance than 

linear fuzzy regression in both modes. 

As described in Section 3.1, this paper uses the data set 

used in (Kaneshiro et al. 2015). According to our 

knowledge, only three articles (Ahmadieh et al. 2023; 

McCartney, Devereux, and Martinez-del-Rincon 2022; 

McCartney et al. 2019) have used this database to classify 

visual images.  In (McCartney et al. 2019), classification 

accuracy for each participant separately, when all 

participants are considered together and the average 

classification accuracy for all participants for the three 

feature extraction approaches (including visual features, 

semantic features, and a combination of visual and 

semantic) has been reported. The mean classification 

accuracy for all individuals and for the three approaches 

are 58.08, 60.88, and 62.02, as reported in Table 4 (the last 

three columns of the last row) and Fig. 14. Likewise, the 

classification accuracy for the situation in which all 

participants are considered together and for the three 

approaches are 61.97, 64.82 and, 66.01, as reported in 

Table 4 (last three columns and first row) and Fig. 14. In  
(McCartney, Devereux, and Martinez-del-Rincon 2022) 

the classification accuracy in cases where the number of 

layers in the neural network used was changed was 

between 53.8 and 56.95. 

 
Fig. 11 performance of results of seven algorithms 

 
Fig. 12 Accuracy of classification with LSTM network and 

Softmax with different optimizers 

0

10

20

30

40

50

60

70

80

Accuracy precision
Recall F1score

45 50 55 60

Adam

Sgdm

Rmsprop

Accuracy



Table 1 performance of results of seven algorithms 

Feature Extraction from EEG: 

Feature Extraction from Image: 

Feature Mapper: 

Classification: 

LSTM 

- 

- 

Softmax 

LSTM 

ResNet 

Polynomial 

SVM 

LSTM 

ResNet 

NN 

SVM 

LSTM 

ResNet 

Fuzzy_Type1 

SVM 

LSTM 

ResNet 

Fuzzy_Type2 

SVM 

LSTM 

ResNet 

NIT1FR 

SVM 

LSTM 

ResNet 

NIT2FR 

SVM 

Accuracy 55.55 61.11 61.11 65.28 66.67 66.67 68.06 

precision 55.73 61.62 64.93 66.07 66.66 66.89 68.93 

Recall 56.30 61.05 65.61 65.45 67.64 66.66 68.05 

F1score 56.01 61.33 65.27 65.76 67.15 66.77 68.49 

Table 2 Classification accuracy in the different participants (subject-dependent), all participants (subject-independent) and mean of all 

participants  

All 

participants 
Mean S10 S9 S8 S7 S6 S5 S4 S3 S2 S1 Method 

55.55 55.83 55.55 58.33 54.16 54.16 59.72 56.94 48.61 58.33 55.55 56.94 

LSTM 

 (Number feature100) 

Classification=softmax 

(Ahmadieh et al. 2023) 

61.11 60.28 61.11 61.11 56.94 59.72 63.89 61.11 55.56 63.89 61.11 58.33 

LSTM+ResNet+ 

Polynumial 

Classification=SVM 

(Ahmadieh et al. 2023) 

61.11 61.39 62.50 62.50 59.72 61.11 65.27 61.11 56.94 63.89 61.11 59.72 
LSTM+ResNet+NN 

Classification=SVM 

(Ahmadieh et al. 2023) 

65.28 63.75 62.5 63.89 63.89 62.50 66.67 66.67 62.50 65.28 62.50 61.11 

LSTM+ResNet+ 

Fuzzy_Type1 

Classification=SVM 

(Ahmadieh et al. 2023) 

66.67 66.11 66.67 66.67 65.28 63.89 69.44 68.06 65.28 66.67 63.89 65.27 

LSTM+ResNet+ 

Fuzzy_Type2 

Classification=SVM 

(Ahmadieh et al. 2023) 

66.67 66.11 65.28 66.67 65.28 65.28 68.06 69.44 65.28 66.67 65.28 63.89 

LSTM+ResNet+ 

Nonlinear_Fuzzy_Type1 

Classification=SVM 

68.06 68.05 68.06 68.06 66.67 66.67 70.83 72.22 66.67 68.06 66.67 66.67 

LSTM+ResNet+ 

Nonlinear_Fuzzy_Type2 

Classification=SVM 

 

Fig. 13 Classification accuracy for comparing linear and nonlinear fuzzy systems for all participants (subject-independent), and mean of 

all participant 
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The results of the mean classification accuracy for all 

participants for the approaches implemented in this paper 

include LSTM with Softmax classification, polynomial, 

neural network, linear type-1 fuzzy, linear interval type-2 

fuzzy (obtained in (Ahmadieh et al. 2023)), nonlinear 

type-1 fuzzy and nonlinear interval type-2 fuzzy (for this 

paper) are 55.55, 61.11, 61.11, 65.28, 66.67, 66.67 and 

68.06 respectively. As can be seen in Table 4 and Fig. 14, 

the classification accuracy obtained for linear and 

nonlinear type-1 and type-2 fuzzy regression was higher 

than the best result obtained in (McCartney, Devereux, and 

Martinez-del-Rincon 2022; McCartney et al. 2019). The 

results of other methods implemented in this paper are 

very close to the results obtained in (McCartney, 

Devereux, and Martinez-del-Rincon 2022; McCartney et 

al. 2019).  Also, the results of classification accuracy for 

the case that the regressions were trained with all 

participants for all the approaches implemented in this 

paper including LSTM with Softmax classification, 

polynomial, neural network, linear type-1 fuzzy, linear 

interval type-2 fuzzy, nonlinear type-1 fuzzy and nonlinear 

interval type-2 fuzzy are 55.83, 60.28, 61.39, 63.75, 66.11, 

66.11 and 68.05 respectively. As shown in Table 4 and 

Fig. 14, in the case of nonlinear type-1 and interval type-2 

fuzzy regression, obtained results are better than the best 

result reported in (McCartney, Devereux, and Martinez-

del-Rincon 2022; McCartney et al. 2019) in the same 

condition. The results of other methods implemented in 

this paper are very close to the results the obtained in 

(McCartney, Devereux, and Martinez-del-Rincon 2022; 

McCartney et al. 2019). 

The confusion matrix is a summary of the prediction 

results for a classification problem. The number of correct 

and incorrect predictions is summarized using counting 

values and divided by class. This is the key to the 

confusion matrix. Table 5 shows the classification 

accuracy for training and test data for all participants 

(subject-independent) and for one individual at random 

(third participant) according to the confusion matrix. Fig. 

15 depicts Participant 3's Confusion Matrix for the 7 

approaches outlined in Table 1 using test data. 

Table 3 Classification precision, recall, and F1 score for all participants (subject-independent) for seven algorithms.  

Method Class human body human face animal body animal face fruits/vegetables tools 

Method 1 

(Ahmadieh 

et al. 2023) 

Precision 58.33 50 41.66 72.72 54.54 57.14 

Recall 63.63 54.54 45.45 72.72 40 61.53 

F1score 60.86 52.17 43.47 72.72 46.15 59.25 

Method 2 

(Ahmadieh 

et al. 2023) 

Precision 80 61.53 58.33 54.54 53.84 61.53 

Recall 66.66 66.66 58.33 50 58.33 66.66 

F1score 72.72 63.99 58.33 52.17 56.00 63.99 

Method 3 

(Ahmadieh 

et al. 2023) 

Precision 75 71.42 63.63 54.54 58.33 66.66 

Recall 81.81 76.92 63.63 46.15 63.63 61.53 

F1score 78.26 74.07 63.63 50.00 60.86 63.99 

Method 4 

(Ahmadieh 

et al. 2023) 

Precision 69.23 56.25 63.63 77.77 54.54 75 

Recall 81.81 69.23 58.33 53.84 54.54 75 

F1score 75.00 62.07 60.86 63.63 54.54 75.00 

Method 5 

(Ahmadieh 

et al. 2023) 

Precision 75 75 58.33 58.33 66.66 66.66 

Recall 64.28 69.23 58.33 63.63 61.53 88.88 

F1score 69.23 72.00 58.33 60.86 63.99 76.18 

Method 6 

Precision 72.72 69.23 63.63 61.53 61.53 72.72 

Recall 66.66 75 58.33 66.66 66.66 66.66 

F1score 69.56 72.00 60.86 63.99 63.99 69.56 

Method 7 

Precision 75 66.66 58.33 63.63 75 75 

Recall 75 83.33 58.33 58.33 58.33 75 

F1score 75.00 74.07 58.33 60.86 65.62 75.00 



Table 4 Classification accuracy of all participants (subject-independent) and mean of all participants for comparing the recommended 

methods in this paper with methods of the latest research with this dataset  (McCartney et al. 2019). 

EEG Features: 

Image Feature: 

Feature Mapper: 

Classification:  

LSTM 

- 

- 

Softmax 

(Ahmadi

eh et al. 

2023) 

LSTM 

ResNet 

Polynomial

SVM 

(Ahmadieh 

et al. 2023) 

LSTM 

ResNet 

NN 

SVM 

(Ahma

dieh et 

al. 

2023) 

LSTM 

ResNet 

Fuzzy_Type1 

SVM 

(Ahmadieh 

et al. 2023) 

LSTM 

ResNet 

Fuzzy_Type2 

SVM 

(Ahmadieh 

et al. 2023) 

LSTM 

ResNet 

NIT1FR

SVM 

LSTM 

ResNet 

NIT2FRS

VM 

Visual 

(McC

artne

y et 

al. 

2019) 

Semantic 

(McCart

ney et al. 

2019) 

Visuo-

semantic 

(McCar

tney et 

al. 2019) 

All participants 55.55 61.11 61.11 65.28 66.67 66.67 68.06 61.97 64.82 66.01 

Mean 55.83 60.28 61.39 63.75 66.11 66.11 68.05 58.08 60.88 62.02 

 

Fig. 14 Classification accuracy of all participants (subject-independent) and mean of all participants to compare with a classification 

accuracy of the three reported methods in (Ahmadieh et al. 2023; McCartney et al. 2019) with the same dataset. 

Table 5 The classification accuracy for training and test data for all participants (subject-independent) and third participant (subject-

dependent). 

Participate Classification accuracy Participate 3 Classification accuracy All Participate 

Method Train Test Train Test 
LSTM (number feature 100) 

Classification=softmax 

(Ahmadieh et al. 2023) 

83.43 58.33 80.65 55.55 

LSTM+ResNet+Polynumial 

Classification=SVM 

(Ahmadieh et al. 2023) 

82.72 63.89 79.94 61.11 

LSTM+ResNet+NN 

Classification=SVM 

(Ahmadieh et al. 2023) 

85.52 63.89 82.74 61.11 

LSTM+ResNet+Fuzzy_Type1 

Classification=SVM 

(Ahmadieh et al. 2023) 

83.97 62.28 86.97 65.28 

LSTM+ResNet+Fuzzy_Type2 

Classification=SVM 

(Ahmadieh et al. 2023) 

86.52 66.67 86.10 66.67 

LSTM+ResNet+Nonlinear_Fuzzy_Type1 

Classification=SVM 
90.10 66.67 92.23 66.67 

LSTM+ResNet+Nonlinear_Fuzzy_Type2 

Classification=SVM 
91.39 68.06 92.46 68.06 

55.55 55.83

61.11 60.28

61.11 61.39

65.28 63.75

66.67 66.11

66.67 66.11

68.06 68.05
61.97 58.08

64.82 60.88

66.01 62.02

0
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classification
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Visual

Semantic

Visuo-semantic



 
a) Accuracy=58.33  

  
b) Accuracy=63.89  c) Accuracy=63.89  

  
d) Accuracy=65.28  e) Accuracy=66.67  

  
f) Accuracy=66.67  g) Accuracy=68.06  

Fig. 15 Confusion matrix related to different test modes for participant 3. a) LSTM network and Softmax classifier b) Polynomial 

regression and classification with SVM c) Neural network regression and SVM classifier d) Type-1 fuzzy regression and classification 

with SVM e) Interval type-2 fuzzy regression and SVM classifier reported in (Ahmadieh et al. 2023) f) Nonlinear type-1 fuzzy regression 

and classification with SVM g) Nonlinear interval type-2 fuzzy regression and SVM classifier. 



4. Discussion and Conclusion 

This paper has presented a new method for the 

classification of visual images. In this regard, the LSTM 

network was used as a feature extractor from a two-

dimensional EEG signal. Softmax was used for 

classification to ensure the quality of the features extracted 

from the LSTM network. Therefore, the average accuracy 

obtained with the bandpass filter used for preprocessing on 

all participants (subject-independent) in the Stanford 

dataset was 55.83%, which is a very good result compared 

to (Li et al. 2018, 2020) with the same conditions. In 

articles (Li et al. 2018, 2020; Spampinato et al. 2017), the 

accuracy of the classification is very low when the images 

are shown to people randomly and also the preprocessing 

is not done with the bandpass filter. The pre-trained 

ResNet network was then used to extract the features from 

the images. The network divided the 72 images into 6 

groups by extracting 1000 features from each image. In the 

next step, the features extracted from the LSTM output and 

the features extracted from ResNet for each image are 

given to a linear and nonlinear interval type-2 and type-1 

fuzzy, neural network, and polynomial regression as input. 

The difference between linear and nonlinear fuzzy 

regressions is in the function used in the consequent part 

of these networks, in the linear model the first-order 

polynomial function is used and in the nonlinear mode, the 

third-degree polynomial function is used. In the best case, 

the accuracy obtained after passing the EEG signal from 

the regression should be the same as the accuracy of the 

Resnet network classification for visual images. However, 

because EEG signals vary between participants and 

contain a significant level of noise, the classification 

accuracy in different modes for training data varies and is 

lower than the ResNet network classification accuracy (at 

best it is 98.61%). Finally, the SVM classifier was used to 

classify the images on the new features obtained for the 

new EEG signal. 

The proposed method was implemented on a dataset 

provided by Stanford University. In 2019, this dataset was 

used for this purpose, in the best case, the classification 

accuracy was 62.2%, and here, the classification accuracy 

in the best case (when NIT2FR has been used) was 

68.05%. Based on the findings, nonlinear fuzzy regression 

performed better than linear fuzzy methods, neural 

networks, and polynomial regression. This shows that 

fuzzy regression can perform better in conditions with 

high uncertainty.  In addition, in both linear and nonlinear 

modes, due to the high uncertainty of the environment and 

the higher degree of freedom of type-2 fuzzy compared to 

type-1, type-2 fuzzy regression performed better than 

type-1 fuzzy regression.  As we know, nonlinear systems 

in nonlinear environments can perform better than linear 

systems. In this paper, nonlinear fuzzy regression 

performed better than linear fuzzy regression. 

In addition to accuracy, precision, recall, and F1 score are 

also used to evaluate the algorithms used in this paper. 

Nonlinear fuzzy type 2 regression, which had higher 

accuracy, had higher precision and recall in different 

classes on average, resulting in a higher F1 score. Also, 

these evaluators show a higher value in two non-linear 

type 1 and type 2 fuzzy algorithms than type 1 and 2 fuzzy. 

By comparing the number of correct images in Fig. 15 in 

each class, it can be concluded that each of the regression 

methods used in this paper has strengths and weaknesses 

in different situations of EEG signals. We can use this to 

improve classification accuracy by combining the 

strengths of these regressions. In this paper, the gradient 

descent algorithm has been used to optimize regressions. 

As feature extraction plays an essential role in determining 

classification performance, future research would 

investigate alternative feature extraction methods instead 

of the LSTM networks. Finally, classifying images into 

groups serves as a foundation for more complex tasks, 

such as constructing images seen by participants using 

EEG signals. 

Acknowledged: 

This research did not receive any grant from funding 

agencies in the public, commercial, or non-profit sectors. 

Conflict of Interest: 

The authors have no conflicts of interest to declare that are 

relevant to the content of this article.

References 

Acharya, U Rajendra, Shu Lih Oh, Yuki Hagiwara, Jen 

Hong Tan, Hojjat Adeli, and D Puthankattil 

Subha. 2018. 'Automated EEG-based screening 

of depression using deep convolutional neural 

network', Computer methods and programs in 

biomedicine, 161: 103-13. 

Ahmadieh, Hajar, Farnaz Gassemi, Mohammad Hasan %J 

Neural Computing Moradi, and Applications. 

2023. 'A hybrid deep learning framework for 

automated visual image classification using EEG 

signals': 1-17. 

Alazrai, Rami, Motaz Abuhijleh, Mostafa Z Ali, and 

Mohammad I %J Expert Systems with 

Applications Daoud. 2022. 'A deep learning 

approach for decoding visually imagined digits 



and letters using time–frequency–spatial 

representation of EEG signals', 203: 117417. 

Brown, Emery N, Robert E Kass, and Partha P Mitra. 

2004. 'Multiple neural spike train data analysis: 

state-of-the-art and future challenges', Nature 

neuroscience, 7: 456-61. 

Byra, Michał, Grzegorz Styczynski, Cezary Szmigielski, 
Piotr Kalinowski, Łukasz Michałowski, Rafał 
Paluszkiewicz, Bogna Ziarkiewicz-Wróblewska, 

Krzysztof Zieniewicz, Piotr Sobieraj, and 

Andrzej Nowicki. 2018. 'Transfer learning with 

deep convolutional neural network for liver 

steatosis assessment in ultrasound images', 

International journal of computer assisted 

radiology and surgery, 13: 1895-903. 

Coupland, Simon, and Robert John. 2008. 'Type-2 fuzzy 

logic and the modelling of uncertainty.' in, Fuzzy 

sets and their extensions: Representation, 

aggregation and models (Springer). 

Craik, Alexander, Yongtian He, and Jose L. Contreras-

Vidal. 2019. 'Deep learning for 

electroencephalogram (EEG) classification tasks: 

a review', Journal of neural engineering, 16: 

031001. 

Daliri, Mohammad Reza, Mitra Taghizadeh, and Kavous 

Salehzadeh Niksirat. 2013. 'EEG signature of 

object categorization from event-related 

potentials', Journal of medical signals and 

sensors, 3: 37. 

Fang, Xing, and Zhuoning Yuan. 2019. 'Performance 

enhancing techniques for deep learning models in 

time series forecasting', Engineering 

Applications of Artificial Intelligence, 85: 533-

42. 

Fares, Ahmed, Shenghua Zhong, and Jianmin Jiang. 2018. 

"Region level bi-directional deep learning 

framework for eeg-based image classification." 

In 2018 IEEE International Conference on 

Bioinformatics and Biomedicine (BIBM), 368-

73. IEEE. 

Gadhoumi, Kais, Jean-Marc Lina, Florian Mormann, and 

Jean Gotman. 2016. 'Seizure prediction for 

therapeutic devices: A review', Journal of 

neuroscience methods, 260: 270-82. 

Gers, Felix. 2001. 'Long short-term memory in recurrent 

neural networks', Verlag nicht ermittelbar. 

He, Kaiming, Xiangyu Zhang, Shaoqing Ren, and Jian 

Sun. 2016. "Deep residual learning for image 

recognition." In Proceedings of the IEEE 

conference on computer vision and pattern 

recognition, 770-78. 

Hisdal, Ellen. 1981. 'The IF THEN ELSE statement and 

interval-valued fuzzy sets of higher type', 

International Journal of Man-Machine Studies, 

15: 385-455. 

Hochreiter, Sepp, and Jürgen Schmidhuber. 1997. 'Long 

short-term memory', Neural computation, 9: 

1735-80. 

Jafakesh, Sara, Fatemeh Zareayan Jahromy, and 

Mohammad Reza Daliri. 2016. 'Decoding of 

object categories from brain signals using cross 

frequency coupling methods', Biomedical Signal 

Processing and Control, 27: 60-67. 

Janssen, Ronald J, Janaina Mourão-Miranda, and Hugo G 

Schnack. 2018. 'Making individual prognoses in 

psychiatry using neuroimaging and machine 

learning', Biological Psychiatry: Cognitive 

Neuroscience and Neuroimaging, 3: 798-808. 

Kamitani, Yukiyasu, and Frank Tong. 2005. 'Decoding the 

visual and subjective contents of the human 

brain', Nature neuroscience, 8: 679-85. 

Kaneshiro, Blair, Marcos Perreau Guimaraes, Hyung-Suk 

Kim, Anthony M Norcia, and Patrick Suppes. 

2015. 'A representational similarity analysis of 

the dynamics of object processing using single-

trial EEG classification', PloS one, 10: e0135697. 

Kappel, Simon L, David Looney, Danilo P Mandic, and 

Preben Kidmose. 2017. 'Physiological artifacts in 

scalp EEG and ear-EEG', Biomedical 

engineering online, 16: 1-16. 

Khan, SanaUllah, Naveed Islam, Zahoor Jan, Ikram Ud 

Din, and Joel JP C Rodrigues. 2019. 'A novel 

deep learning based framework for the detection 

and classification of breast cancer using transfer 

learning', Pattern Recognition Letters, 125: 1-6. 

Kingma, Diederik P, and Jimmy Ba. 2014. 'Adam: A 

method for stochastic optimization', arXiv 

preprint arXiv:1412.6980. 

Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E Hinton. 

2012. "Imagenet classification with deep 

convolutional neural networks." In Advances in 

neural information processing systems, 1097-

105. 

Li, Ren, Jared S Johansen, Hamad Ahmed, Thomas V 

Ilyevsky, Ronnie B Wilbur, Hari M Bharadwaj, 

and Jeffrey Mark Siskind. 2018. 'Training on the 

test set? an analysis of spampinato et al.[31]', 

arXiv preprint arXiv:1812.07697. 

Li, Ren, Jared S Johansen, Hamad Ahmed, Thomas V 

Ilyevsky, Ronnie B Wilbur, Hari M Bharadwaj, 

and Jeffrey Mark Siskind. 2020. 'The perils and 

pitfalls of block design for eeg classification 

experiments', IEEE transactions on pattern 

analysis and machine intelligence, 43: 316-33. 

Malmivuo, Jaakko, Sari Ahokas, and Toni Välkky. 2014. 

"High-resolution EEG recording system using 

smart electrodes." In 2014 14th Biennial Baltic 

Electronic Conference (BEC), 21-24. IEEE. 

McCartney, Ben, Barry Devereux, and Jesus %J 

Knowledge-Based Systems Martinez-del-

Rincon. 2022. 'A zero-shot deep metric learning 



approach to Brain–Computer Interfaces for 

image retrieval', 246: 108556. 

McCartney, Ben, Jesus Martinez-del-Rincon, Barry 

Devereux, and Brian Murphy. 2019. 'Towards a 

real-world brain-computer interface for image 

retrieval', bioRxiv: 576983. 

Miyawaki, Yoichi, Hajime Uchida, Okito Yamashita, 

Masa-aki Sato, Yusuke Morito, Hiroki C Tanabe, 

Norihiro Sadato, and Yukiyasu Kamitani. 2008. 

'Visual image reconstruction from human brain 

activity using a combination of multiscale local 

image decoders', Neuron, 60: 915-29. 

Münßinger, Jana I, Sebastian Halder, Sonja C Kleih, 

Adrian Furdea, Valerio Raco, Adi Hösle, and 

Andrea Kübler. 2010. 'Brain painting: first 

evaluation of a new brain–computer interface 

application with ALS-patients and healthy 

volunteers', Frontiers in neuroscience, 4: 182. 

Murphy, Brian, Marco Baroni, and Massimo Poesio. 2009. 

"EEG responds to conceptual stimuli and corpus 

semantics." In Proceedings of the 2009 

Conference on Empirical Methods in Natural 

Language Processing, 619-27. 

Nguyen, Thanh, Abbas Khosravi, Douglas Creighton, and 

Saeid Nahavandi. 2015. 'EEG signal 

classification for BCI applications by wavelets 

and interval type-2 fuzzy logic systems', Expert 

Systems with Applications, 42: 4370-80. 

Nijboer, Femke, EW Sellers, Jürgen Mellinger, Mary Ann 

Jordan, Tamara Matuz, Adrian Furdea, Sebastian 

Halder, Ursula Mochty, DJ Krusienski, and TM 

Vaughan. 2008. 'A P300-based brain–computer 

interface for people with amyotrophic lateral 

sclerosis', Clinical neurophysiology, 119: 1909-

16. 

Palazzo, Simone, Concetto Spampinato, Isaak Kavasidis, 

Daniela Giordano, and Mubarak Shah. 2017. 

"Generative adversarial networks conditioned by 

brain signals." In Proceedings of the IEEE 

International Conference on Computer Vision, 

3410-18. 

Park, Ho-Sung, Dong-Won Kim, and Sung-Kwun Oh. 

2000. "Fuzzy Polynomial Neural Networks with 

Fuzzy Activation Node." In Proceedings of the 

KIEE Conference, 2946-48. The Korean Institute 

of Electrical Engineers. 

Piccialli, Francesco, Vittorio Di Somma, Fabio 

Giampaolo, Salvatore Cuomo, and Giancarlo 

Fortino. 2021. 'A survey on deep learning in 

medicine: Why, how and when?', Information 

Fusion, 66: 111-37. 

Shin, Hoo-Chang, Holger R Roth, Mingchen Gao, Le Lu, 

Ziyue Xu, Isabella Nogues, Jianhua Yao, Daniel 

Mollura, and Ronald M Summers. 2016. 'Deep 

convolutional neural networks for computer-

aided detection: CNN architectures, dataset 

characteristics and transfer learning', IEEE 

transactions on medical imaging, 35: 1285-98. 

Spampinato, Concetto, Simone Palazzo, Isaak Kavasidis, 

Daniela Giordano, Nasim Souly, and Mubarak 

Shah. 2017. "Deep learning human mind for 

automated visual classification." In Proceedings 

of the IEEE conference on computer vision and 

pattern recognition, 6809-17. 

Tafreshi, Taban Fami, Mohammad Reza Daliri, and 

Mahrad Ghodousi. 2019. 'Functional and 

effective connectivity based features of EEG 

signals for object recognition', Cognitive 

neurodynamics, 13: 555-66. 

Taghizadeh-Sarabi, Mitra, Mohammad Reza Daliri, and 

Kavous Salehzadeh Niksirat. 2015. 'Decoding 

objects of basic categories from 

electroencephalographic signals using wavelet 

transform and support vector machines', Brain 

topography, 28: 33-46. 

Takagi, Tomohiro, and Michio Sugeno. 1985. 'Fuzzy 

identification of systems and its applications to 

modeling and control', IEEE transactions on 

systems, man, and cybernetics: 116-32. 

Tirupattur, Praveen, Yogesh Singh Rawat, Concetto 

Spampinato, and Mubarak Shah. 2018. 

"Thoughtviz: visualizing human thoughts using 

generative adversarial network." In Proceedings 

of the 26th ACM international conference on 

Multimedia, 950-58. 

Tonin, Luca, Tom Carlson, Robert Leeb, and José del R 

Millán. 2011. "Brain-controlled telepresence 

robot by motor-disabled people." In 2011 Annual 

International Conference of the IEEE 

Engineering in Medicine and Biology Society, 

4227-30. IEEE. 

Wang, Fei, Mengqing Jiang, Chen Qian, Shuo Yang, 

Cheng Li, Honggang Zhang, Xiaogang Wang, 

and Xiaoou Tang. 2017. "Residual attention 

network for image classification." In 

Proceedings of the IEEE conference on computer 

vision and pattern recognition, 3156-64. 

Wen, Haiguang, Junxing Shi, Wei Chen, and Zhongming 

Liu. 2018. 'Deep residual network predicts 

cortical representation and organization of visual 

features for rapid categorization', Scientific 

reports, 8: 1-17. 

Wu, Dongrui. 2012. "Twelve considerations in choosing 

between Gaussian and trapezoidal membership 

functions in interval type-2 fuzzy logic 

controllers." In 2012 IEEE International 

conference on fuzzy systems, 1-8. IEEE. 

Yu, Renping, Lishan Qiao, Mingming Chen, Seong-Whan 

Lee, Xuan Fei, and Dinggang Shen. 2019. 

'Weighted graph regularized sparse brain 

network construction for MCI identification', 

Pattern Recognition, 90: 220-31. 



Zadeh, Lotfi A. 1965. 'Fuzzy sets', Information and 

control, 8: 338-53. 

Zadeh, Lotfi A. 1975. 'The concept of a linguistic variable 

and its application to approximate reasoning-III', 

information SCiences, 9: 43-80. 

Zheng, Xiao, Wanzhong Chen, Yang You, Yun Jiang, 

Mingyang Li, and Tao Zhang. 2020. 'Ensemble 

deep learning for automated visual classification 

using EEG signals', Pattern Recognition, 102: 

107147. 

 


