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Abstract

Background: Wistar and Sprague-Dawley (SD) Outbred Rat can be considered the standard rodents for acute myocardial infarction (AMI). However, a direct
comparison between Wistar and SD Rat as models of AMI has not been adequately evaluated so far. Methods: M| was constructed and cardiac functions were
measured to show the success of model construction. The metabolites among Wistar, SD rats and patients with AMI were screened, respectively, and further
three groups and subgroups metabolic pathway analysis was applied through MetaboAnalyst 4.0. Results: The animal Ml model was constructed
successfully. All the QC samples we inserted qualified, which allowed us to confirm that the analytical results were valid. After screening by three methods,
there are 42 significant plasma metabolites determined in our study, which consist of 19, 18 and 23 metabolites in Wistar, SD rats and human with AMI,
respectively. Therefore, to discuss the similarity of Wistar and SD rats to human, SD rats and human had two similar screened metabolic pathways, whereas
Wistars rats and human had three screened metabolic pathways. Through subgroup analysis, Glycerophospholipid metabolism was only one which
possessed metabolic pathway difference and did not affected by age and time, whereas Sphingolipid metabolism increased only in AMI when compared to
SHAM group. Conclusions: Sphingolipid metabolism in SD rats is not suggested to be substitute for human metabolic research and the effect of Wistar rats
on metabonomic is better than that of SD rats because their metabolic pathways are relatively closer to human’s real world.

Background

Cardiovascular diseases are associated with considerable mortality and morbidity(1). Acute myocardial infarction (Ml) is caused mostly by the interruption
and a sharp reduction of coronary ischemia. As a result, myocardial necrosis happens because of an acute ischemia hypoxia severely and enduringly(2).
There is a high risk of death in the acute phase of myocardial infarction and the chronic phase is featured with ventricular remodeling and heart failure. The
clinical manifestations of ventricular remodeling are the expansion of left ventricular, thinning of wall-thickness, decrease in the systolic and diastolic
functions(3). It is a pathological process which is closely related with hemodynamic disorder and if it goes for a long time, chronic heart failure will come into
being involving a variety of biological signals’ pathway regulation(4).

For a better understanding of these pathologies and to evaluate potential treatments for the metabolic syndrome, a number of experimental animal models
have been developed(5).Despite the multifactorial etiology of MI, the increasing morbidity suggests that environmental and behavioral factors seem to be the
major contributors to the Ml incidence rather than genetic changes. However, genes and pathways should still be investigated.

Wistar and Sprague-Dawley (SD) Outbred Rat can be considered the standard rodents for this experiment type. Furthermore, due to their larger size, the
evaluation of some metabolic parameters such as blood pressure is facilitated over mice. However, they are susceptible to diet-induced obesity and insulin
resistance with individual variations(6).What is worse, we have not known the homology between operation-induced MI and spontaneous MI, for example,
human'’s atherosclerosis- or high-lipid-related MI. So, the first thing we should know is to investigate the difference of metabolic profile between Wistar and SD
Rat in usual status after MI.

However, a direct comparison between Wistar and SD Rat as models of Ml has not been adequately evaluated so far. There are studies reporting some
metabolic changes caused by special diet in Wistar but not in SD rats(7, 8). Nevertheless, it is difficult to attribute those variations to the strain of the animal
used since there are other variables like the age of animals, the duration of the study and the composition of the diet used that can also be behind those
divergences.

In the present study, Wistar and SD rats were studied in parallel to evaluate the metabolic effects of MI groups in comparison to SHAM groups, in both strains.
To assess some of the features of the metabolic syndrome, functional evaluations were performed, for example, electrocardiogram (ECG), cardiac output (CO)
and heart rate (HR). Given the growing body of evidence demonstrating the prominent role of metabolic profile, the metabonomic after MI were also evaluated
in both strains. Therefore, the present study aimed to evaluate whether the metabolic profiles of Wistar and SD rats expressed after Ml are the same as the
samples of human being and may serve as targets for further LV remodeling researches. Additionally, we determined the metabolic profile of human samples
to compare with those of Wistar and SD rats after MI.

Methods

2.1 Animals

Wistar rats and Sprague-Dawlay (SD) male rats (SPF, 10-12 week, weight 230110 glin=28, respectively) were purchased from military science laboratory
animal center of Chinese liberation army academy[SCXK (army), 2012-2004].The rats were divided into 8 groups according to the random number table
method (7 rats per group) and named: Wistar SHAM, SD SHAM, Wistar2 hour (after myocardial infarction), SD 2h,Wistar 2 day(after myocardial infarction), SD
2d,Wistar2 week (after myocardial infarction) and SD 2w. All animals were sacrificed after experimental procedurewith potassium chloride. All experiments
were conducted in accordance with the ethical requirements of Tianjin Medical University and the Third Central Hospital.

2.2 Acute Myocardial Infarction

The purchased animals were kept in the laboratory for 1 week (room temperature 25+1 °C, each 12 hours of light and shade).Before operation, weighing and
chloral hydrate (intraperitoneal, 0.3 ml / 100 g, 10%) as well as atropine (0.2 ml) were applied to anesthesia. Heart was manually exposed from the 4th
intercostal space with endotracheal intubation through neck small incision aid (Fig. S1) and the left coronary artery was located, sutured and ligated at a site
about 1T mm from its origin, which induced roughly 50% ischemia of the left ventricle. After ligation, observation of myocardial color changescan roughly
estimate infarction area and confirm the effect of ligation at the same time. To ensure the survival rate, skilled model-making technician was needed to
shorten the time of thoracotomy. Then the chest cavity of the rats was drained and when the reddish bloody fluid was extracted, stop the procedure.
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Intraperitoneal antibiotics were injected to prevent postoperative infection and the rats were placed in clean cages, kept separately and warm. The SHAM
groups were the same as operative groups without ligation.

2.3 ECG measurement

Biopac small animal physiological instrument ECG physiological measurement module was applied to do rat real-time ECG monitoring during operation.
Infarction was considered successful following a ST elevation on ECG.

2.4 Cardiac functions measurement

CO and HR were measured by Powerlab physiological measurement instrument and LabChart physiological measurement system. Two-point calibration
method was adopted to measure the results of the enrolled rats. The data processing system of LabChart software was used to record the temperature of low-
temperature physiological saline, injection volume, injection time, and the differences in arteriovenous blood temperature and calculate to obtain the data of
the rats.

To further analyze why the tendency of 2d groups was different from other two time points, echocardiography (isoflurane, 1.5% in air) was applied to measure
the diastolic and systolic volume as well as left ventricle ejection fraction (LVEF) of these two rats’ species as previously reported(9).

2.5 Animals Sample Collection

Wistar and SD rats were anesthetized at different time points, and a 10ml syringe was taken to puncture the inferior vena cava and draw blood from the
inferior vena cava. The blood was drawn slowly, otherwise it was easy to cause hemolysis, which would have adverse effects on the later experiment. Then the
samples were centrifuged to separate the plasma and preserved at -80°C until analysis.

2.6 Human Samples Collection

For the purposes of this prospective study, we enrolled 95 patients who were divided into four groups: the youth patient group (18-44 years old, AY group, n =
23) and elderly patient group (65—80 years old, AO group, n = 24) as well as two control groups (24 youth, SY group; 24 elderly, SO group) who were selected
at the same time and within approximately the same age range after a physical examination. All patients were screened continuously from 405 patients
treated from August 2013 to August 2014. The youth patients were required to provide a second blood draw during a follow-up visit 1 year after morbidity (FY
group, n = 22, one lost).Because male patients comprised a dominant proportion of acute MI (AMI) morbidity in young adults (21/23, 91.3%), we selected a
matched proportion of males in the healthy youth control group, healthy elderly control group, and AMI group.

The definition of ST-elevation MI (STEMI) was established according to the third universal definition of myocardial infarction symptoms(10). Patients with the
following conditions were excluded: (1) secondary to non-atherosclerotic disease,(2) history of AMI, and (3) combination with cardiac shock, infection, liver or
renal insufficiency, malignant tumor, or endocrine or metabolic diseases.

Three milliliters of venous blood were drawn from the peripheral vein immediately after successful primary percutaneous coronary intervention of emergency
operation, defined as the recovered blood flow of the culprit vessel to TIMI3, and preserved inan ethylene diamine tetra acetic acid anticoagulant tube. The
blood was then centrifuged to separate the plasma and preserved at -80°C until analysis. All samples were collected in accordance with the ethical guidelines
and written consent protocols mandated by our hospital.

2.7 Samples pretreatment

Just before analysis, these rats’ and humans’ samples were thawed at room temperature, mixed with100 pl plasma and 400 pl methanol, intensely vibrated
for30 s, and incubated at 4°C for 5 min to precipitate the protein; finally, the mixture was centrifuged at 15,000 xg for 30 min at 4°C, then the supernatant was
filtrated through a 0.22 um membrane and analyzed. Equivalent volumes of some of the fluid from each sample were mixed for quality control (QC).

2.8 Sample analysis

Chemical reagents and instruments were showed in Supplementary Table 1. Chromatography conditions were as follows. Mobile phase: Phase A: 0.1% formic
acid (volume ratio); Phase B: 95%ACN and 0.1% formic acid. Chromatographic separation was performed isocratically within 15 min, and the injection volume
was 10 pl. The flow rate was set at 200 pl/min. The sample manager and column oven temperature were set at4°C and 20°C, respectively. The
chromatographic elutiongradient was initialized at 5% Phase B and held for 3 min. Inconsecutive 10 min periods, Phase B was gradually escalated to 50%,
and then a rapid increase in Phase B to 95% was completed within 3 min. After 4 min of maintaining the high volume of organic phase gradient, Phase B was
immediately reduced to 5% and this elution gradient was used to balance the analytical column in the final 4 min.

MS was operating in the positive ion mode with an ion source voltage of 4.5 kV, a capillary voltage of 30 V, cone voltage of 150 V, desolvation temperature of
275°C, sheath gas flow of 30 arb, and assistant gas flow of 5 arb (99.999% nitrogen).

Data were collected over 15 min in centroid mode over theass range 50—1000 m/z. The MS resolution was at 100,000full-width half maximum, and the
calibration standards were provided by Thermo Fisher Scientific (Caffeine,Ultramark 1621 and MRFA). MS/MS analysis was carried out with collision-induced
dissociation collision energy35 (normalization collision energy) and the collision gas was 99.999% helium.

There were 20, 23 and 22 QC samples throughout the test (equal volume mixture of each analyzed sample), respectively. Before the samples were tested, ten
QC samples were analyzed continuously and there maining QC samples were inserted into the sequence after every ten samples were analyzed.
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The sequence of samples was randomly generated by the Excel function before and after sample analysis (including QC), and cross-contamination was
avoided by inserting a blank between adjacent samples. The whole experiment lasted 2100 min.

Metabolic pathways and functional analysis were applied using MetaboAnalyst4.0 (The Wishart Research Group,Canada). To further analysis the feasibility
of these pathways, the similarities among three groups and subgroups had been conducted.

2.9 Statistical Analysis

GraphPad Prism version 7.0 and SPSS version 23.0 were used for statistical analysis. Results are shown as meanzs.e.m. Two-tailed student's t-testing and
one- or two-way ANOVA with Bonferroni post-hoc analyses were used for comparisons between different groups. A P value less than 0.05 was considered
significant. Sample sizes were designed with adequate power according to the literature and our previous studies. Randomization and blinding strategy were
used whenever possible.

Results
3.1 Comparison of clinical parameters between Wistar and SD rats’ groups

There were significant differences in indexes between Wistar and SD rats. Compared to SHAM groups, the Ml groups showed higher HR and lower CO.
Compared to Wistar rats’ groups, SD rats’ groups also showed higher HR and lower CO (Table 1).

In the 2 day after MI, there are increasing CO and decreasing HR both appearing in Wistar and SD rats. So, echocardiography was applied to measure the
diastolic and systolic volume as well as LVEF. (Fig. S2, Tab. 1). There is no significant difference between the two rats’ species,for instance, effective stroke
volume, in 2 day after Ml in SHAM and MI group, respectively (Fig. S2C).

3.2 Data pretreatment and quality control analysis

The total ion chromatograms were obtained from the UPLC/MS platform where differences in content between dozens of metabolites were identified (Fig.
S3A-C). The data were imported into MZmine 2.0 software for pretreatment and standardization where 380 and 412 integral peaks were, respectively, detected
in the ion chromatography extracted from QC and test samples.

The stability of the UPLC/MS system was assessed by analyzing the QC samples throughout the entire period. The principal component analysis (PCA) of
around 22 data sets of QC samples was used to establish a PCA model with three principal components. The score plots of the QC sample sequence versus
the first principal component [t(1)] were showed (Fig. S3D). In the test sample sequence, a QC sample was inserted after every ten test samples to evaluate the
stability of the system during the entire analytical process; results showed that the detection system was indeed stable throughout the experiment after the
first ten QC samples were injected (we set our QC standard according to a previously published article)(11).All the QC samples we inserted qualified, which
allowed us to confirm that the analytical results were valid.

3.3 Different metabolic profiles among groups

The PCA models of Wistar rats, SD rats and human being (R2X=56%,Q2=29%; R2X=42.3%[Q2=15.2%; R2X = 30.3%,Q2 = 13.2%; respectively) were established.
However, the clustering trends among groups were not obvious in the direction of the principal components, so we established an OPLS-DA model with seven,
nine and twelve predictive principal components, respectively (R2X=75.8%,R2Y=69.6%,Q2=28.4%;R2X=47.6%IR2Y=20.5%[Q2=9.69%; R2X = 71.2%, R2Y =
79.6%, Q2 = 55.9%; respectively). There were significant distinguishing clustering trends between each group in the score plot of its principal component-in
short, the OPLS-DA model made sufficient distinction between groups.

3.4 Screening and identification of characteristic metabolites

Again, metabolites with distinguishing characteristics were selected in the established OPLS-DA model (12). A total of identified metabolites were identified as
listed in Table 2.

Two independent-sample nonparametric tests were used to compare differences in metabolic profiles between MI groups and SHAM/Normal group (Table 2).
The levels of phospholipid (glycerophosphatide, sphingolipid) metabolites, as well as some free fatty acids and amino acids, were significantly up- or
down-regulated. There are 42 significant plasma metabolites determined in our study, which consist of 19, 18 and 23 metabolites in Wistar, SD rats and
human with acute MI, respectively.

Compared to the SHAM group, 19 and 23metabolomics, such as Sphinganine, LysoPC(18:0) and etc., were screened in Wistar and SD MI groups(Tab. S2-S3).
The blood samples of patients with AMI and normal had also been screened and there are 23 differential metabolomics (Tab. S4).

3.5 Metabolic pathways and functional analysis

MetaboAnalyst4.0 was applied to analyze the above most relevant metabolic pathways in greater detail (Fig. 1A-C). There are 6, 3 and 4 metabolic pathways
to Wistar rats, SD rats and human, respectively (Metabolic pathway supplementary). Data about significant difference and impact of the pathway on those
species were shown in Tab. 3.

Therefore, to discuss the similarity of Wistar and SD rats to human, metabolic pathway analysis was used to illustrate the most suitable species for human’
metabolic research (Fig. 1D-H; Tab. S6). SD rats and human had two similar screened metabolic pathways, for instance, Sphingolipid metabolism and
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Glycerophospholipid metabolism, whereas Wistar rats and human had all three screened metabolic pathways.

Some screened metabolomics between SD rats and human were controversial and the pathway of these metabolics was analyzed through MetaboAnalyst
4.0(Tab. S6), suggesting Sphingolipid metabolism has little impact on the researches of human’s metabolic pathways.

3.6 Subgroup analysis in human’s metabolomics

Subgroup analysis was applied in human’s metabolomics. AO/SO, AY/SY, AY/AO and FY/SY were analyzed using MetaboAnalyst4.0(Tab. 2, Tab. S4). Further
analysis of metabolic pathways demonstrated that Glycerophospholipid metabolism was only one which possessed metabolic pathway difference and did
not affected by age and time, whereas Sphingolipid metabolism increased only in AMI when compared to SHAM group (Tab. S5).

Further research on homology between rats and human showed Sphingolipid metabolism in SD rats had little similarity to human’s metabolic analysis, no
matter to young or elders (Tab. S6). Besides, in FY group, Wistar and SD rats showed the same impact on Glycerophospholipid metabolism.

Discussion

Currently, AMI remains the leading “killer” in humans(1). Even after receiving timely reperfusion and the best possible drug therapy, there is still a large number
of patients who fail to recover cardiac function after Ml diagnosis — or even worse, whose cardiac health continue to decline after treatment(13). Early onset
of myocardial infarction is most likely caused by a significant disruption in the body’s metabolic system; thus, metabolomics can provide a direct molecular
signature of cells that reflect changes in phenotypes and molecular physiology, and as such are very helpful for exploring pathogenesis and treatment efficacy
(14-17). Sara E. et al.(17), for instance, identified a panel of biomarkers consisting of 19 identified metabolites in the serum of patients with STEMI. They
provided a detailed map illustrating the most predominant altered metabolic pathways and the biochemical linkages among the biomarker metabolites
identified in STEMI patients.

Metabolomics analysis may yield novel predictive biomarkers that will potentially allow for an earlier medical intervention. In addition, animal experiments,
especially rats’ experiment, about the relationship between Ml and metabolic profiling are the cheapest and most convenient way to screen novel predictive
biomarkers by metabolomics analysis. However, homology between rats and human has seen relatively little research.

The main rats’ species, Wistar and SD rats, were applied to evaluate the similarity of metabolic profile to human being after MI. To ensure the welfare of
animals, we also did endotracheal intubation through neck small incision aid to help decrease some complications (18) and increase the survival rate(19). The
ECG, CO, HR and etc. were used to make sure the model-constructed success. After that, blood samples from Wistar, SD rats or human were collected to
analyze the metabolomics among them, thus to choose the most suitable animal species to help explore human’s metabolic potential target.

The characteristic ions obtained through simple statistical processing cannot be regarded as the final characteristic metabolites by default. The data
comparison and processing of these metabolites are also required. At present, there are mainly two methods to determine the characteristics of ion
metabolism based on literature and systematic description. Obviously, the most accurate and recognized method for the identification of ions is to use
standard substances for comparison (12, 16). In this experiment, a large part of ions were compared with standard substances for ion, and then the results of
experimental characteristic ions were obtained. However, the identification of ions in the experimental group that do not have the standard substance mainly
relies on the following two ways of data identification: 1. The characteristic ions were scanned by MS/MS and compared through Secondary Mass Spectra
and the theoretical fragments of HMDB identification results simulated by the built-in database of software Mass Frontier 6.0 (Thermo Fisher). The deviation
between mass to charge ratio (m/z) of Secondary Mass Spectra and theoretical fragments is no more than 0.2. The theoretical debris can match the three-
strong peak of secondary debris and cover more than 80% of the mass spectrum peak of characteristic ions, so, characteristic metabolites can be
screened(20, 21); 2. The most commonly used method is to combine the plasmonuclear ratio of characteristic ions with the human metabolic database
(http://hmdb).Ca/; http://www.metabolicatlas.org)(22, 23)and Rat Genome Database (http://rgd.mcw.edu)(24) for m/z queries with <0.2deviation. The
retrieval results were verified in accordance with the exact charge number and the ionization method consistent with the experimental conditions, and the
matching identification results were retained. Combined with the above three methods, our study of plasma metabolites in Wistar, SD rats and human with
acute Ml resulted in a total of 19, 18 and 23 standard characteristic metabolic ions, respectively.

These evidences presented thus far supports the idea that the first thing we should know is to investigate the difference of metabolic profile between Wistar
and SD Rat after Ml and compare the metabolomics with those of human being to help select the most suitable species to study some specific targets after
MI.

Combining high performance liquid chromatography (HPLC) and mass spectrum technology platform with the HMDB and KEGG databases, we found three
crucial metabolic pathways in animals and human metabolism research, Sphingolipid metabolism, glycerophospholipid metabolism and Glycerolipid
metabolism. Corresponding products that are very important in these two metabolic pathways are found together: Sphinganine, Cer(d18:0/12:0),
Phytosphingosine, LPA(0:0/16:0), LyoPc(18:1(9z)) and etc. The patients with AMI were determined and we found glycerophospholipid was significantly lower
and most of sphingolipid is raised. It has been reported that both of them showed a downward trend on the 5th day(16, 25, 26). Sphinganinewere also
reported as a synthetic ceramide(27)or regulated by neutral sphingomyelinase. in previous literature(28), which explains the results of Wistar and SD rats’
different changes. In addition, experimental studies have also suggested thatSphinganine plays a key role of signal transduction in AMI(29-31), thereby
causing calcium overload of myocardial cells, reducing myocardial contractility and increasing apoptosis of myocardial cells. In summary, we can find
Sphingosine and Ceramide are two related substances, and AMI is closely related to the metabolism of phospholipids, which can cause cell death.
Glycerophospholipids and Glycerolipid metabolisms are important components of cell membranes, which can mediate the exchange of key ions in cell
membranes, maintain the balance of substances in vivo, and mediate signal transduction. More attention should be paid to the fact that the
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metabolites,LPA(0:0/16:0), LysoPC(20:1(11Z)) and LyoPc(18:1(9z)), are reduced sharply in both animal experiments(32) and human samples, which is likely
to lead to abnormal metabolism of phospholipids and associated with a variety of cardiovascular diseases(33-35), thus affecting calcium ion influx and
calcium ion overload(36, 37).

Of course, there are also some limitations. The repairment and angiogenesis after Ml are regulated by some signal pathways spatio-temporally, such as WNT
canonical signaling (38). But we only selected three time points of animals and one point of human, which may not explain the issues clearly just draw
qualitative conclusions. Furthermore, due to surroundings and epigenetic, there may be some small differences within a strain. So, further researches are
needed to illustrate this issue clearly.

Conclusions

Overall, according the metabolic pathway analysis of those similar metabolites among three groups, Sphingolipid metabolism in SD rats is not suggested to
be substitute for human metabolic research and the effect of Wistar rats on metabonomic is better than that of SD rats because their metabolic pathways are
relatively closer to human's real world, which can give us enlightenment and evidence for further researches on metabolic reactions. The results on homology
of metabonomic between rats and human can also help investigate more specific targets, therefore, may be translated to clinic more easily.

Abbreviations
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Abbreviation  Full Name

AMI Acute myocardial infarction

GC-MC Gas chromatography-mass spectrometry
LVEF Left ventricular eject fraction

LC-MS Liquid chromatography-mass spectrometry
S/N Signal/noise

ECG Electrocardiogram

UPLC-MS Ultra-performanceliquid chromatography-mass spectrometry
MACE Major adverse cardiovascular event
OPLS-DA Orthogonal partial least square discrimination analysis
PCI Percutaneous coronary intervention

TIC Total ion chromatography

STEMI ST-segment elevated myocardial infarction
PCA Principle component analysis

ROC Receiver operating characteristic curve
HMDB human metabolome database

CID collision induced dissociation

RT Retention time

FMHW full width half maximum

VIP variable importance in projection

EF Ejection Fraction

LVPW Left ventricular posterior wall thickness

IVS Interventricular septal thickness

Mean Vel Mean aortic velocity

Peak Vel Aortic peak velocity

LVMass Left ventricular myocardial mass

LVVol(d) Diastolic left ventricular volume

LVVol(s) Systolic left ventricular volume

HR Heart rate

Peak Vel Peak Velocity

MeanGrad Mean aortic pressure difference

Mean Vel Mean aortic velocity

IP Ischemic postconditioning

IR Ischemia reperfusion

PCI Percutaneous coronary intervention

KEGG Kyoto Encyclopedia of Genes and Genomes
(6]0] Cardiac output

CABG Coronary artery bypass graft
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Tables

Table 1. Clinical characteristic after MI.
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Characteristics Wistar MI SD MI
N per group 7 7
Weight, g 237.2+5.3 233.7£7.4
CO
2h 32.46+1.20 29.18+1.10
2d 32.95+0.97 29.36+1.30
2w 32.60+1.14 26.28+1.25
SHAM 55.02+1.02 43.36+1.78
HR
2h 323.21+16.65 | 437.30+5.94
2d 300.20+13.79 | 422.87+11.49
2w 325.12+10.23 | 337.06+16.63
SHAM 280.21+15.26 | 404.26+6.60
LVEF
2d 35.50+2.35 32.14+1.77
SHAM 62.15+2.31 59.33+2.79
LV Vol;d, uL
2d 301.25+19.24 | 291.60+17.21
SHAM 332.16+2.14 | 322.04+1.32
LV Vol;s, uL
2d 188.62+14.22 | 197.87+12.39
SHAM 106.13+7.26 | 127.97+5.33

Table 2. Metabolite identification results and the difference among three groups
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m/z RT(min) Metabolite Wistar rats SD rats Human
2h/S 2d/S 2w/s | 2h/S 2d/S 2w/s AMI/N | AO/SO | AY/SY | AY/AO | FY/SY
302.3 6.72781 Sphinganine Up* - - Down* | Down* | Down* Up* Up* Up* - -
494.323 | 6.94713 LysoPC(16:1(92)) - - - - - - Down* - - - -
546.352 | 8.60857 LysoPC(18:0) Down* - - - - - Down* | Down* | Down* - Down*
508.375 8.03549 LysoPC(P-18:0) - - - Down* | Down* | Down* [ Down* | Down* | Down* - Down*
506.359 | 8.58556 LysoPC(P-18:1(9Z2)) - - - - - - - Down* | Down* - Down*
522.354 | 7.66455 LysoPC(18:1(92)) Down* [ Down* | Down* - - - Down* - - - -
522.354 | 7.66455 LysoPC(18:1(117)) - - - - - - - Down* | Down* - -
337.274 | 7.05147 LysoPC(18:2(9Z,127)) - - - Down* | Down* | Down* [ Down* - - - -
540.305 | 6.80829 LysoPC(18:3(6Z,9Z,127)) - - - - - - Down* | Down* | Down* | Up* -
490.29 6.76246 LysoPC(14:0) Up* - - - - - - - - - -
566.32 7.10287 LysoPC(20:4(8Z,11Z,14Z,177)) - - - - - - Up* - - - -
550.386 | 8.77023 LysoPC(20:1(11Z7)) - - - Down* | Down* - Down* | Down* | Down* - Down*
570.352 | 7.86944 LysoPC(20:2(117Z,147)) - - - - - - Down* | Down* | Down* - Down*
544.338 | 7.11841 LysoPC(20:4(5Z,8Z,11Z,147)) - - - - - - - Down* - - -
570.356 | 7.37359 LysoPC(22:5(7Z,10Z, Up* - - - - - - - - - -
137,167,197))
590.32 7.07064 LysoPC(22:6(4Z,7Z,10Z,13Z,16Z,19Z)) - - - - - - Up* - - - -
496.34 7.52633 LysoPC(16:0) Down* - - Down* | Down* Up* - - - - -
502.33 7.0517 LysoPC(P-16:0) - - - Down* | Down* | Down* | Down* - - - -
433.232 | 7.36116 LPA(0:0/16:0) Down* [ Down* | Down* - - - Down* - - - -
510.354 | 7.95221 LysoPC(17:0) - - - - - - Down* | Down* | Down* | Down* -
461.263 | 8.17757 LPA(0:0/18:0) Up* Up* Up* - - - - - - - -
487.286 8.57992 PA(20:4(57,87,117,147) e/2:0) - - - - - - - Down* | Down* Up* Down*
288.191 | 4.50854 Estrone Up* - - - - - - - - - -
135.003 | 0.717129 3-Furoic acid Up* - - Up* Up* Up* - - - - -
210.05 1.13129 Indoleacrylic acid Up* Up* - - - - - - - - -
311.258 | 6.94738 (R)2-Hydroxysterculic acid Up* - - Up* Up* Up* - - - - -
346.331 6.74818 2-hydroxyphytanic acid - - - - - - - - Up* - -
250.079 | 0.73948 Deoxyadenosine Up* - - - - - - - - - -
176.065 | 0.93844 Guanidinosuccinic acid Up* Up* - - - - - - - - -
340.279 | 6.21121 Phytosphingosine Down* | Down* | Down* | Down* | Down* | Down* | Down* - - - -
247.128 | 4.68701 Aspartyl-Isoleucine Up* Up* Up* - - - - - - - -
201.123 | 4.50321 Epinephrine Up* Up* - - - - - - - - -
214.01 | 0.711787 L-Aspartyl-4-phosphate Up* Up* Up* - - - - - - - -
484.464 | 9.44252 Cer(d18:0/12:0) Up* - - - - - Up* Up* Up* Up* Up*
556.529 | 10.4299 Cer(t18:0/16:0) - - - - - - - Up* Up* Up* Up*
507.272 | 8.08572 | (3b,9R)-5-Megastigmene-3,9-diol 9-[apiosyl- - - - Down* | Down* | Down* - - - - -
(1->6)-glucoside]
445.269 | 7.79311 DHAP(18:0e) - - - Down* | Down* | Down* - - - - -
358.368 | 7.67963 Behenic acid - - - Up* Up* Up* - - - - -
520.341 7.0511 Pregnanetriol - - - Down* | Down* | Down* - - - - -
356.351 | 7.40061 Catelaidic acid - - - Up* Up* Up* Up* Up* Up* - Up*
312.326 7.28137 Phytal - - - - - - - Up* Up* Down* -
495.248 | 4.54762 Leukotriene D5 - - - - - - - Up* - - -
284.294 | 6.74211 Octadecanamide - - - Down* | Down* | Down* | Up* Up* Up* - -
118.065 | 1.75456 Guanidoacetic acid - - - - - - - - Down* - -
270.144 | 5.74974 Threoninyl-lysine - - - - - - - - Down* - Down*
569.309 | 4.50573 Protoporphyrinogen IX - - - - - - Up* - - - -
328.321 | 6.76455 N,N-Dimethylsphingosine - - - - - - Up* - - - -
402.393 7.8026 Cerebronic acid - - - - - - Up* - - - -
256.263 | 6.20856 Palmitic amide - - - Up* Up* Up* Up* - - - -
314.228 | 5.75407 9-Decenoylcarnitine - - - - - - Down* - Down* - -
340.334 | 7.63485 Unknown - - - Up* Up* Up* - - - - -
508.363 | 8.06805 Unknown - - - Down* | Down* | Down* - - - - -

* P< 0.05; -: No significant difference.

m/z=row mass-to-charge ratio, RT= row retention time, LysoPC= lysophosphatidylcholine, Cer: Ceramide.

2h/S, 2d/S, 2w/S are the variation tendency of metabolite concentration of MI groups compared to SHAM group.

AMI/N is the variation tendency of metabolite concentration of patients with acute myocardial infarction compared normal human being.

AO: elders’ AMI group, SO: elders’ SHAM group, AY: young’s’ AMI group, SY: young’s SHAM group, FY: young’s follow-up lyear visit group.
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Table 3. Metabolic pathway analysis.

Wistar rats SD rats AM
Total | Expected | Hits Raw p —log(P) | Impact | Total | Expected | Hits Raw p -log(p) | Impact | Total | Expected | Hits |
Sphingolipid 21 | 0.14979 | 2 | 0.0072241 | 4.9303 | 0.14286 | 21 | 0.13487 | 2 | 0.0020808 | 6.175 | 0.14286 | 25 |0.041545| 2 | 0«
metabolism
Glycerophospholipid | 30 | 0.21398 | 2 | 0.01452 | 4.2322 | 0.24197 | 30 0.04 T | 010265 | 2.2764 | 0.04444 | 39 |0.064811 | 2 |0«
metabolism
Glycerolipid 18 0.12839 1 0.11009 2.2065 0.0192 32 0.053178 1 0.
metabolism
Tyrosine 42 | 029957 | 1 | 024007 | 1.4268 | 0.01279
metabolism
Purine metabolism | 68 | 048502 | 1 | 0.36159 | 1.0172 | 0.00479
Steroid hormone | 70 | 0.49929 | 1 | 0.37018 | 0.99377 | 0.02803
biosynthesis
Biosynthesis of 42 0.06 1 0.14127 | 1.9571 | <0.001
unsaturated fatty
acids
Porphyrin and 104 | 0.042134 1 0
chlorophyll
metabolism
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Signaling Pathway Analysis ABC. Pathways weight analysis of Wistar rats(A), SD rats(B) and human(C). D. Pathways weight analysis of the same
metabolomics between Wistar rats and human being. E. Pathways weight analysis of the same metabolomics between SD rats and human being.
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