Ambudkar, S. V., Kim, I.W., Xia, D., and Sauna, Z.E. (2006). The A-loop, a novel conserved aromatic acid subdomain upstream of the Walker A motif in ABC transporters, is critical for ATP binding. FEBS Lett.
Arkhipova, I.R. (2006). Distribution and phylogeny of penelope-like elements in eukaryotes. Syst. Biol.
Bao, W., Kapitonov, V. V., and Jurka, J. (2010). Ginger DNA transposons in eukaryotes and their evolutionary relationships with long terminal repeat retrotransposons. Mob. DNA.
Bao, W., Kojima, K.K., and Kohany, O. (2015). Repbase Update, a database of repetitive elements in eukaryotic genomes. Mob. DNA.
Barik, S., Erling, Rud, W., Luk, D., Banerjee, A.K., and Kang, C.Y. (1990). Nucleotide Sequence Analysis of the L Gene of Vesicular Stomatitis Virus (New Jersey Serotype): Identification of Conserved Domains in L Proteins of Nonsegmented Negative-Strand RNA Viruses. Virology 175, 332–337.
Bergman, C.M., Quesneville, H., Anxolabéhère, D., and Ashburner, M. (2006). Recurrent insertion and duplication generate networks of transposable element sequences in the Drosophila melanogaster genome. Genome Biol. 7.
Bessereau, J.L. (2006). Transposons in C. elegans. WormBook.
Bolland, S., and Kleckner, N. (1996). The three chemical steps of Tn10/IS10 transposition involve repeated utilization of a single active site. Cell.
Bowen, N.J., and McDonald, J.F. (1999). Genomic analysis of Caenorhabditis elegans reveals ancient families of retroviral-like elements. Genome Res.
Bowen, N.J., Jordan, I.K., Epstein, J.A., Wood, V., and Levin, H.L. (2003). Retrotransposons and their recognition of pol II promoters: A comprehensive survey of the transposable elements from the complete genome sequence of Schizosaccharomyces pombe. Genome Res.
Boyer, P.L., Ferris, A.L., and Hughes, S.H. (1992). Cassette Mutagenesis of the Reverse Transcriptase of Human Immunodeficiency Virus Type 1. J. Virol. 66, 1031–1039.
Brosh, R.M., and Matson, S.W. (1995). Mutations in motif II of Escherichia coli DNA helicase II render the enzyme nonfunctional in both mismatch repair and excision repair with differential effects on the unwinding reaction. J. Bacteriol.
Brouha, B., Schustak, J., Badge, R.M., Lutz-Prigge, S., Farley, A.H., Morant, J. V., and Kazazian, H.H. (2003). Hot L1s account for the bulk of retrotransposition in the human population. Proc. Natl. Acad. Sci. U. S. A.
Buchfink, B., Xie, C., and Huson, D.H. (2014). Fast and sensitive protein alignment using DIAMOND. Nat. Methods.
Canard, B., Chowdhury, K., Sarfati, R., Doublié, S., and Richardson, C.C. (1999). The Motif D Loop of Human Immunodeficiency Virus Type 1 Reverse Transcriptase Is Critical for Nucleoside 5-Triphosphate Selectivity*.
Cappello, J., Handelsman, K., and Lodish, H.F. (1985). Sequence of Dictyostelium DIRS-1: An apparent retrotransposon with inverted terminal repeats and an internal circle junction sequence. Cell.
Capy, P., Vitalis, R., Langin, T., Higuet, D., and Bazin, C. (1996). Relationships between Transposable Elements Based Upon the Integrase-Transposase Domains: Is There a Common Ancestor? J. Mol. Evol. 42, 359–368.
Capy, P., Langin, T., Higuet, D., Maurer, P., and Bazin, C. (1997). Do the integrases of LTR-retrotransposons and class II element transposases have a common ancestor? (Kluwer Academic Publishers).
Castro, C., Smidansky, E.D., Arnold, J.J., Maksimchuk, K.R., Moustafa, I., Uchida, A., Götte, M., Konigsberg, W., and Cameron, C.E. (2009). Nucleic acid polymerases use a general acid for nucleotidyl transfer. Nat. Struct. Mol. Biol.
Chandler, M., De La Cruz, F., Dyda, F., Hickman, A.B., Moncalian, G., and Ton-Hoang, B. (2013). Breaking and joining single-stranded DNA: the HUH endonuclease superfamily. Nat. Rev. Microbiol.
Cordaux, R., and Batzer, M.A. (2009). The impact of retrotransposons on human genome evolution. Nat. Rev. Genet.
Davies, D.R., Goryshin, I.Y., Reznikoff, W.S., and Rayment, I. (2000). Three-dimensional structure of the tn5 synaptic complex transposition intermediate. Science (80-. ).
Delarue, M., Poch, O., Tordo, N., Moras, D., and Argos, P. (1990). An attempt to unify the structure of polymerases. Protein Eng. Des. Sel. 3, 461–467.
Dennis, S., Sheth, U., Feldman, J.L., English, K.A., and Priess, J.R. (2012). C. elegans germ cells show temperature and age-dependent expression of Cer1, a Gypsy/Ty3-related retrotransposon. PLoS Pathog.
Drelich, M., Wilhelm, R., and Mous’, J. (1992). Identification of Amino Acid Residues Critical for Endonuclease and Integration Activities of HIV-1 IN Protein in vitro. Virology 189459–189468.
Engelman, A., and Craigie, R. (1992). Identification of conserved amino acid residues critical for human immunodeficiency virus type 1 integrase function in vitro. J. Virol.
Feschotte, C., and Pritham, E.J. (2005). Non-mammalian c-integrases are encoded by giant transposable elements. Trends Genet.
Feschotte, C., and Pritham, E.J. (2007). DNA transposons and the evolution of eukaryotic genomes. Annu. Rev. Genet.
Fischer, S.E.J., Wienholds, E., and Plasterk, R.H.A. (2003). Continuous exchange of sequence information between dispersed Tc1 transposons in the Caenorhabditis elegans genome. Genetics 164, 127–134.
Ganko, E.W., Fielman, K.T., and McDonald, J.F. (2001). Evolutionary history of Cer elements and their impact on the C. elegans genome. Genome Res.
Gao, X., and Voytas, D.F. (2005). A eukaryotic gene family related to retroelement integrases. Trends Genet.
Van Gent, D.C., Groeneger, A.A.M.O., and Plasterk, R.H.A. (1992). Mutational analysis of the integrase protein of human immunodeficiency virus type 2. Proc. Natl. Acad. Sci. U. S. A.
Goodwin, T.J.D., and Poulter, R.T.M. (2001). The DIRS1 group of retrotransposons. Mol. Biol. Evol.
Goodwin, T.J.D., and Poulter, R.T.M. (2004). A New Group of Tyrosine Recombinase-Encoding Retrotransposons. Mol. Biol. Evol.
Goodwin, T.J.D., Butler, M.I., and Poulter, R.T.M. (2003). Cryptons: A group of tyrosine-recombinase- encoding DNA transposons from pathogenic fungi. Microbiology.
Gorbalenya, A.E., and Koonin, E. V. (1993). Helicases: amino acid sequence comparisons and structure-function relationships. Curr. Opin. Struct. Biol.
Grabundzija, I., Messing, S.A., Thomas, J., Cosby, R.L., Bilic, I., Miskey, C., Gogol-Doring, A., Kapitonov, V., Diem, T., Dalda, A., et al. (2016). A Helitron transposon reconstructed from bats reveals a novel mechanism of genome shuffling in eukaryotes. Nat. Commun.
Graves-Woodward, K.L., Gottlieb, J., Challberg, M.D., and Weller, S.K. (1997). Biochemical analyses of mutations in the HSV-1 helicase-primase that alter ATP hydrolysis, DNA unwinding, and coupling between hydrolysis and unwinding. J. Biol. Chem.
Le Grice, S.F.J. (2012). Human immunodeficiency virus reverse transcriptase: 25 years of research, drug discovery, and promise. J. Biol. Chem. 287, 40850–40857.
Le Grice, S.F.J., Naas, T., Wohlgensinger, B., and Schatz, O. (1991). Subunit-selective mutagenesis indicates minimal polymerase activity in heterodimer-associated p51 HIV-1 reverse transcriptase. EMBO J. 10, 3905–3911.
Hall, M.C., and Matson, S.W. (1999). Helicase motifs: The engine that powers DNA unwinding. Mol. Microbiol.
Hare, S., Maertens, G.N., and Cherepanov, P. (2012). 3′-Processing and strand transfer catalysed by retroviral integrase in crystallo. EMBO J.
Hickman, A.B., and Dyda, F. (2016). DNA Transposition at Work. Chem. Rev.
Hickman, A.B., Perez, Z.N., Zhou, L., Musingarimi, P., Ghirlando, R., Hinshaw, J.E., Craig, N.L., and Dyda, F. (2005). Molecular architecture of a eukaryotic DNA transposase. Nat. Struct. Mol. Biol.
Howe, K., Clark, M.D., Torroja, C.F., Torrance, J., Berthelot, C., Muffato, M., Collins, J.E., Humphray, S., McLaren, K., Matthews, L., et al. (2013). The zebrafish reference genome sequence and its relationship to the human genome. Nature.
Huang, C.R.L., Burns, K.H., and Boeke, J.D. (2012). Active transposition in genomes. Annu. Rev. Genet.
Ivancevic, A.M., Kortschak, R.D., Bertozzi, T., and Adelson, D.L. (2016). LINEs between species: Evolutionary dynamics of LINE-1 retrotransposons across the eukaryotic tree of life. Genome Biol. Evol.
Iwai, T., Kurosawa, N., Itoh, Y.H., Kimura, N., and Horiuchi, T. (2000). Sequence Analysis of Three Family B DNA Polymerases from the Thermoacidophilic Crenarchaeon Sulfurisphaera ohwakuensis.
Jacobo-Molina, A., Ding, J., Nanni, R.G., Clark, A.D., Lu, X., Tantillo, C., Williams, R.L., Kamer, G., Ferris, A.L., Clark, P., et al. (1993). Crystal structure of human immunodeficiency virus type 1 reverse transcriptase complexed with double-stranded DNA at 3.0 Å resolution shows bent DNA. Proc. Natl. Acad. Sci. U. S. A.
Kanzaki, N., Tsai, I.J., Tanaka, R., Hunt, V.L., Liu, D., Tsuyama, K., Maeda, Y., Namai, S., Kumagai, R., Tracey, A., et al. (2018). Biology and genome of a newly discovered sibling species of Caenorhabditis elegans. Nat. Commun.
Kapitonov, V. V., and Jurka, J. (2001). Rolling-circle transposons in eukaryotes. Proc. Natl. Acad. Sci. U. S. A.
Kapitonov, V. V., and Jurka, J. (2006). Self-synthesizing DNA transposons in eukaryotes. Proc. Natl. Acad. Sci. U. S. A.
Kapitonov, V. V., and Jurka, J. (2007). Helitrons on a roll: eukaryotic rolling-circle transposons. Trends Genet.
Kapitonov, V. V., and Jurka, J. (2008). A universal classification of eukaryotic transposable elements implemented in Repbase. Nat. Rev. Genet.
Katoh, K., and Standley, D.M. (2013). MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol.
Katoh, K., Misawa, K., Kuma, K.I., and Miyata, T. (2002). MAFFT: A novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res.
Kaushik, N., Rege, N., Yadav, N.S., Sarafianos, S.G., Modak, M.J., and Pandey, V.N. (1996). Biochemical Analysis of Catalytically Crucial Aspartate Mutants of Human Immunodeficiency Virus Type 1 Reverse Transcriptase †.
Kidwell, M.G., and Lisch, D.R. (2001). Perspective: Transposable elements, parasitic DNA, and genome evolution. Evolution (N. Y).
Kim, J.M., Vanguri, S., Boeke, J.D., Gabriel, A., and Voytas, D.F. (1998). Transposable elements and genome organization: A comprehensive survey of retrotransposons revealed by the complete Saccharomyces cerevisiae genome sequence. Genome Res.
Kines, K.J., Sokolowski, M., DeHaro, D.L., Christian, C.M., Baddoo, M., Smither, M.E., and Belancio, V.P. (2016). The endonuclease domain of the LINE-1 ORF2 protein can tolerate multiple mutations. Mob. DNA 7.
Koonin, E. V. (1993). A common set of conserved motifs in a vast variety of putative nucleic acid-dependent ATPases including MCM proteins involved in the initiation of eukaryotic DNA replication. Nucleic Acids Res.
Koonin, E. V., Dolja, V. V., and Krupovic, M. (2015). Origins and evolution of viruses of eukaryotes: The ultimate modularity. Virology.
Korf, I. (2004). Gene finding in novel genomes. BMC Bioinformatics.
Krupovic, M., and Koonin, E. V. (2015). Polintons: A hotbed of eukaryotic virus, transposon and plasmid evolution. Nat. Rev. Microbiol.
Kulkosky, J., Jones, K.S., Katz, R.A., Mack, J.P., and Skalka, A.M. (1992). Residues critical for retroviral integrative recombination in a region that is highly conserved among retroviral/retrotransposon integrases and bacterial insertion sequence transposases. Mol. Cell. Biol.
Lander, E.S., Linton, L.M., Birren, B., Nusbaum, C., Zody, M.C., Baldwin, J., Devon, K., Dewar, K., Doyle, M., Fitzhugh, W., et al. (2001). Initial sequencing and analysis of the human genome. Nature.
Lovell, S., Goryshin, I.Y., Reznikoff, W.R., and Rayment, I. (2002). Two-metal active site binding of a Tn5 transposase synaptic complex. Nat. Struct. Biol.
Maertens, G.N., Engelman, A.N., and Cherepanov, P. (2021). Structure and function of retroviral integrase. Nat. Rev. Microbiol.
Marín, I., Plata-Rengifo, P., Labrador, M., and Fontdevila, A. (1998). Evolutionary relationships among the members of an ancient class of non- LTR retrotransposons found in the nematode Caenorhabditis elegans. Mol. Biol. Evol.
Mitchell, M., Gillis, A., Futahashi, M., Fujiwara, H., and Skordalakes, E. (2010). Structural basis for telomerase catalytic subunit TERT binding to RNA template and telomeric DNA. Nat. Struct. Mol. Biol.
Moore, R.S., Kaletsky, R., Lesnik, C., Cota, V., Blackman, E., Parsons, L.R., Gitai, Z., and Murphy, C.T. (2021). The role of the Cer1 transposon in horizontal transfer of transgenerational memory. Cell.
Morrish, T.A., Gilbert, N., Myers, J.S., Vincent, B.J., Stamato, T.D., Taccioli, G.E., Batzer, M.A., and Moran, J. V. (2002). DNA repair mediated by endonuclease-independent LINE-1 retrotransposition. Nat. Genet. 31, 159–165.
Naumann, T.A., and Reznikoff, W.S. (2002). Tn5 transposase active site mutants. J. Biol. Chem.
Nesmelova, I. V., and Hackett, P.B. (2010). DDE transposases: Structural similarity and diversity. Adv. Drug Deliv. Rev.
Palopoli, M.F., Rockman, M. V., TinMaung, A., Ramsay, C., Curwen, S., Aduna, A., Laurita, J., and Kruglyak, L. (2008). Molecular basis of the copulatory plug polymorphism in Caenorhabditis elegans. Nature.
Penzkofer, T., Jäger, M., Figlerowicz, M., Badge, R., Mundlos, S., Robinson, P.N., and Zemojtel, T. (2017). L1Base 2: More retrotransposition-active LINE-1s, more mammalian genomes. Nucleic Acids Res.
Poch, O., Sauvaget, I., Delarue, M., and Tordo, N. (1989). Identification of four conserved motifs among the RNA-dependent polymerase encoding elements. EMBO J.
Poulter, R.T.M., and Butler, M.I. (2015). Tyrosine Recombinase Retrotransposons and Transposons. Microbiol. Spectr.
Pritham, E.J., Putliwala, T., and Feschotte, C. (2007). Mavericks, a novel class of giant transposable elements widespread in eukaryotes and related to DNA viruses. Gene.
Pyatkov, K.I., Arkhipova, I.R., Malkova, N. V., Finnegan, D.J., and Evgen’ev, M.B. (2004). Reverse tanscriptase and endonuclease activities encoded by Penelope-like retroelements. Proc. Natl. Acad. Sci. U. S. A.
Raney, K.D., Byrd, A.K., and Aarattuthodiyil, S. (2013). Structure and mechanisms of SF1 DNA helicases. Adv. Exp. Med. Biol.
Richardson, J.M., Colloms, S.D., Finnegan, D.J., and Walkinshaw, M.D. (2009). Molecular Architecture of the Mos1 Paired-End Complex: The Structural Basis of DNA Transposition in a Eukaryote. Cell.
Smith, R.A., Anderson, D.J., and Preston, B.D. (2006). Hypersusceptibility to Substrate Analogs Conferred by Mutations in Human Immunodeficiency Virus Type 1 Reverse Transcriptase. J. Virol.
Steitz, T.A. (1998). A mechanism for all polymerases. Nature.
Szitenberg, A., Koutsovoulos, G., Blaxter, M.L., and Lunt, D.H. (2014). The evolution of tyrosine-recombinase elements in Nematoda. PLoS One.
Thomas, J., and Pritham, E.J. (2015). Helitrons , the Eukaryotic Rolling-circle Transposable Elements . Microbiol. Spectr.
Velankar, S.S., Soultanas, P., Dillingham, M.S., Subramanya, H.S., and Wigley, D.B. (1999). Crystal structures of complexes of PcrA DNA helicase with a DNA substrate indicate an inchworm mechanism. Cell.
Walker, J.E., Saraste, M., Runswick, M.J., and Gay, N.J. (1982). Distantly related sequences in the alpha- and beta-subunits of ATP synthase, myosin, kinases and other ATP-requiring enzymes and a common nucleotide binding fold. EMBO J.
Walker, S.L., Wonderling, R.S., and Owens, R.A. (1997). Mutational analysis of the adeno-associated virus type 2 Rep68 protein helicase motifs. J. Virol.
Waterston, R.H., Lindblad-Toh, K., Birney, E., Rogers, J., Abril, J.F., Agarwal, P., Agarwala, R., Ainscough, R., Alexandersson, M., An, P., et al. (2002). Initial sequencing and comparative analysis of the mouse genome. Nature.
Wells, J.N., and Feschotte, C. (2020). A Field Guide to Eukaryotic Transposable Elements. Annu. Rev. Genet.
Weng, Y., Czaplinski, K., and Peltz, S.W. (1996). Genetic and biochemical characterization of mutations in the ATPase and helicase regions of the Upf1 protein. Mol. Cell. Biol.
Wicker, T., Sabot, F., Hua-Van, A., Bennetzen, J.L., Capy, P., Chalhoub, B., Flavell, A., Leroy, P., Morgante, M., Panaud, O., et al. (2007). A unified classification system for eukaryotic transposable elements. Nat. Rev. Genet.
Xiong, Y., and Eickbush, T.H. (1990). Origin and evolution of retroelements based upon their reverse transcriptase sequences. EMBO J.
Yoshimura, J., Ichikawa, K., Shoura, M.J., Artiles, K.L., Gabdank, I., Wahba, L., Smith, C.L., Edgley, M.L., Rougvie, A.E., Fire, A.Z., et al. (2019). Recompleting the Caenorhabditis elegans genome. Genome Res. 29, 1009–1022.
Youngman, S., Van Luenen, H.G.A.M., and Plasterk, R.H.A. (1996). Rte-1, a retrotransposon-like element in Caenorhabditis elegans. FEBS Lett.
Yuan, Y.W., and Wessler, S.R. (2011). The catalytic domain of all eukaryotic cut-and-paste transposase superfamilies. Proc. Natl. Acad. Sci. U. S. A.
Yutin, N., Shevchenko, S., Kapitonov, V., Krupovic, M., and Koonin, E. V. (2015). A novel group of diverse Polinton-like viruses discovered by metagenome analysis. BMC Biol.
Zhang, X., and Wessler, S.R. (2004). Genome-wide comparative analysis of the transposable elements in the related species Arabidopsis thaliana and Brassica oleracea. Proc. Natl. Acad. Sci. U. S. A.