Aronson MFJ, La Sorte FA, Nilon CH, et al (2014) A global analysis of the impacts of urbanization on bird and plant diversity reveals key anthropogenic drivers. Proc Biol Sci 281:20133330. https://doi.org/10.1098/rspb.2013.3330
Beninde J, Veith M, Hochkirch A (2015) Biodiversity in cities needs space: a meta-analysis of factors determining intra-urban biodiversity variation. Ecol Lett 18:581–592. https://doi.org/10.1111/ele.12427
Biard C, Brischoux F, Meillère A, et al (2017) Growing in Cities: An Urban Penalty for Wild Birds? A Study of Phenotypic Differences between Urban and Rural Great Tit Chicks (Parus major). Front Ecol Evol 5:. https://doi.org/10.3389/fevo.2017.00079
Bonier F, Martin PR, Wingfield JC (2007) Urban birds have broader environmental tolerance. Biol Lett 3:670–673. https://doi.org/10.1098/rsbl.2007.0349
Braaker S, Obrist MK, Ghazoul J, Moretti M (2017) Habitat connectivity and local conditions shape taxonomic and functional diversity of arthropods on green roofs. J Anim Ecol 86:521–531. https://doi.org/10.1111/1365-2656.12648
Carnicer J, Stefanescu C, Vila R, et al (2013) A unified framework for diversity gradients: the adaptive trait continuum. Glob Ecol Biogeogr 22:6–18. https://doi.org/DOI: 10.1111/j.1466-8238.2012.00762.x
Chen G, Li X, Liu X, et al (2020) Global projections of future urban land expansion under shared socioeconomic pathways. Nat Commun 11:1–12. https://doi.org/10.1038/s41467-020-14386-x
Christie FJ, Hochuli DF (2009) Responses of wasp communities to urbanization: Effects on community resilience and species diversity. J Insect Conserv 13:213–221. https://doi.org/10.1007/s10841-008-9146-5
Croci S, Butet A, Clergeau P (2008) Does urbanization filter birds on the basis of their biological traits? Condor 110:223–240. https://doi.org/10.1525/cond.2008.8409
Delgado de la Flor YA, Burkman CE, Eldredge TK, Gardiner MM (2017) Patch and landscape-scale variables influence the taxonomic and functional composition of beetles in urban greenspaces. Ecosphere 8:e02007. https://doi.org/10.1002/ecs2.2007
Delgado de la Flor YA, Perry KI, Turo KJ, et al (2020) Local and landscape-scale environmental filters drive the functional diversity and taxonomic composition of spiders across urban greenspaces. J Appl Ecol. https://doi.org/10.1111/1365-2664.13636
Desrochers RE, Kerr JT, Currie DJ (2011) How, and how much, natural cover loss increases species richness. Glob Ecol Biogeogr 20:857–867. https://doi.org/10.1111/j.1466-8238.2011.00658.x
Dray S, Dufour A-B (2007) The ade4 Package: Implementing the Duality Diagram for Ecologists. J Stat Softw 22:1–20. https://doi.org/10.18637/jss.v022.i04
Eskildsen A, Carvalheiro LG, Kissling WD, et al (2015) Ecological specialization matters: long-term trends in butterfly species richness and assemblage composition depend on multiple functional traits. Divers Distrib 21:792–802. https://doi.org/10.1111/ddi.12340
Gelman A, Rubin DB (1992) Inference from Iterative Simulation Using Multiple Sequences. Stat Sci 7:457–472. https://doi.org/10.1214/ss/1177011136
Graves SD, Shapiro AM (2003) Exotics as host plants of the California butterfly fauna. Biol Conserv 110:413–433. https://doi.org/10.1016/S0006-3207(02)00233-1
Hanski I (1998) Metapopulation dynamics. Nature 396:41–49
Hill MJ, Biggs J, Thornhill I, et al (2017) Urban ponds as an aquatic biodiversity resource in modified landscapes. Glob Chang Biol 23:986–999. https://doi.org/10.1111/gcb.13401
Hill MO, Smith AJE (1976) Principal Component Analysis of Taxonomic Data with Multi-State Discrete Characters. Taxon 25:249–255. https://doi.org/10.2307/1219449
Imai K, van Dyk DA (2005) MNP: R Package for Fitting the Multinomial Probit Model. J Stat Softw 14:1–32
Krauss J, Bommarco R, Guardiola M, et al (2010) Habitat fragmentation causes immediate and time-delayed biodiversity loss at different trophic levels. Ecol Lett 13:597–605. https://doi.org/10.1111/j.1461-0248.2010.01457.x
Lagucki E, Burdine JD, McCluney KE (2017) Urbanization alters communities of flying arthropods in parks and gardens of a medium-sized city. PeerJ 2017:e3620. https://doi.org/10.7717/peerj.3620
Lizée M-H, Manel S, Mauffrey J-F, et al (2011) Matrix configuration and patch isolation influences override the species–area relationship for urban butterfly communities. Landsc Ecol 27:159–169. https://doi.org/10.1007/s10980-011-9651-x
Lizée M-H, Tatoni T, Deschamps-Cottin M (2016) Nested patterns in urban butterfly species assemblages: respective roles of plot management, park layout and landscape features. Urban Ecosyst 19:205–224. https://doi.org/10.1007/s11252-015-0501-5
Melero Y, Stefanescu C, Pino J (2016) General declines in Mediterranean butterflies over the last two decades are modulated by species traits. Biol Conserv 201:336–342. https://doi.org/10.1016/j.biocon.2016.07.029
Melero Y, Cornulier T, Oliver MK, Lambin X (2018) Ecological traps for large-scale invasive species control: Predicting settling rules by recolonising American mink post-culling. J Appl Ecol 55:1769–1779. https://doi.org/10.1111/1365-2664.13115
Melero Y, Stefanescu C, Palmer SCF, et al (2020) The role of the urban landscape on species with contrasting dispersal ability: Insights from greening plans for Barcelona. Landsc Urban Plan 195:103707. https://doi.org/10.1016/j.landurbplan.2019.103707
Middleton-Welling J, Wade RA, Dennis RLH, et al (2018) Optimising trait and source selection for explaining occurrence and abundance changes: A case study using British butterflies. Funct Ecol 32:1609–1619. https://doi.org/10.1111/1365-2435.13082
Moretti M, Dias ATC, de Bello F, et al (2017) Handbook of protocols for standardized measurement of terrestrial invertebrate functional traits. Funct Ecol 31:558–567. https://doi.org/10.1111/1365-2435.12776
Murray KA, Rosauer D, McCallum H, Skerratt LF (2011) Integrating species traits with extrinsic threats: closing the gap between predicting and preventing species declines. Proc R Soc B 278:1515–23. https://doi.org/10.1098/rspb.2010.1872
Olivier T, Schmucki R, Fontaine B, et al (2016) Butterfly assemblages in residential gardens are driven by species’ habitat preference and mobility. Landsc Ecol 31:865–876. https://doi.org/10.1007/s10980-015-0299-9
Parris KM (2018) Existing ecological theory applies to urban environments. Landsc Ecol Eng 14:201–208. https://doi.org/10.1007/s11355-018-0351-4
Piano E, De Wolf K, Bona F, et al (2017) Urbanization drives community shifts towards thermophilic and dispersive species at local and landscape scales. Glob Chang Biol 23:2554–2564. https://doi.org/10.1111/gcb.13606
Piano E, Souffreau C, Merckx T, et al (2020) Urbanization drives cross‐taxon declines in abundance and diversity at multiple spatial scales. Glob Chang Biol 26:1196–1211. https://doi.org/10.1111/gcb.14934
Pollard E (1988) Temperature, Rainfall and Butterfly Numbers. J Appl Ecol 25:819. https://doi.org/10.2307/2403748
Pollard E, Rothery P, Yates TJ (1996) Annual growth rates in newly established populations of the butterfly Pararge aegeria. Ecol Entomol 21:947–952. https://doi.org/10.1046/j.1365-2311.1996.00003.x
R Core Team (2016) R: A Language and Environment for Statistical Computing
Ramírez-Restrepo L, MacGregor-Fors I (2017) Butterflies in the city: a review of urban diurnal Lepidoptera. Urban Ecosyst 20:171–182. https://doi.org/10.1007/s11252-016-0579-4
Santini L, González-Suárez M, Russo D, et al (2019) One strategy does not fit all: determinants of urban adaptation in mammals. Ecol Lett 22:365–376. https://doi.org/10.1111/ele.13199
Sarthou JP, Badoz A, Vaissière B, et al (2014) Local more than landscape parameters structure natural enemy communities during their overwintering in semi-natural habitats. Agric Ecosyst Environ 194:17–28. https://doi.org/10.1016/j.agee.2014.04.018
Secretariat of the Convention on Biological Diversity (2012) Cities and biodiversity outlook. A global assessment of the links between action and policy: Urbanization, biodiversity, and ecosystem services. Montreal
Seto KC, Güneralp B, Hutyra LR (2012) Global forecasts of urban expansion to 2030 and direct impacts on biodiversity and carbon pools. Proc Natl Acad Sci U S A 109:16083–8. https://doi.org/10.1073/pnas.1211658109
Sivakoff F, Prajzner S, Gardiner M (2018) Unique Bee Communities within Vacant Lots and Urban Farms Result from Variation in Surrounding Urbanization Intensity. Sustainability 10:1926. https://doi.org/10.3390/su10061926
Sol D, Trisos C, Múrria C, et al (2020) The worldwide impact of urbanisation on avian functional diversity. Ecol Lett 23:962–972. https://doi.org/10.1111/ele.13495
Stefanescu C, Carnicer J, Peñuelas J (2011) Determinants of species richness in generalist and specialist Mediterranean butterflies: the negative synergistic forces of climate and habitat change. Ecography (Cop) 34:353–363. https://doi.org/10.1111/j.1600-0587.2010.06264.x
Suggitt AJ, Stefanescu C, Páramo F, et al (2012) Habitat associations of species show consistent but weak responses to climate. Biol Lett 8:590–593. https://doi.org/10.1098/rsbl.2012.0112
Thomas JA (2005) Monitoring change in the abundance and distribution of insects using butterflies and other indicator groups. Philos Trans R Soc Lond B Biol Sci 360:339–57. https://doi.org/10.1098/rstb.2004.1585
Tzortzakaki O, Kati V, Panitsa M, et al (2019) Butterfly diversity along the urbanization gradient in a densely-built Mediterranean city: Land cover is more decisive than resources in structuring communities. Landsc Urban Plan 183:79–87. https://doi.org/10.1016/j.landurbplan.2018.11.007
Ubach A, Páramo F, Gutiérrez C, Stefanescu C (2020) Vegetation encroachment drives changes in the composition of butterfly assemblages and species loss in Mediterranean ecosystems. Insect Conserv Divers 13:151–161. https://doi.org/10.1111/icad.12397
Vardakis M, Goos P, Adriaensen F, Matthysen E (2015) Discrete choice modelling of natal dispersal: “Choosing” where to breed from a finite set of available areas. Methods Ecol Evol 6:997–1006. https://doi.org/10.1111/2041-210X.12404
Vila R, Stefanescu C, Sesma JM (2018) Guia de les papallones diürnes de Catalunya. Lynx Edicions, Barcelona
Wong BBM, Candolin U (2015) Behavioral responses to changing environments. Behav. Ecol. 26:665–673