1. Holometer C, Chou AS, Gustafson R, Hogan C, Kamai B, Kwon O, et al. MHz gravitational wave constraints with decameter Michelson interferometers. Physical Review D. 2017;95(6):063002.
2. Harms J, Slagmolen BJJ, Adhikari RX, Miller MC, Evans M, Chen Y, et al. Low-frequency terrestrial gravitational-wave detectors. Physical Review D. 2013;88(12):122003.
3. Füzfa A. How current loops and solenoids curve spacetime. Phys Rev D. 2016;93(2):024014.
4. Fuzfa A. Electromagnetic Devices for the Directional Emission and Reception of Gravitational Waves, Patent No. EP17210675.92017.
5. Newton I. Philosophiae naturalis principia mathematica: Jussu Societatis Regiae ac typis Josephi Streater, prostant venales apud Sam …; 2009.
6. Füzfa A. Electromagnetic Gravitational Waves Antennas for Directional Emission and Reception. arXiv preprint arXiv:170206052. 2017.
7. Lee J-h. Audiovisual material of section 5. Experiments: A gravity generator experiment measuring only voltage while rotating. https://youtu.be/HS6Qbp6i-SU: YOUTUBE; 2020-06-02.
8. Lee J-h. Audiovisual material of section 6. Experiments: A gravity generator experiment measuring voltage only while stationary. https://youtu.be/HS6Qbp6i-SU: YOUTUBE; 2020-06-02.
9. Lee J-h. The data of Experiment D1, E1, F: A gravity generator experiment measuring electricity while stationary. In: Science CfO, editor. Gravity to Electricity as Quantum. https://osf.io/ntuda/: Center for Open Science |; 7 Nov. 2020.
10. Technology CIo. LIGO Suspends Third Observing Run (O3) CALTech: IPAC Communications & Education Team; 2020-03-26 [cited 2021 06.08]. In response to COVID-19, LIGO has decided to suspend its third observing run (O3) ahead of schedule. Originally planned to end on April 30, the observing run will end on March 27th. LIGO made this decision to do its part to protect staff and each site's community from the virus. Despite its early retirement, O3 has been enormously successful! LIGO Image Credit: LIGO-Virgo Collaboration. Sunset Credit: Getty Images.]. Available from: https://www.ligo.caltech.edu/news/ligo20200326.
11. Meinecke J, Doyle HW, Miniati F, Bell AR, Bingham R, Crowston R, et al. Turbulent amplification of magnetic fields in laboratory laser-produced shock waves. Nature Physics. 2014;10(7):520-4.
12. Lee J-h. Audiovisual material of Section S3. Experiments (A, B, C): A gravity generator experiment measuring electricity while rotating. https://youtu.be/EHLfWQFosB8: YOUTUBE; 2020-06-02.
13. Lee J-h. Audiovisual material of section S4. Experiments (D, E, F): A gravity generator experiment measuring electricity while stationary. https://youtu.be/GyxWrvkCyn0: YOUTUBE; 2020-06-02.
14. Tajmar M, De Matos C. Coupling of electromagnetism and gravitation in the weak field approximation. Journal of Theoretics. 2001;3(1).
15. Mashhoon B, Gronwald F, Lichtenegger HIM, editors. Gravitomagnetism and the Clock Effect2001; Berlin, Heidelberg: Springer Berlin Heidelberg.
16. Farajollahpour T, Jafari SA. Synthetic non-Abelian gauge fields and gravitomagnetic effects in tilted Dirac cone systems. Physical Review Research. 2020;2(2):023410.
17. Poole G. Theory of electromagnetism and gravity—modeling earth as a rotating solenoid coil. Journal of High Energy Physics, Gravitation and Cosmology. 2017;3(4):663-92.
18. Amelino-Camelia G. Quantum-Spacetime Phenomenology. Living Reviews in Relativity. 2013;16(1):5.
19. Martin BR, Irvine J. CERN: Past performance and future prospects: III. CERN and the future of world high-energy physics. Research Policy. 1984;13(6):311-42.
20. Long KR, Lucchesi D, Palmer MA, Pastrone N, Schulte D, Shiltsev V. Muon colliders to expand frontiers of particle physics. Nature Physics. 2021;17(3):289-92.
21. Kolobov VI, Golubkov K, de Nova JRM, Steinhauer J. Observation of stationary spontaneous Hawking radiation and the time evolution of an analogue black hole. Nature Physics. 2021;17(3):362-7.
22. Kumar S, Kumar Chauhan P, Sharma RP, Uma R. Compression of the laser pulse in magnetized plasma having relativistic regime. Optik. 2021;242:167130.
23. Anderson CD. The positive electron. Physical Review. 1933;43(6):491.
24. Klein O. Die Reflexion von Elektronen an einem Potentialsprung nach der relativistischen Dynamik von Dirac. Zeitschrift für Physik. 1929;53(3-4):157-65.
25. Schrödinger E. Über die kräftefreie Bewegung in der relativistischen Quantenmechanik: Akademie der wissenschaften in kommission bei W. de Gruyter u. Company; 1930.
26. Gerritsma R, Kirchmair G, Zähringer F, Solano E, Blatt R, Roos CF. Quantum simulation of the Dirac equation. Nature. 2010;463(7277):68-71.
27. Bars I, James A. Physical interpretation of antigravity. Physical Review D. 2016;93(4):044029.
28. Di Matteo T, Springel V, Hernquist L. Energy input from quasars regulates the growth and activity of black holes and their host galaxies. Nature. 2005;433(7026):604-7.
29. Hawking SW. Particle creation by black holes. Communications in Mathematical Physics. 1975;43(3):199-220.
30. Bamba K, Capozziello S, Nojiri Si, Odintsov SD. Dark energy cosmology: the equivalent description via different theoretical models and cosmography tests. Astrophysics and Space Science. 2012;342(1):155-228.
31. Millikan RA, Bishop ES. Elements of electricity: a practical discussion of the fundamental laws and phenomena of electricity and their practical applications in the business and industrial world: American Technical Society; 1917.
32. Jacobson AR, Moses RW. Nonlocal dc electrical conductivity of a Lorentz plasma in a stochastic magnetic field. Physical Review A. 1984;29(6):3335-42.
33. Weinberg S, Witten E. Limits on massless particles. Phys Lett B. 1980;96(1-2):59-62.
34. Penrose R. Gravitational collapse and space-time singularities. Physical Review Letters. 1965;14(3):57.
35. Abdo AA, Ackermann M, Ajello M, Asano K, Atwood WB, Axelsson M, et al. A limit on the variation of the speed of light arising from quantum gravity effects. Nature. 2009;462(7271):331-4.
36. de Rham C, Tolley AJ. Speed of gravity. Physical Review D. 2020;101(6):063518.
37. Di Francesco M, Esposito A, Schmidtchen M. Many-particle limit for a system of interaction equations driven by Newtonian potentials. Calculus of Variations and Partial Differential Equations. 2021;60(2):68.
38. Dong R, Stojkovic D. Gravitational wave echoes from black holes in massive gravity. Physical Review D. 2021;103(2):024058.
39. Gayathri V, Healy J, Lange J, O’Brien B, Szczepanczyk M, Bartos I, et al. Measuring the Hubble Constant with GW190521 as an Eccentric black hole Merger and Its Potential Electromagnetic Counterpart. The Astrophysical Journal Letters. 2021;908(2):L34.
40. Chen K, Dai Z. Charging and Electromagnetic Radiation during the Inspiral of a Black Hole–Neutron Star Binary. The Astrophysical Journal. 2021;909(1):4.