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Abstract

In the context of optimization under uncertainty, we consider various combinations of distri-
bution estimation and resampling (bootstrap and bagging) for obtaining samples used to estimate
a confidence interval for an optimality gap. This paper makes three experimental contributions
to on-going research in data driven stochastic programming: a) most of the combinations of dis-
tribution estimation and resampling result in algorithms that have not been published before,
b) within the algorithms, we describe innovations that improve performance, and c) we provide
open-source software implementations of the algorithms. Among others, three important conclu-
sions can be drawn: using a smoothed point estimate for the optimality gap for the center of the
confidence interval is preferable to a purely empirical estimate, bagging generally performs better
than bootstrap, and smoothed bagging sometimes performs better than bagging based directly on
the data.

Keywords: Optimization under Uncertainty, smoothed bootstrap, bagging, stochastic program-
ming, optimality gap

When presented with an optimization problem under uncertainty, sampled data may inform the
inputs to a solution procedure. A solution obtained in this way is almost surely not the optimal solution
to the problem due to the inherent stochasticity, so a confidence interval (CI) for the objective function
optimality gap should be obtained. We consider various combinations of distribution estimation and
resampling (bootstrap and bagging) for obtaining samples used to estimate a confidence interval for
an optimality gap.

Out paper concerns optimization based on samples from a population with unknown distribution
function FΩp¨q. We state the problem in abstract form using

min
x

EFΩpdqgpx, dq (1)

We will consider examples with explicit constraints, but for now we use notation where they are
implicit. The decision vector is x and the vector of uncertain data is d. Data known with certainty is
captured in the specification of the function g. Let

x˚ “ argmin
x

EFΩpdqgpx, dq

and
z˚ “ EFΩpdqgpx˚, dq.

Our interest is when there is a sample D “ tdi, i “ 1, . . . , Nu from Ω that can be used to estimate a
confidence interval for the optimality gap associated with a given px. Note that the subscript i indicates

the ith vector; we never reference vector elements in this paper. We define the optimality gap as

γpxpΩq “ EFΩpdqgppx, dq ´ EFΩpdqgpx˚, dq “ EFΩpdqgppx, dq ´ z˚.
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When we estimate the gap using a distribution qF for d, γp qF q, we write

γpxp qF q “ E qF pdqgppx, dq ´ min
x

E qF pdqgpx, dq

and in the special case where we use the empirical distribution induced by the sample set D “ tdiu
N
i“1

,
we write

γpxpDq “
1

N

Nÿ

i“1

gppx, diq ´ min
x

1

N

Nÿ

i“1

gpx, diq (2)

We drop the subscript px when it does not cause confusion, and write the optimality gap function as
γp¨q. Similarly, we write

pz qF “ EF|F pdqgppx, dq

and when using the empirical distribution induced by D “ tdiu
N
i“1

, we write

pzD “
1

N

Nÿ

i“1

gppx, diq

After describing algorithms, we report on simulation experiments to measure the effect of various
parameter settings and algorithm design decisions. The relative running times of the algorithms and
the quality of their estimates are considered. Out-of-sample tests for the quality of an estimated px is
fairly straightforward, however, evaluation of α-level confidence interval estimates of the optimality gap
is more complicated because their quality is a two-dimensional object. The dimensions are sometimes
called skill, which refers to the degree to which 1 ´ α of subsequently observed data is within the
interval, and sharpness, which refers to the size of the interval.

This paper makes three contributions to on-going research in data driven stochastic programming:
a) most of the combinations of distribution estimation and resampling result in algorithms that have
not been published before, b) within the algorithms, we describe innovations that improve performance,
and c) we provide open-source software implementations of the algorithms. The end result is significant
improvement in the ability to use data to estimating a confidence interval around the objective function
value for a candidate solution to an optimization problem under uncertainty.

The paper proceeds as follows. The next section reviews relavent literature, followed by Section 2
that describes the main algorithms. Section 3 describes experiments and conclusions drawn from them.
The paper closes with coclusions and directiosn for future research.

1 Literature Review

Stochastic programming involves modeling optimization problems under uncertainty. There has been
a relatively rich literature on how to formulate and solve a stochastic program [King and Wallace,
2012, Birge and Louveaux, 2011, Ruszczyński and Shapiro, 2003, Prékopa, 2013]. The literature
mostly discusses the situation where some problem parameters are random variables that follow given
distributions, and many use sampling methods to computationally address the problems when it is
technically unsolvable. There has been a line of work that discusses uncertainty quantification for
stochastic programs when the parameter distributions are known. For example, Mak et al. [1999],
De Matos et al. [2017], Linderoth et al. [2006] constructed confidence interval of the optimaltiy gap for
a given candidate solution; Higle and Sen [1991], Bayraksan and Morton [2011], Bayraksan and Pierre-
Louis [2012] developed sequential sampling methods that produces a series of candidate solutions and
estimated the corresponding solution quality. The discussion of asymptotic properties of the solutions
can be found in for example, Shapiro [1991, 2003], Eichhorn and Römisch [2007].

Bootstrap has been widely used for statistical inference ever since it was first proposed in Efron
[1981], see Efron [1982], Shao and Tu [2012], Davison and Hinkley [1997] for a comprehensive introduc-
tion. It can be used to construct confidence intervals when the underlying true distribution remains
unknown.

In the area of stochastic programming, an early work of Higle and Sen [1991] used bootstrap to
develop stopping rules for the Stochastic Decomposition algorithm, Eichhorn and Römisch [2007], Lam
and Qian [2018a] proposed the use of bootstrap and related resampling methods to derive confidence
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intervals for the optimal function value. Anitescu and Petra [2011] discussed some of the theoretical
properties of bootstrap confidence interval for stochastic programming.

The classical bootstrap estimate a statistics of interest, say αpF q, by its empirical version αpFnq.
There is a literature that discusses the properties of smoothed bootstrap, where the discrete distribution
Fn is replaced with a smoothed distribution for estimation, see for example, Efron [1982], Silverman
and Young [1987], Hall et al. [1989], De Angelis and Young [1992] for theoretical discussions, and Li and
Wang [2008], Fuentes and Lillo-Bañuls [2015] for example applications. The application of smoothed
bootstrap in the area of optimization remains limited.

The bagging method, also known as the bootstrap aggregating method, was proposed in Breiman
[1996]. It was widely used in maching learning community to produce an accurate and robust prediction
by aggregating the predictions of multiple models, where each model uses bootstrap samples from the
original data set; see Bühlmann and Yu [2002] and the literature therein for theoretical analysis. Lee
and Cho [2001], Raviv and Intrator [1996] proposed smoothed bagging for classification and regression
problems, with added noise in the resampled data. More recently Lam and Qian [2018a] proposed use of
the bagging method to construct confidence interval for a candidate solution in stochastic programming,
and Chen and Woodruff [2023] developed a software package [boot-sp, 2023] that implemented the
bootstrap and the bagging method for the confidence intervals for stochastic programming.

Despite the lack of the application of smoothed bootstrap in the area of optmization, there are
some works on combining probability density estimation with stochastic optimization problems. For
example, Huh et al. [2011] used the KM estimator to construct an empirical cdf for censored data for
newsvendor problem to solve for the optimal; Parpas et al. [2015] used Markov chain Monte Carlo
methods with kernel density estimation algorithms to build a nonparametric importance sampling
distribution for recourse function.

2 Algorithms

Below we discuss the bootstrap and bagging procedures for estimating confidence intervals on opti-
mality gaps for general stochastic programming problems. It’s important to note that both procedures
allow for variations in how the center of the confidence interval is computed and the distribution em-
ployed for resampling the data. In cases where the empirical distribution is utilized for bootstrap and
bagging, we refer readers to our software boot-sp [Chen and Woodruff, 2023, boot-sp, 2023]. This
software provides comprehensive tools and methodologies for effectively implementing and leveraging
the benefits of these procedures.

2.1 Classical bootstrap for Stochastic Programming

For completeness we include Algorithm 1 that describes the procedure for finding an approximate
confidence interval by using the classical bootstrap procedure[Efron, 1981], where the CI is centered at
γpDq, the gap associated with the set D, and the quantile of bootstrap sampled gaps is used to derive
the limits.

Algorithm 1: Classical Bootstrap

input : A sample D, number of batches B, and a candidate solution px
Compute γpDq “ pzD ´ z

:
D ;

for b Ð 1 to B do

Resample from D to get set rDb “ t rd1, . . . , rdNu ;

Compute γp rDbq “ pzb ´ z
:
b ,

end

Compute the upper 1 ´ α-quantile ϱ1´α and lower α-quantile ϱα for tγp rDbq ´ γpDqu ;
Return rγpDq ´ ϱ1´α, γpDq ´ ϱαs as the p1 ´ 2αq CI for the optimality gap pzΩ ´ z˚;

The classical boostrap method is based on the theoretical validation of the asymptotic similarity
between the two distributions, γpDq ´ γpΩq and γp rDbq ´ γpDq, with the latter one conditioned on one
realization of the random variable D, which is the random sample D. We notice that there are a few
variations on the classical bootstrap method, in that different metrics can be employed to derive the
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confidence interval from the resampled gaps γp rDbq. For example, instead of using the quantiles of γp rDbq

in one way or another, one can also use γp rDbq to fit a standard normal confidence interval. As in Efron

[1981], we can compute the variance of γp rDbq, denoted as s2, and return rγpDq ´ z1´αs, γpDq ` z1´αss
as the CI, with z1´α being the quantile for the standard Gaussian variable.

2.2 Smoothed Point Estimator

In the classical bootstrap method, the confidence interval is constructed around the point estimator,
γpDq, of the optimality gap under the set D. This is based on the idea that as if we don’t have access
to the entire population Ω, and instead all we have is a sample D, then the natural choice for an
estimation of γpΩq is the optimality gap associated with D.

However for many important applications, using only the optimality gap associated with the empir-
ical distribution of D might not be enough, especially when the sample size is small. In this case, one
may seek to use density estimation or probability distribution fitting tools to get a better estimation
of the optimality gap. Kernel density estimation and epi-spline fitting are two of the possible tools.
The idea of using a smoothed estimator is also proposed in Huh et al. [2011], Parpas et al. [2015] in a
different setting.

We describe a general procedure to find a point estimator, sG, for γpΩq in Algorithm 2. So instead
of γpDq, one may use sG from Alg 2 as the point estimator for the actual optimality gap. For the form

of fitted distribution, We assume that qFΩ “ FΩ. In other words, when given enough data points, the
fitted distribution should be able to recover the true distribution.

Algorithm 2: Distribution-based Point Estimator

input : A sample D, replication R, sample size nc, form of distribution qF .
Fit a distribution function qFD using the set D;
for j Ð 1 to R do

Sample from the distribution qFD to get nc samples t rd1, . . . , rdnc
u;

Compute Gj “ 1

nc

řnc

i“1
gppx, rdiq ´ minx

1

nc

řnc

i“1
gpx, rdiq,

end

Return sG “ 1

j

řR

j“1
Gj as a point estimator for the optimality gap γpΩq ;

The above algorithm to some extent provides a unified framework for finding an approximate
solution for the stochastic programming problem. We highlight two special cases that link Algorithm.2
back to the point estimators that have been used in the literature.

• Classical Bootstrap: If we do not incorporate smoothness into our form of distribution, but
instead use the empirical distribution of D as the fitted distribution, which assigns an atom of
probability with mass 1{N to each observation di, then sampling from the distribution qFD is
equivalent to resampling from the data set D. In this case, with one replication R “ 1 and
nc “ N as the sample size, Algorithm 2 returns γpDq as the point estimator, which is the center
of the confidence interval in the classical basic bootstrap.

• Classical Bagging: If we use the empirical distribution of D as qF , but run multiple replications
(R ą 1) with possibly smaller resample size nc, then the returned Ḡ is a bagging estimator of
the optimality gap. The bagging estimator is used as the center of the confidence interval in
Lam and Qian [2018a,b], where they construct a confidence interval around the optimality gap
in stochastic programming via bagging.

In the following sections we discuss the situations where we use a smooth function as the fitted
distribution function qFD, and how the existing methods can be adapted to construct a confidence
interval around the smoothed point estimator for the optimality gap.

2.3 Smoothed Bootstrap

Instead of directly computing a point estimator γpDq using the dataset D as in classical bootstrap, an
alternative approach is to employ a smoothed density estimate, such as kernel density estimation, as
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depicted in Algorithm 2. This algorithm fits a smoothed distribution qFD based on D. Subsequently,
a large batch of samples is drawn from qFD to obtain an estimation. In this case, the estimated center
sG serves as a reliable approximation for γp qFDq, which, in turn, provides an estimation for γpΩq.

Now of course the next question becomes how to construct a confidence interval around sG. The
most obvious way would be to directly apply the classical Algorithm 1 . That is, we use sG in place of
γpDq in Algorithm 1, and the corresponding return should be a CI for the optimality gap γpΩq.

However, if we use a smoothed function for fitting the distribution function qFD, then it is natural
to introduce some smoothness to the bootstrap procedure as well, as in the practice of the standard
smoothed bootstrap. That is, instead of resampling from the empirical distribution ofD in Algorithm 1,
we instead resample from qFD, a smoothed version of the empirical c.d.f., for bootstrap samples. We use
the same smoothed distribution qFD for finding the center and for estimating the confidence interval.

We describe in Algorithm 3 the procedure to find a CI for the optimality gap in conjunction with
the smoothed point estimator returned by Algorithm 2. We use standard normal confidence interval
in our algorithm and estimate the width of the confidence interval by estimating the variance of the
limit distribution, but the percentile bootstrap interval or the BCa confidence interval can also be used
here.

Algorithm 3: Smoothed Bootstrap

input : A sample D, number of batches B, form of distribution qF , and a candidate solution px
Fit a smoothed distribution function qFD using the set D ;

Run Algorithm 2 with the same qFD, R “ 1 and a sufficiently large resample size nc to find the
point estimator sG.

for j Ð 1 to B do

Sample from distribution qFD to get a new set rDb “ t rd1, . . . , rdNu ;

Compute γp rDbq “ 1

N

řN

i“1
gppx, rdiq ´ minx

1

N

řN

i“1
gpx, rdiq,

end

Compute the sample variance s2 for γp rDbq ;

Return r sG ´ z1´αs, sG ` z1´αss as the CI.

Algorithm 3 is a small generalization of the classical smoothed bootstrap method, in that we allow
different options for the point estimator that serves as the center of the confidence interval. When sG
equals γpDq, i.e. when the empirical distribution is used in Algorithm 2 for providing a point estimator,
Algorithm 3 is identical to the classical smoothed bootstrap [Efron, 1982].

Since sG can essentially be regarded as a smoothed version of γpDq, the same theory that is used to
support the classical smoothed bootstrap method can be used here to justify the asymptotic consistency
of the output of Algorithm 1. That is, conditioned on D “ D, let γp ĂDbq be the random variable whose

elements obeys distribution F̌D, the distribution of γp ĂDbq ´ sG should be asymptotically similar to the
distribution of sG ´ γpΩq. We again note there that Ḡ depends on F̌D and hence in turn is correlated
to D.

2.4 Smoothed Bagging

The bagging method for estimating the confidence interval for the optimality gap was proposed by Lam
and Qian [2018a] and is implemented in our software tool boot-sp [2023]. Compared with bootstrap
method, the bagging method is known to reduce the variance in general applications. The center of
the bagging confidence interval is constructed alongside the bagging procedure. For completeness we
include the original, non-smoothed algorithm as Algorithm 4.

The first few steps of the bagging algorithms conforms with Algorithm 2 for finding the center of
the confidence interval as outlined in Section 2.2. The rest steps aims to construct an empirical version
of the infinitesmal jackknife estimator of the variance, which in turn guides the construction of the
confidence interval.

Following the same argument as in the smoothed bootstrap, one may wish to introduce some
smoothness into the bagging estimator, especially when the sample size is small. So instead of resam-
pling from the set D to get the bagging sets, we resample from a fitted distribution qFD to get the
samples and compute the gaps, and take the average of the gaps to be our point estimator.
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Algorithm 4: Bagging-based sampling

input : A sample D, number of bags B, bag sample size k, significance level α, and a
candidate solution x̂

for j Ð 1 to B do

Resample from D to get bagging set D̃b of size k, D̃b ;

Compute γp rDbq “ 1

k

řk

i“1
gppx, rdiq ´ minx

1

k

řk

i“1
gpx, rdiq, ,

end

Compute the mean of γgappD̃bq as the center of the confidence interval, so

G “
1

B

Bÿ

b“1

γgappD̃bq

Compute the error term

σ̃2 “

#řn

i“1
xcov2i if with replacement

n2

pn´kq2

řn

i“1
xcov2i if without replacement

,

where

xcovi “
1

B

Bÿ

b“1

pN b
i ´ k{nqpγgappD̃bq ´ Gq,

and N b
i “ number of times the ith element of D appears in D̃b ;

Return rG ´ δ1´α{2σ̃, G ` δ1´α{2σ̃s as the p1 ´ αq CI for the optimality gap ẑΩ ´ z˚, with

δ1´α{2 being the p1 ´ α{2q quantile for a standard normal variable;

As the infinitesmal jackknife estimator of the variance for the bagging estimator in Algorithm 4
does not directy apply for a smoothed bagging estimator, we seek an alternative approach to estimate
the variance using the results from Mentch and Hooker [2016]. In particular, consider γk as a kernel
function γkpd1, . . . , dkq that returns the optimality gap associated with scenarios td1, . . . , dku, with

γkpd1, . . . , dkq “
1

k

ÿ
gpx̂, diq ´ min

x

1

k

ÿ
gpx, diq

and let
ςc,k “ var pErγkpd1, . . . ,dkq|d1 “ d1, . . . ,dc “ dcsq ,

which is actually the covariance between two instances of the function h with c shared arguments.
By [Mentch and Hooker, 2016, Theorem 1], the variance of the bagging estimator can be estimated

with

σ2 “
1

B

ˆ
k2B

n
ς1,k ` ςk,k

˙
,

with B being the number of bagging sets used to construct the point estimator.
The two variances ς1,k and ςk,k can be estimated using similar Monte Carlo methods as depicted in

[Mentch and Hooker, 2016, Section 3]. To estimate ς1,k, we starting by randomly select one scenario

d̃p1q and fixing d1 “ d̃p1q, then choose BMC bagging sets tD̃buBMC

b“1
, each of size k and contains the

fixed scenario d̃1. Because each bagging set corresponds to an associated optimality gap, the average
of the BMC gaps serves as a Monte Carlo approximation to the mean

Erγkpd1, . . . ,dkq|d1 “ d̃p1qs « γ̄p1q def
“

1

BMC

BMCÿ

b“1

γkpD̃bq.

We then repeat the above steps for BI times, each time with a independently selected fixed scenario
d̃piq. The sample variance among the BI averaged gaps γ̄piq can then be used as the estimator for ς1,k,

ς1,k « varpγ̄p1q, . . . , γ̄pBIqq
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The variance ςk,k can be estimated using similar approach, by independently sampling B bagging
sets, and computing the variance of the corresponding bagging gaps. But instead of computing the
point estimator G and the variances ς1,k and ςk,k in three separate runs, we can incorporate the three
procedures into one by utilizing the BI ˚ BMC gaps (each fixed initial scenario yields BMC gaps, and
we have in total BI initial fixed scenarios) that are used to estimate ς1,k. That is, after generating
B “ BI ˚BMC bagging sets and finding an estimate for the variance ς1,k, we take the average of those
B gaps

G “
1

BI ˚ BMC

ÿ
γkpD̃bq “

1

BI

BIÿ

b“1

γ̄piq

to be our bagging estimator G, and use the sample variance of the B gaps as an estimation for ςk,k.
Algorithm 5 outlines the procedure for constructing a confidence interval around the smoothed bagging
estimator. The sample variance s1 is used to estimate ς1,k, and s2 is for ςk,k.

Algorithm 5: Smoothed Bagging with Variance estimation

input : A sample D, number of initial points BI , number of Monter Carlo simulations for
each initial points BMC ,subsample size k, significance level α, and a candidate
solution x̂

Fit a smoothed distribution function qFD using the set D ;
for i Ð 1 to BI do

Select intial fixed point rdpiq, by sampling from the fitted distribution;
for j Ð 1 to BMC do

Resample from qFD to get bagging set D̃b of size k, D̃b that includes rdpiq;

Compute γ
piq
j “ 1

k

řk

i“1
gppx, rdiq ´ minx

1

k

řk

i“1
gpx, rdiq, ,

end

Compute the average of the BMC gaps, denoted as sγpiq
gap

end

Compute the mean of sγpiq
gap as the center of the confidence interval, so

G “
1

BI

BIÿ

b“1

sγpiq
gap “

1

BI ˚ BMC

ÿ
γ

piq
j

Compute the variance s2
1
for the BI averages sγpiq

gap ;

Compute the variance s2
2
for all γ

piq
j ;

Return rG ´ δ1´α{2s,G ` δ1´α{2ss as the p1 ´ αq CI for the optimality gap ẑΩ ´ z˚, with

s2 “
1

BI ¨ BMC

ˆ
k2 ¨ BI ¨ BMC

N
s2
1

` s2
2

˙
,

and δ1´α{2 being the p1 ´ α{2q quantile for a standard normal variable;

3 Experimental Results

3.1 Problem Examples

We conducted experiments over three different example problems. For each of the problems, we report
on a series of experiments and compare the coverage rate, the width of the interval, and the com-
putational time to generate confidence interval. The algorithms discussed in this paper, along with
the examples used in our experiments, are implemented in boot-sp [boot-sp, 2023]. Tables from ad-
ditional experiments can be found at https://github.com/boot-sp/boot-sp/doc/pdfs/smoothed_
bagging_tables.pdf.
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3.1.1 CVaR

A one-stage CVaR problem as in Lam and Qian [2018a]:

min
x

"
x `

1

a
E rpξ ´ xq`s

*

where p¨q` is defined as max ¨, 0, a “ 0.1 and ξ is a drawn from a standard normal distribution.

3.1.2 Scalable Farmer

This example is derived from the well-established farmer example from Birge and Louveaux [2011]. It
has been adapted for stress-testing various pieces of software such as Knueven et al. [2020]. To enable
scability, instance configuration parameters cropsmult and N are added. The original problem has
three crops and three base scenarios. By incorporating these parameters, the scalable instances are
created with cropsmult sets of the original crops. All scenarios are grouped in threes, with a uniformly
distributed pseudo-random number added to the yield values of the original three scenarios. These
retain the characteristics of the initial problem, while yields vary according to the specific scenario.

We further introduced a new feature, denoted as “yield-cv,” which represents the coefficient of
variation of the crop yields. This inclusion offers the flexibility to introduce variability in problem
settings, and is universally applicable to all crops. In cases where it’s not explicitly specified, the
distribution of the farmer example adheres to the original model with uniform distributions.

3.1.3 Multi Knapsack

This problem is derived from the stochastic programming problem in Vaagen and Wallace [2008]
(also see [King and Wallace, 2012, Chapter 6] for discussion). The problem can be viewed as a
multidimensional newsboy problem with substitution. The main source of uncertainty in this problem
stems from the unpredictable popularity and demand for fashion products, and a simple two-stage
stochastic program is formulated with the goal of maximizing profit. In the first stage, production
decisions are made, while in the second stage (after demand is observed), the program optimally
allocates direct and substitution sales. In our experiments, we consider the sale of six products with
a universal substitution rate at 0.1.

3.2 Experimental Results

To simplify and enhance the clarity of our experimental outcomes, we’ll employ abbreviations for de-
noting our suggested algorithms. Specifically, we’ll use”BT” instead of ”bootstrap algorithms,” and
”BG” instead of ”bagging algorithms.” We’ll utilize the prefix ”S” to signify the application of the
smoothed fitted distribution, while the suffix ”K/E” will indicate the choice between kernel density es-
timation and epi-spline fitting. Furthermore, we’ll append the suffix ”Q” to ”BT” when employing the
quantile method for creating bootstrap confidence intervals. Since there was no substantial difference
in the outcomes between bagging with replacement and bagging without replacement, the subsequent
tables will exclusively display results obtained using bagging with replacement, which is indicated by
the method label ”BG”. Times are given in seconds.

3.2.1 Summary of Method Comparisons

Based on our initial set of experiments, we have observed that, at least for the three examples we
have tested, the proposed bagging algorithms provide better point estimators for the center of the
confidence intervals when contrasted with bootstrap methods. Consequently, this leads to a higher
coverage rate for the confidence intervals constructed by the bagging method. Within the distinct
categories of bootstrap and bagging, we have noticed that when we introduce a ”smoothing” effect
by incorporating kernel density estimation instead of the empirical distribution for resampling, the
coverage rate increases with the length of the confidence interval. See Tables 1, 2, 3.

8



method N B k len-ave len-std coverage-2 coverage-1 time-ave time-std
BT 40 400 - 1.05 0.43 0.873 0.890 3.47 0.77
BT-Q 40 400 - 1.01 0.44 0.739 0.751 3.56 0.83
S-BT-K 40 400 - 1.24 0.47 0.907 0.951 9.26 0.33
BG 40 400 20 1.07 0.45 0.900 0.930 1.83 0.40
S-BG 40 10/40 20 1.39 0.61 0.912 0.983 5.40 0.42

Table 1: Results for cvar based on 800 replications. coverage-2 reports the coverage rate for the
two-sided 90% interval, and coverage-1 reports the coverage rate for the one-sided 95% interval. The
center for the smoothed bootstrap method is estimated by resamping 16N data points from the fitted
distribution. The smoothed-bagging-MH methods used BI “ 10 and BMC “ 40, so that the total
number of batches matches the one in the original baggin procedure.

method N B k len-ave len-std coverage-2 coverage-1 time-ave time-std
BT 40 400 - 6776.44 896.65 0.897 0.945 22.23 3.98
BT-Q 40 400 - 6701.22 951.80 0.861 0.910 22.35 3.91
S-BT-K 40 400 - 3972.89 367.00 0.981 0.998 61.40 1.67
BG 40 400 20 6854.71 944.33 0.897 0.988 5.36 1.16
S-BG MH 40 10/40 20 7063.76 1107.77 1.000 1.000 25.21 1.53

Table 2: Results for farmer based on 800 replications. coverage-2 reports the coverage rate for the
two-sided 90% interval, and coverage-1 reports the coverage rate for the one-sided 95% interval. The
center for the smoothed bootstrap method is estimated by resamping 8N data points from the fitted
distribution. The smoothed-bagging-MH methods used BI “ 10 and BMC “ 40, so that the total
number of batches matches the one in the original baggin procedure

method N B k len-ave len-std coverage-2 coverage-1 time-ave time-std
BT 40 400 - 1243.45 365.85 0.924 0.975 39.47 1.13
BT-Q 40 400 - 1213.02 360.25 0.920 0.940 39.43 1.04
S-BT-K 40 400 - 1618.27 309.96 0.934 0.939 71.61 2.39
BG 40 400 20 1278.33 362.00 0.805 0.998 17.84 0.55
S-BG 40 10/40 20 1718.40 477.98 0.964 0.990 27.64 1.42

Table 3: Results for multi-knapsack based on 800 replications. coverage-2 reports the coverage rate for
the two-sided 90% interval, and coverage-1 reports the coverage rate for the one-sided 95% interval.
The center for the smoothed bootstrap method is estimated by resampling 8N data points from the
fitted distribution. The smoothed-bagging-MH methods used BI “ 10 and BMC “ 40, so that the
total number of batches matches the one in the original bagging procedure

3.2.2 Experimental Results for Bootstrap

In our experiments concerning the parameters of Algorithm 3, we resample nc points from the fitted
smoothed distribution, and use the optimality gap associated witih the nc points as our point estimator
Ḡ. It can be seen from Tables 4 and 5 that enhanced performance is achieved by resampling more
datapoints from the fitted distribution, as elevating the resample size nc for the center estimator
corresponds to an increase in the two-sided coverage rates as well.
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method nc len-ave len-std coverage-2 coverage-1 time-ave time-std
S-BT-KQ 600 1.16 0.52 0.835 0.875 10.18 1.82
S-BT-KQ 400 1.16 0.52 0.835 0.882 7.90 1.45
S-BT-KQ 200 1.16 0.52 0.770 0.848 6.01 1.03

Table 4: Results for cvar fit with α=0.05 based on 400 replications. The size of the set D is fixed at
N “ 40, and the number of batches for bootstrap replications is fixed at B “ 160. Center estimated
using varying nc data points.

method nc len-ave len-std coverage-2 coverage-1 time-ave time-std
S-BT-KQ 400 3860.85 567.14 0.943 0.978 21.78 3.41
S-BT-KQ 200 3860.85 567.14 0.887 0.953 15.44 2.27
S-BT-KQ 80 3860.85 567.14 0.695 0.865 10.95 1.46

Table 5: Results for farmer fit with α=0.05 based on 400 replications. The size of the set D is fixed at
N “ 40, and the number of batches for bootstrap replications is fixed at B “ 160. Center estimated
using varying nc data points.

For reference we included the results for the smoothed bootstrap algorithm as in Algorithm 3, but
use the empirical point estimator γpDq as the point estimator in constructing the confidence interval.
As seen in Table 6, the confidence interval utilizing the empirical point estimator γpDq as the center
yields suboptimal coverage rates and should be avoided in practice.

problem method len-ave len-std coverage-2 coverage-1 time-ave time-std
cvar S-BT-KQ 1.16 0.52 0.703 0.713 3.44 0.43
farmer S-BT-KQ 3860.85 567.14 0.422 0.738 18.41 2.19

Table 6: Results for farmer fit with α=0.05 based on 400 replications. The size of the set D is fixed at
N “ 40, and the number of batches for bootstrap replications is fixed at B “ 160. Center estimated
using varying nc data points.

Using the kernel density estimation works well for getting good results with the smoothed bootstrap
method, as shown in Table 7. It seems to be just as good as or even better than using epi-spline fitting.
We noticed that when we switch from epi-spline fitting to kernel density estimation, the coverage rate
increases with the same settings. Currently, the bandwidth utilized in the kernel density estimation
within our code is determined by Scott’s Rule [Scott, 2015]. We defer the exploration of the impacts
of varying bandwidths to future research endeavors.

problem method nc len-ave len-std coverage-2 coverage-1 time-ave time-std
cvar S-BT-EQ 400 0.93 0.46 0.733 0.750 7.17 1.14
cvar S-BT-KQ 400 1.16 0.52 0.835 0.882 7.90 1.45
farmer S-BT-EQ 400 3695.42 549.39 0.935 0.968 20.40 1.72
farmer S-BT-KQ 400 3860.85 567.14 0.943 0.978 21.78 3.41

Table 7: Results with α=0.05 based on 400 replications. The size of the set D is fixed at N “ 40, and
the number of batches for bootstrap replications is fixed at B “ 160. Center estimated using varying
nc data points.

In practice, it’s important to find a compromise between the batch size used in the bootstrap
and computational efficiency. As indicated in Table 8, it’s crucial to opt for a batch size nB that is
adequately large to yield precise outcomes while maintaining reasonable running times.
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method N nB len-ave len-std coverage-2 coverage-1 time-ave time-std
S-BT-KQ 40 100 1.06 0.52 0.774 0.864 7.37 1.54
S-BT-KQ 40 200 1.17 0.52 0.823 0.860 8.52 1.54
S-BT-KQ 40 400 1.22 0.48 0.823 0.867 10.83 1.60

Table 8: Results for cvar fit with α=0.05 based on 800 replications. Center is estimated using nc “ 400.

3.2.3 Experimental Results for Bagging

The bagging methods work well in constructing a confidence interval, even when we only have a really
small data set at hand. For example, in Table 9, with a sample size at N “ 20, one is still able to
apply the bagging methods to construct a confidence interval with high coverage rate. The introduced
smoothness introduces more randomness into the problem, with increase lengths for the confidence
intervals and increased coverage rates with small dataset, as can be seen from Table 9.

problem method N nB k len-avg len-std coverage-2 coverage-1 time-ave time-std
cvar BG 20 200 10 1.51 0.83 0.902 0.927 0.58 0.13
cvar S-BG 20 10/40 10 1.86 1.08 0.860 0.973 2.79 0.14
cvar S-BG 20 20/80 10 1.87 0.91 0.939 0.985 8.63 2.44
farmer BG 20 200 10 9564.85 1973.87 0.885 0.959 2.65 0.56
farmer S-BG 20 10/40 10 9907.56 1452.74 1.000 1.000 14.91 1.02
farmer S-BG 20 20/80 10 9826.73 897.56 1.000 1.000 44.34 11.54
knapsack BG 20 200 10 1920.37 616.58 0.743 0.998 4.73 0.30
knapsack S-BG 20 10/40 10 2366.64 697.35 0.887 0.995 16.76 0.69
knapsack S-BG 20 20/80 10 2451.05 495.75 0.950 0.998 50.36 4.00

Table 9: Results based on 800 replications. Coverage-2 reports the coverage rate for the two-sided 90%
interval, and coverage-1 reports the coverage rate for the one-sided 95% interval. For the smoothed
bagging method, the first number in the nB column represents BI , and the second one is BMC .

Certainly, a larger dataset D results in an improved estimation of the confidence interval. In
Table 10, when we increase the sample size from N “ 20 to N “ 40, we observe reductions in both
the average length and the standard deviation of the interval without sacraficing the superior coverage
rate.

method N nB k len-avg len-std coverage-2 coverage-1 time-ave time-std
BG 20 200 10 1.51 0.83 0.902 0.927 0.58 0.13
S-BG 20 20/80 10 1.87 0.91 0.939 0.985 8.63 2.44
BG 40 200 20 1.10 0.47 0.900 0.926 0.94 0.24
S-BG 40 20/80 20 1.29 0.52 0.916 0.981 10.69 0.69

Table 10: Results for cvar based on 800 replications. Coverage-2 reports the coverage rate for the
two-sided 90% interval, and coverage-1 reports the coverage rate for the one-sided 95% interval.

For smoothed bagging algorithm, both a sufficiently large BI and a sufficiently large BMC is
required to obtain a good coverage without excessive long length in the confidence interval, but as
indicated in Mentch and Hooker [2016], it is more critical to use a large BMC to obtain an accurate
estimation for the variance, see Table 11.
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method N B-I B-MC k len-ave len-std coverage-2 coverage-1 time-ave time-std
S-BG 40 10 20 20 1.69 0.75 0.968 0.994 3.22 0.29
S-BG 40 10 100 20 1.22 0.62 0.879 0.968 11.06 0.64
S-BG 40 20 20 20 1.77 0.67 0.981 0.995 3.65 0.32
S-BG 40 20 100 20 1.30 0.54 0.934 0.980 13.06 0.77
S-BG 40 30 20 20 1.78 0.63 0.983 0.995 7.70 2.06
S-BG 40 30 100 20 1.33 0.51 0.949 0.984 26.87 7.13

Table 11: Results for cvar fit with α=0.05 based on 800 replications.

4 Conclusion and Future Directions

In this paper, we introduced various combinations of distribution estimation and resampling techniques
for data-driven optimization problems. Specifically, we adapted the smoothed bootstrap method and
developed the smoothed bagging method in the context of stochastic optimization. These algorithms
are designed for acquiring solutions and computing confidence intervals for the optimality gap. Our
experiments demonstrated their effectiveness constructing confidence intervals for small datasets, albeit
with a longer computational time compared with empirical bootstrap and bagging algorithms.

Among others, three important conclusions stand out. First, using a smoothed point estimate for
the optimality gap at the center of the confidence interval is favored over relying on a purely empirical
estimate. The introduced smoothness tends to yield more consistent estimates. Second, our results
show that bagging methods generally outperform bootstrap methods, providing better coverage rates
and tighter confidence intervals across various scenarios. This superior performance may be attributed
to bagging’s inherent ability to reduce variance and improve the stability of predictions. Third, the
smoothed bagging procedure proposed in this paper introduces an additional layer of smoothing to the
resampling process. It can, at times, improve results compared to bagging based directly on the data.
This approach effectively balances bias and variance, offering a compelling alternative for constructing
more robust and accurate confidence intervals.

Despite the promising results, there are several questions that remain for further investigation in
future research. One of the key questions is to understand the types of problems that benefit most
from the smoothness effect introduced by our proposed algorithms. As our methods offer a trade-off
between achieving a high coverage rate and reducing running time, it becomes interesting to explore
how many bootstrap samples are sufficient to produce accurate estimations. Additionally, there is
potential to investigate whether it is possible to construct more robust confidence intervals using a
limited number of bootstrap samples. One could also delve into alternative methods for computing
the variance of the estimates, potentially leading to a for efficient and accurate way for constructing
the confidence interval.

Also, in our experiments, we primarily used kernel density estimation with bandwidth determined
by the Scott’s Rule for non-parametric estimations. Subsequent research could be directed towards
deriving an optimal bandwidth tailored to specific problem domains. While our experiments revealed
that epi-spline fitting didn’t outperform kernel density estimation, further exploration is warranted.
This might include refining hyperparameter tuning, adding constraints to epi-spline fitting, and assess-
ing their influence on algorithm performance, particularly when guided by prior knowledge. A final
area for future research is the use of smoothed bootstrap for obtaining an incombent solution, px.

Competing Interests

There are no competing interests for this work.

References

M. Anitescu and C. Petra. Higher-order confidence intervals for stochastic programming using boot-
strapping. Technical report, Citeseer, 2011.

12



G. Bayraksan and D. P. Morton. A sequential sampling procedure for stochastic programming. Oper-
ations Research, 59(4):898–913, 2011.

G. Bayraksan and P. Pierre-Louis. Fixed-width sequential stopping rules for a class of stochastic
programs. SIAM Journal on Optimization, 22(4):1518–1548, 2012.

J. R. Birge and F. Louveaux. Introduction to stochastic programming. Springer Science & Business
Media, 2011.

boot-sp. Boot-sp software. https://github.com/boot-sp/boot-sp, 2023.

L. Breiman. Bagging predictors. Machine learning, 24:123–140, 1996.
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