3D documentation and shape analysis
The converged 3D model comprises 36,556,604 polyfaces with an average point distance resolution of 0.2 mm. According to Fig. 4a, the 3D scanning result clearly revealed the complete shape of the statue and the polygon mesh and RGB texture-mapping models showed high reality effects. In particular, the final 3D scanning result exhibited a high resolution with millions of polygons, which well revealed the surface texture, manufacturing technique, and detailed shape of the damaged area.
Based on the 3D scanning, the stone Buddha statue was measured to be 410-mm wide, 310-mm thick, and 580-mm high. Its calculated area and volume were 7,250 cm2 and 20,040 cm3, respectively. Moreover, the excavated hole was measured to be 188-mm wide, 155-mm thick, and 195-mm high, and its area and volume were 1,228 cm2 and 2,401 cm3, respectively. In particular, the cone-shaped excavated hole showed traces of chisels whose average sizes were 10.5 and 15.4 mm. Therefore, the excavated hole may have been carved using these two chisels.
A 3D deterioration map was created to define the scope of the conservation treatment and restoration. According to the map, cracks and missing parts were observed around the head; the body was mainly damaged owing to the cracks (Fig. 4b). Out of the total area, the deterioration rates of the missing parts were 4.8% (348.3 cm2) in the eye and head and 0.7% (52.9 cm2) in the body.
Virtual restoration modeling
For restoration, the big missing parts in the head, surrounding area of the Baekho, right ear, and right eye were selected, accounting for 64.2% (257.1 cm2) of the total surface area of the missing parts (400.1 cm2).During the examination of the virtual restoration modeling process of the missing parts in the head (Fig. 5), first, the original stone fragments were placed by referring to the shape and pattern of the stone Buddha statue. Then, a reference model for the missing parts was selected and copied using symmetry modeling. However, because the original statue was manually created, it lacked perfect symmetry.
The restoration of the right ear has aesthetic as well as functional purposes to support the original fragment. Accordingly, for virtual restoration, the original fragment was placed in the right ear and the shape of the missing parts was acquired using the symmetry of the well-preserved left ear. Next, the angle and height from the front view were adjusted to match those in the left, and completed after partial revision (Fig. 6a, 6b). Finally, aesthetic restoration of the surrounding area of Baekho and right ear was performed by filling the inner part and retouching the outer part. In particular, their restoration was completed after several modifications in consultation with art history experts because the overall impression of the stone Buddha statue can change owing to minor shape differences (Fig. 6c).
Design mockup and assembly simulation
To summarize the assembly simulation process, first, an alternative model of the original statue was printed on the basis of the 3D scanning model to minimize direct physical contact with the statue. Moreover, heuristic-based assembly suitability was examined several times by printing the virtual restoration model. When an error was detected during verification, the virtual restoration model was modified and reprinted to enhance assembly completeness. However, when no error or aesthetic issue was detected, a design mockup was directly applied to the statue for further verification. After using photopolymerization 3D printing, the restoration process was completed (Fig. 7).
When the printed virtual restoration model was applied to the mockup statue, the interference between the two surfaces was severe owing to the nonstructured form (Fig. 8a). This indicates the high quality of the virtual restoration model; however, it was insufficient for restoring the original artifact. Therefore, the area in the virtual model where interference occurs should be corrected so that the printed output fits the missing parts of the statue. In addition to the revision of the virtual model, assembly suitability to the 3D-printed mockup statue was intuitively checked and verified by directly modifying the mockup of the virtual restoration model (Fig. 8b). The 3D model, which was verified for digital–analog assembly suitability, was completed as the final design mockup through the outer design modification (Fig. 8c).
In a quantitative analysis of the shape difference between the virtual restoration model and final design mockup of the head, the volume of the virtual restoration model was measured to be 461 cm3 and that of the design mockup assembled on the original stone Buddha statue was measured to be 437 cm3 (Fig. 8d). The volume reduction of 24 cm3 (5.2%) equals the amount of the removed interfering surface along the assembly interface. In the deviation analysis of the final design mockup against the virtual restoration model, the size of the removed joining surface was nearly 5.00 mm, with RMS and standard deviation of 0.67 and 0.56 mm, respectively. Approximately 66.6% of the virtual restoration model, whose tolerance range was within ±0.1 mm, was not modified. The interfering surface of the joining interface was removed for 33.4% of the virtual restoration model (Fig. 8e). This deviation-mapping result enabled the visualization of the modification range and deviation amount of the initial virtual restoration model, providing quantitative information about the digital–analog simulation process.
Restoration of the missing parts
For restoration, 3D printing technology was used to facilitate an educational effect in exhibition and enhance aesthetic and functional completeness. The material extrusion 3D printing used to create the design mockup played a critical role in analyzing the shape of the missing parts to design the assembly planning. However, this technology uses a PLA material with relatively high surface roughness and weak physical properties to functionally support the light-weight original stone fragments [55]. To complement this, photopolymerization 3D printing technology was used to create the final restoration model.
The model was printed using opaque UV-hardened plastic whose color was similar to that of the original statue, with a layer thickness of 0.1 mm (Fig. 9a). After approximately 15 h of printing, the supporters were removed from the printed output and the surface that was in contact with the supporter was carefully smoothed using soft sandpaper with more than 3000 mesh. Additional UV hardening was used to enhance the surface strength of the printed output (Fig. 9b).
The finished 3D-printed output exhibited a smooth and glowing surface, which was disparate with that of the original statue (Fig. 9c). The initiator used in photopolymerization can cause yellowing owing to the surrounding light. It is known that the efficiency of polymerization can influence discoloration because a higher degree of conversion corresponds to a smaller amount of residual monomers available to form the colored degraded products [56]. By observing the light source as an isolated factor, it was noted that this can alter the color of the studied composite resin [57]. Therefore, to modify the surface texture of the 3D-printed output and prevent its yellowing, the surface was colored with acrylic painting and varnished to prevent discoloration of the colored layer (Fig. 9d).
The missing parts of the stone Buddha statue were restored using the conservation treatment and 3D-printed output. As described, the Buddha statue is composed of zeolitic tuff. This material is very soft and has high absorption ratio owing to its porous structure. Accordingly, the interfaces of the missing parts of the original statue were strengthened using an ethyl silicate-based consolidant before joining the 3D-printed output (Fig. 9e). Then, the 3D-printed output was joined to the missing parts of the statue using acrylic resin and cyanoacrylate instant adhesives (Fig. 9f).
In this study, various digital data and mockup of the original statue obtained using 3D scanning and printing technologies transformed the exhibition, which comprised simple display of artifacts, into an educational exhibition focusing on the restoration process. Combined with unique storytelling, the exhibition has provided a new experience to museum visitors (Fig. 10). This is an important case, which shows that established modern technologies and materials can be used for the restoration, education, and exhibition of cultural artifacts.