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12 Abstract: The driving factors of China's industrial carbon emissions are 

13 decomposed by GDIM, so as to explore the reasons for the change of China's 

14 industrial carbon emissions. The decoupling effect of China's industrial carbon 

15 emissions and economic growth is studied by speed decoupling and quantity 

16 decoupling. The speed decoupling is measured by Tapio decoupling elasticity 

17 and emission reduction effort function, and the quantity decoupling is 

18 measured by environmental Kuznets curve (EKC). The results show that the 

19 positive driving factors are output size effect > industrial energy consumption 

20 effect > population size effect, and the negative driving factors are investment 

21 carbon emission effect > output carbon intensity effect > per capita output 

22 effect > economic efficiency effect > energy intensity effect. The elasticity of 

23 emission reduction is basically greater than that of energy conservation, 

24 indicating that there is still much room for efforts in emission reduction. The 

25 overall decoupling effect of carbon emissions is undecoupling - strong 

26 decoupling - undecoupling. The shape of quadratic EKC curve is "U" type, and 

27 the shape of cubic EKC curve is "N" type, which satisfies the EKC curve 

28 hypothesis.

29 Key words: Carbon emission; Decoupling effect; Generalized Dee index 

30 decomposition method (GDIM); Environmental Kuznets curve (EKC); Chinese 

31 industry
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33 Since 1990, human activities have gradually increased climate warming. 

34 Our country in 1994 discovered the energy shortage, nervous use of energy, 

35 as well as high energy consumption and high emissions caused by the 

36 traditional fossil energy sources, and began to enhance the energy efficiency 

37 and adjust the energy structure. Since 2007, renewable energy sources have 

38 been developed and utilized to further optimize the energy mix, and low-

39 carbon technologies have been encouraged to improve emission reduction 

40 efficiency. In 2016, the low-carbon development goals and tasks were detailed, 

41 indicating that the goal is to achieve carbon peak around 2030 and carbon 

42 neutrality around 2060. And with the rapid development of Chinese economy, 

43 the relationship between carbon emission and economic growth needs to be 

44 studied. It is also important to realize the decoupling of both as soon as 

45 possible.

46 Many scholars have studied the influencing factors of carbon emission, 

47 and the decomposition method used is mainly factor decomposition analysis 

48 (DA), which mainly includes structure decomposition analysis (SDA) and index 

49 decomposition analysis (IDA)( Hoekstra R 2003). The structural decomposition 

50 analysis method mainly relies on the consumption coefficient matrix, and 

51 quantitatively analyzes various direct or indirect influencing factors by using 

52 input-output table, including input-output method and two-stage 

53 decomposition method(Su B 2012); The index decomposition analysis method 

54 decomposed the change of a target variable into the product of several 

55 different factors, and found out the contribution rate of each influencing factor 

56 according to different methods to determine the weight, so as to separate the 

57 influence of each influencing factor on the target variable, including the 

58 Laspeyres index decomposition and Divisia index decomposition(Ang B W 

59 2000). Laspeyres index decomposition method will produce large residual 

60 value in decomposition, thus forming a large error. Divisia index 

61 decomposition method main When there is a “0” or negative value in the data, 

62 the calculation of the average weight will face obstacles and become 

63 unworkable. Therefore, Ang and Choi, Ang and Liu improved the index 

64 decomposition method (IDA), that is, replace the exponent with logarithm, and 

65 use the "small value replacement method" to deal with the “0” value problem 

66 in the decomposition operation. Logarithmic mean Dee index decomposition 

67 method (LMDI) is proposed, which has the advantages of eliminating residual 
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68 term, time independence, effective handling of zero value and consistency of 

69 data collection(Ang B W 1997 2007).

70 With the continuous application of logarithmic mean Dee index 

71 decomposition method (LMDI), its shortcomings gradually appear. Vaninsky 

72 pointed out that index decomposition methods decompose target variables into 

73 the form of product of multiple influencing factors based on the identity of 

74 Kaya(Kaya Y 1989), so that each factor has an interdependent relationship in 

75 form, and the selection of factors determines the decomposition results. When 

76 different influencing factors are selected for the same target variable to 

77 decompose, contradictory conclusions may be obtained. Therefore, Vaninsky 

78 proposed a generalized Dee index decomposition (GDIM)(Vaninsky A 2014), 

79 which is based on the exponential decomposition method and overcomes the 

80 shortcomings of the method. Therefore, it can analyze the influencing factors 

81 of China's industrial carbon emissions more comprehensively and accurately. 

82 This method has been applied to mining industry(Shao S 2016), transportation 

83 industry(Wang Y 2018) and electric power industry(Zhu L 2018). Shao S et 

84 al(2017), Li Z G et al(2019), Yan Q Y et al(2017) used GDIM decomposition 

85 method to analyze the influencing factors of carbon emission. In this paper, 

86 GDIM method is used to analyze and study the driving factors of carbon 

87 emission in the past 20 years.

88 The ideal relationship between carbon emissions and economic growth is 

89 decoupling. Decoupling theory is a basic theory proposed by the Organization 

90 for Economic Cooperation and Development (OECD) to describe the blocking 

91 of the link between economic growth and resource consumption or 

92 environmental pollution. Economic growth will lead to the increase of resource 

93 consumption and environmental pressure, but when the policy measures taken 

94 or the new technology adopted are effective, the same or even faster economic 

95 growth may be achieved with lower energy consumption or less environmental 

96 pressure. This process is called decoupling. Decoupling of carbon emissions is 

97 an idealized process in which the relationship between economic growth and 

98 greenhouse gas emissions continues to weaken or even disappear. In other 

99 words, energy consumption is gradually reduced on the basis of economic 

100 growth. Therefore, decoupling elasticity of carbon emissions becomes the 

101 main tool to measure the low-carbon status of each region. 

102 Decoupling theory has been widely used to study the relationship between 
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103 economic growth and carbon emissions(Chen J 2018, Hossain M A 2022, Wu 

104 Y 2019), mainly including OECD(2002) decoupling index model and Tapio 

105 decoupling state analysis model. OECD decoupling index is mainly used to 

106 describe the relationship between environmental pressure and driving force, 

107 which can be divided into “relative decoupling” and “absolute decoupling”. 

108 The Tapio decoupling state analysis model is a decoupling index calculation 

109 formula proposed by Tapio(2005) when studying the relationship between 

110 economic growth and carbon emissions, and the classification is more detailed. 

111 Thus, this paper also applies the Tapio model to analyze the speed decoupling 

112 effect. Environmental Kuznets Curve (EKC) is a tool proposed by Grossman et 

113 al. to study the relationship between environmental quality and economic 

114 growth, and it is believed that environmental pollution and per capita income 

115 show an inverted “U” shape. Subsequently, EKC model has been widely 

116 studied, and it is believed that there is not only inverted “U” type(Roberts J T 

117 1997, Galeotti M 2006), but also linear(Wagner M 2008, Shafik N 1994) and 

118 “N” type(Glaser M 2003, Martinez-Zarzoso I 2004). The EKC model can be 

119 regarded as a research method of quantitative decoupling(Xiao J C 2022), and 

120 combined with the analysis of speed decoupling, to understand the decoupling 

121 between carbon emissions and economic growth from various aspects.

122 This paper elaborates from four parts. In the first part, the author states 

123 what problem to study and the research status of domestic and foreign 

124 scholars. The second part introduces the theory and method used in this paper 

125 in detail; The third part is the empirical analysis of the decomposition of 

126 driving factors of China's industrial carbon emissions and the decoupling 

127 effect from economic growth. The fourth part is the prospect. The specific 

128 research ideas are shown in Figure 1. 
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130 Figure 1   Overall research idea

131 2 Theory and Method

132 2.1 Research Framework

133 The specific research framework of this section is shown in Figure 2.

134

Theory and method

Carbon emission 
measurement method

Driving factor 
decomposition method

Decoupling effect 
analysis

Carbon emission data, GDIM decomposition formula, Tapio decoupling elasticity 
formula, emission reduction effort formula and EKC curve were obtained

Carbon emission 
coefficient method

Generalized Dee 
index decomposition 

method (GDIM)

Velocity 
decoupling

Quantitative 
decoupling

Tapio 
decoupling 
elasticity

Emission 
reduction 
efforts

EKC 

curve

135 Figure 2   Research framework of theory and method

136 2.2 Measurement of Carbon Emissions

137 Carbon emissions are mainly generated by the combustion of fossil fuels, 

138 mainly from raw coal, coke, crude oil, gasoline, kerosene, diesel, fuel oil, 
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139 liquefied petroleum gas and natural gas. This paper will calculate carbon 

140 emissions through these nine energy sources. Electricity was not taken into 

141 account to prevent double counting(Ye Y A 2013). The calculation method is 

142 carbon emission calculation method proposed by IPCC Guidelines for National 

143 Greenhouse Gas Inventories established by the United Nations, which is called 

144 carbon emission coefficient method. The specific formula for calculating 

145 carbon emissions from China's industrial sector is as follows: 

146
44
12´ ´ ´ ´å i i i iiC= E NCV CEF COF

147 Where: C  represents carbon dioxide emissions, and the unit is 10,000 tons 

148 of standard coal; iE  represents the consumption of fossil energy of the i  type, 

149 and the unit is generally 10,000 tons or 100 million cubic meters. iNCV  

150 represents the average low calorific value of the i  fossil energy, expressed in 

151 KJ /kg or 3K J / m ; iCEF  represents the carbon content per unit heat of the i  fossil 

152 energy, and the unit is tC /GJ ; iCOF  is the carbon oxidation rate of the i  fossil 

153 energy and the unit is %; 44/12 is the molecular weight ratio of 2CO  to C . The 

154 discounted coal coefficient, average low calorific value, carbon content per 

155 unit heat, carbon oxidation rate and carbon emission coefficient of these nine 

156 fossil energy sources are shown in Table 1.

157 The calculation formula of carbon emission coefficient is as follows:

158
44 ( )12= ´ ´ ´ ¸ ´ ai i i i iC NCV CEF COF CF

159 Where: iC  represents carbon dioxide emission coefficient; iCF  represents 

160 the conversion coefficient of the i  fossil energy; a  represents the conversion 

161 factor between grams and tons. The size is 61 10-´ ; The meanings of iNCV , iCOF , 

162 iCEF  and 44/12 are the same as those in the preceding paragraph, so they are 

163 not repeated. 

164 Table 1   Emission coefficient of nine fossil energy sources

Energy type

Coefficient of 
discount coal 
(kg standard 

coal /kg)

Average 
low 

calorific 
value 

( KJ / kg )

Carbon 
per unit 
of heat 

( tC / TJ )

Carbon 
oxidation 
rate (%)

2CO  

emission 
coefficient 

( t / tce)

Raw coal 0.71 20908 26.37 94 2.66 
coke 0.97 28435 29.42 93 2.94 

Crude oil 1.43 41816 20.08 98 2.11 
gasoline 1.47 43070 18.90 98 1.99 
kerosene 1.47 43070 15.30 98 1.61 
Diesel oil 1.46 42652 20.20 98 2.13 
Fuel oil 1.43 41816 21.10 98 2.22 

Liquefied 
petroleum gas

1.71 50179 17.20 98
1.81 

Natural gas 13.30 38931 15.32 99 0.16 
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165 Data source: In the 2006 IPCC Guidelines for National Greenhouse Gas Inventories, China 

166 Energy Statistical Yearbook and China Greenhouse Gas Inventory Study, the discounted 

167 coal coefficient and carbon emission coefficient are kept as two decimal places.

168 2.3 Driver Decomposition Model

169 GDIM is a multi-factor decomposition model established on the basis of 

170 Kaya identity, which is used to decompose the driving factors of carbon 

171 emissions and explore the causes of carbon emission changes. Based on the 

172 GDIM principle, the expression of the improved GDIM mathematical model for 

173 industrial carbon emissions is as follows: 

174 2 2 2 2 2
2 = ´ = ´ ´ ´ ´CO CO CO CO COCO GDP E = I = P = TGDP E I P T

175 2 2/=CO COGDP
P P GDP

176 2 2/= CO COE
GDP GDP E

177 Table 2   Setting and explanation of different indicators

indicators Set 
variables

Indicator meaning Index unit

2CO C Carbon emission Ten thousand tons

GDP 1X Industrial output Hundred million yuan

2 /CO GDP 2X Produced carbon intensity Tons per billion yuan

E 3X Industrial energy consumption Ten kiloton standard 
coal

2 /CO E 4X Carbon intensity of energy 
consumption

Tons/ton standard coal

I 5X Amount of industrial investment Hundred million yuan

2 /CO I 6X Investment carbon emission Ton/ten thousand yuan

P 7X Population size Ten thousand people

2 /CO P 8X Per capita carbon emissions Ton/person

T 9X Industrial technological progress Hundred million yuan

2 /CO T 10X Carbon intensity of technological 
progress

Ton/ten thousand yuan

/GDP P 11X Output per capita 10,000 yuan/person

/E GDP 12X Energy intensity Tons of standard 
coal/ten thousand yuan

/I GDP 13X Economic efficiency %

178 Note: The index of industrial technological progress was converted into the constant price 

179 in 2000 by “0.55* consumer price index +0.45* fixed asset investment price index”(Zhu P 

180 F 2003), and the data came from China Statistical Yearbook of Science and Technology. 

181 The identity can become:

182 1 2 3 4 5 6 7 8 9 10= = = = =C X X X X X X X X X X
183

8
11

2
=XX X

184
2

12
4

=XX X
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185
2

13
6

=XX X
186 In order to apply GDIM decomposition method, the above formula is 

187 further converted into the following form:

188 1 2=Z X X
189 1 2 3 4 0- =X X X X
190 1 2 5 6 0- =X X X X
191 1 2 7 8 0- =X X X X
192 1 2 9 10 0- =X X X X
193 8 2 11 0- =X X X
194 2 4 12 0- =X X X
195 2 6 13 0- =X X X
196 According to the above formula, the gradient function of contribution ( )C X  

197 of influencing factors of carbon emission and the Jacobian matrix are 

198 constructed as follows:

199 2 1( , ,0,0,0,0,0,0,0,0,0,0,0)Ñ TC= X X

200

2 1 4 3

2 1 6 5

2 1 8 7

2 1 10 9

11 2

12 4

13 6

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0

- -æ ö
ç ÷- -ç ÷
ç ÷- -ç ÷F = - -ç ÷
ç ÷- -ç ÷- -ç ÷
ç ÷- -è ø

X

X X X X
X X X X
X X X X
X X X X

X X
X X

X X

201 Decomposition vector: ( )+D é F ù= Ñ F Fë û ò T
X XL

Z X Z I - dX

202 Where, 1 2 13( , , , ) 0=LX X Xf , the vector is of form ( ) 0F =X . I  is the identity 

203 matrix, F X  is the Jacobian of ( )F X , +F X  is the generalized inverse of F X , 

204
1( )+ -F = F F FT T

X X X X .

205 Therefore, the driving factors of industrial carbon emissions are 

206 decomposed into the sum of 13 factors, including five absolute factors and 

207 eight relative factors. Absolute influencing factors 1D XC , 3D XC , 5D XC , 7D XC  and 

208 9D XC  are respectively the influence of output scale change, energy 

209 consumption scale change, population scale change, industrial investment 

210 change and technological progress change on industrial carbon emission 

211 change. Relative influencing factors 2D XC , 4D XC , 6D XC , 8D XC , 10D XC , 11D XC , 12D XC  

212 and 13D XC  respectively represent the influence of changes in carbon intensity 

213 of industrial development, industrial energy consumption intensity, 
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214 investment carbon emission, per capita carbon emission, technological 

215 progress carbon intensity, per capita industrial added value, energy intensity 

216 and economic efficiency on changes in industrial carbon emission. 

217 2.3 Decoupling Effect

218 2.3.1 Velocity Decoupling

219 (1) Tapio Decoupling Elasticity Index

220 OECD decoupling index divides decoupling types easily, while Tapio 

221 decoupling index divides them more finely. Based on an elastic analysis, 

222 decoupling index can be selected more flexibly in time and has no influence on 

223 different dimensions, so the calculation results are more stable. This paper 

224 uses the Tapio decoupling index to explore the unbalanced relationship 

225 between economic growth and carbon emissions. The decoupling index of 

226 carbon emissions and economic growth refers to the ratio of the rate of change 

227 of carbon emissions to the rate of change of GDP in a certain period of time. 

228 The expression is: 

229
/= De D

C C
GDP / GDP

230 Where, e  represents the decoupling elasticity index, and DC  and DGDP  

231 respectively represent the change amount of carbon emission and industrial 

232 output value from the base year to the t year. C  and GDP  represent carbon 

233 emissions and industrial output value in the base period. Based on this theory, 

234 DC  is decomposed and the following formula is obtained: 

235 1 2 3 4 5 6 7 8 9 10 11 12 13 /=D +D +D +D +D +D +D +D +D +D +D +D +De D
X X X X X X X X X X X X XC C C C C C C C C C C C C C

GDP / GDP
236 1 2 3 4 5 6 7 8 9 10 11 12 13e=e +e +e +e +e +e +e +e +e +e +e +e +e
237 Where 1 13, , ,ee eL  respectively represents the decoupling elasticity of carbon 

238 emissions, gross industrial product, carbon intensity of output, industrial 

239 energy consumption, carbon intensity of energy consumption, industrial 

240 investment volume, carbon emission of investment, population size, carbon 

241 emission per capita, industrial technological progress, carbon intensity of 

242 technological progress, per capita Decoupling elasticity of industrial added 

243 value, energy intensity and economic efficiency. 

244 2 2
14

/=De D
CO CO
E / E  is the elasticity of emission reduction and decoupling, 

245 indicating the industrial energy structure; 3
/= De D

E E
GDP / GDP  is the decoupling 

246 elasticity of output carbon intensity, which can also be understood as the 
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247 decoupling elasticity of energy conservation and the efficiency of industrial 

248 energy use.

249 Table 3   Judgment of decoupling state

Decoupling condition 2DCO DGDP elasticity e meaning

Expansion 
negative 

decoupling
>0 >0 1.2e>

Both economic growth and 
carbon emissions are rising, 
with carbon emissions growing 
faster than economic growth

Strong 
negative 

decoupling
>0 <0 0e<

Carbon emissions are rising 
and economic growth is 
negative

Negativ
e 

decoupli
ng

Weak 
negative 

decoupling
<0 <0 0 0.8£e<

Carbon emissions and 
economic growth are both 
negative, and carbon emissions 
deceleration is less than 
economic deceleration

Weak 
decoupling

>0 >0 0 0.8£e< Economic growth is faster than 
carbon emissions

Strong 
decoupling

<0 >0 0e< The economy is growing and 
carbon emissions are falling

decoupli
ng

Recessionar
y decoupling

<0 <0 1.2e>

Both the economy and carbon 
emissions are growing 
negatively, and the 
deceleration of carbon 
emissions is greater than that 
of the economy

Expansion 
decoupling

>0 >0 0.8 1.2£e<
Both the economy and carbon 
emissions are growing, with 
relatively small differences

connecti
on

Recessionar
y decoupling

<0 <0 0.8 1.2£e<
Economic growth and carbon 
emissions are both negative, 
the deceleration difference is 
small

250 Among them, the decoupling effect is the most ideal state for strong 

251 decoupling, because at the same time of economic growth, carbon emissions 

252 are reducing, indicating that the economic growth got rid of the dependence 

253 of carbon emissions. 

254 (2) Emission Reduction Efforts

255 Diakoulaki et al (Diakoulaki D 2007) defined the government's emission 

256 reduction efforts as policies or measures taken to directly or indirectly reduce 

257 carbon emissions. In this paper, a emission reduction effort model was built 

258 based on DPSIR framework. 

259 1 2 3 4 5 6 7 8 9 10 11 12 13D D - D =D +D +D +D +D +D +D +D +D +D +D +DX X X X X X X X X X X X XF = C C C C C C C C C C C C C C

260 The decoupling effort model is as follows:

261

1

D=- Dt
X

FD C
262 Decoupling effect of different influencing factors is obtained by model 

263 decomposition:

264 2 3 4 5 6 7 8 9 10 11 12 13 1-( ) /= D +D +D +D +D +D +D +D +D +D +D +D Dt X X X X X X X X X X X X XD C C C C C C C C C C C C C
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265 2 3 4 5 6 7 8 9 10 11 12 13= + + + + + + + + + + +t X X X X X X X X X X X XD D D D D D D D D D D D D
266 Among them, tD , 2XD , 3XD , 4XD , 5XD , 6XD , 7XD , 8XD , 9XD , 10XD , 11XD , 12XD and 13XD  

267 respectively represents the decoupling effect of total carbon emissions, the 

268 decoupling effect of gross industrial product, the decoupling effect of output 

269 carbon intensity, the decoupling effect of industrial energy consumption, the 

270 decoupling effect of energy consumption carbon intensity, the decoupling 

271 effect of industrial investment volume, the decoupling effect of investment 

272 carbon emissions, the decoupling effect of population size, the decoupling 

273 effect of per capita carbon emissions, the decoupling effect of industrial 

274 technological progress, the decoupling effect of carbon intensity of 

275 technological progress, and people Decoupling effect of average industrial 

276 added value, energy intensity and economic efficiency. 

277 Decoupling effect judgment: when 1³tD , represents strong decoupling 

278 effect; When 0 1<t<D , represents weak decoupling effect; When 0£tD , 

279 represents the undecoupled effect.

280 2.3.2 Quantitative Decoupling

281 Quantitative decoupling refers to the process in which environmental 

282 pollution is incrementally reduced or stabilized in the course of economic 

283 growth. At present, EKC curve is more studied. Kuznets curve theory was first 

284 mentioned in 1955 by American economist Kuznets(Kuznets S 1955) when 

285 studying the relationship between income distribution difference and 

286 economic growth. In 1993, Panayotou(Panayotou T 1993) first proposed 

287 “environmental Kuznets curve” based on previous studies. 

288 Current research on EKC curve shows that there are not only inverted “U” 

289 type, but also linear, positive “U” type and “N” type(Zhou Z Z 2020). According 

290 to the type of image, it is mainly divided into three types, which are first order 

291 model, second order model and third order model. The expression is as follows: 

292 2 0 1 1( / )= + +lnCO lnGDP Pb b m

293
2

2 0 1 2 2( / ) ( ( / ))= + + +lnCO ln GDP P ln GDP Pb b b m

294
2 3

2 0 1 2 3 3( / ) ( ( / )) ( ( / ))= + + + +lnCO ln GDP P ln GDP P ln GDP Pb b b b m

295 Where, 0b , 1b , 2b , 3b is the regression coefficient, and 1m, 2m, 3mis the random 

296 disturbance term.

297 Carbon emission 2CO  is not only related to industrial output value GDP  and 

298 population size P , so other influencing factors are added as control variables 
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299 to obtain the common model of EKC curve, as shown below:

300
2 3

2 0 1 2 3 4( / ) ( ( / )) ( ( / ))= + + + + a +å i iilnCO ln GDP P ln GDP P ln GDP P lnXb b b b m

301 Where, iX  is the i -th influencing factor and a i  is the regression coefficient of 

302 the i -th influencing factor.

303 3 Empirical Analysis

304 3.1 Empirical Analysis Framework

305

Empirical analysis study

Empirical analysis of GDIM decomposition

Empirical analysis of decoupling effect

Contribution rate analysis Contribution value analysis

Velocity decoupling analysis

Decoupling 
elasticity analysis

Tapio decoupling 

state analysis
Correlation test

Stationarity test

Cointegration test

Heteroscedasticity test

Autocorrelation test

Regression

Empirical analysis conclusion

Decoupling state 
analysis of emission 

reduction and energy 
conservation

Decoupling state 
analysis of driving 

factors

Quantitative decoupling analysis

EKC decoupling 

state analysis

306 Figure 3   Structural framework of the empirical analysis

307 3.2 GDIM Factor Decomposition Analysis

308 3.2.1 Contribution Rate Analysis

309 Based on GDIM decomposition method, R software version 4.2.2 was used 

310 to analyze the factors affecting China's industrial carbon emissions from 2000 

311 to 2019. Output size effect (GDP ), output carbon intensity effect ( 2 /CO GDP ), 

312 industrial energy consumption effect ( E ), energy consumption carbon 
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313 intensity effect ( 2 /CO E ), industrial investment volume effect ( I ), investment 

314 carbon emission effect ( 2 /CO I ), population size effect ( P ), per capita carbon 

315 emission effect ( 2 /CO P ), industrial technology progress effect (T ), 

316 technological progress carbon intensity effect ( 2 /CO T ) , per capita output 

317 effect ( /GDP P ), energy intensity effect ( /E GDP ) and economic efficiency effect 

318 ( /I GDP ), as shown in Table 4 and 5. 

319 Table 4   Contribution rates of different factors to carbon emissions

Year GDP 2 /CO GDP E 2 /CO E I 2 /CO I P

2000-2001
0.01743

3
-

0.005683
0.01294

3

-
0.00147

5

0.02558
3

-
0.01345

6

0.0013
99

2001-2002
0.01779

5
-

0.003101
0.01844

1

-
0.00374

5

0.03302
5

-
0.01718

2

0.0013
04

2002-2003
0.03277

4
-

0.006713
0.03307

0
0.00615

9
0.04777

4

-
0.00740

0

0.0012
60

2003-2004
0.03745

9
-

0.005289
0.03436

9

-
0.00316

4

0.04525
7

-
0.01315

9

0.0012
06

2004-2005
0.03785

4
-

0.004943
0.03012

3
0.00148

7
0.04399

5

-
0.01144

6

0.0012
12

2005-2006
0.03723

3
-

0.012447
0.01982

0
0.00287

6
0.03983

8

-
0.01610

9

0.0010
69

2006-2007
0.04217

4
-

0.023501
0.01822

0

-
0.00322

0

0.04029
6

-
0.02406

1

0.0010
23

2007-2008
0.03600

0
-

0.025538
0.00542

7
0.00213

1
0.04144

1

-
0.03199

6

0.0009
96

2008-2009
0.01354

5
-

0.003716
0.00999

6
0.00741

7
0.04999

0

-
0.02847

4

0.0009
93

2009-2010
0.03907

9
-

0.019928
0.01444

7
0.00169

4
0.03899

2

-
0.02171

3

0.0009
55

2010-2011
0.03782

95
-

0.013644
0.01282

5
0.00827

3
0.01821

7
0.00282

7
0.0012

43

2011-2012
0.01544

7
-

0.003341
0.00481

5
0.00727

1
0.03500

3

-
0.02116

9

0.0015
00

2012-2013
0.01392

2
-

0.007751
0.00447

3
0.00161

2
0.03256

8

-
0.02465

3

0.0011
76

2013-2014
0.01133

3
-

0.013935
0.00300

5

-
0.00580

0

0.02559
9

-
0.02691

9

0.0013
13

2014-2015
0.00283

9
-

0.008895
0.00022

5

-
0.00623

5

0.01664
0

-
0.02176

0

0.0009
67

2015-2016
0.00980

0
-

0.012544
0.00165

3

-
0.00469

8

0.01355
2

-
0.01623

0

0.0012
83

2016-2017
0.02420

0
-

0.020601
0.00253

7

-
0.00099

8

0.01201
7

-
0.01049

4

0.0010
96

2017-2018
0.01999

3
-

0.013768
0.00578

0
-

0.00073
0.01158

2
-

0.00650
0.0007

51
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5 4

2018-2019
0.00867

2
-

0.003063
0.00726

6

-
0.00173

5

0.01020
7

-
0.00460

8

0.0006
66

320 Note: Keep six decimal places.

321 Table 5   Contribution rates of different factors to carbon emissions

Year 2 /CO P T 2 /CO T /GDP P /E GDP /I GDP

2000-2001 0.010337 0.000903 0.010623
-

0.000743
-

0.000003

-
0.00026

4

2001-2002 0.013724
-

0.000596
0.015272

-
0.000901

-
0.000002

-
0.00072

1

2002-2003 0.039606 0.003193 0.035830
-

0.002849
-

0.000001

-
0.00076

7

2003-2004 0.031484 0.003248 0.027857
-

0.003619
-

0.000002

-
0.00033

3

2004-2005 0.032000
-

0.002348
0.033905

-
0.003544

-
0.000000

-
0.00026

2

2005-2006 0.022854
-

0.000252
0.023123

-
0.003256

-
0.000341

-
0.00012

8

2006-2007 0.015079 0.004257 0.011125
-

0.004112
-

0.000675
0.00000

1

2007-2008 0.006916 0.001198 0.006459
-

0.002988
-

0.001593

-
0.00033

0

2008-2009 0.016871
-

0.007048
0.024424

-
0.000681

-
0.000008

-
0.00369

3

2009-2010 0.016155 0.004621 0.011772
-

0.003492
-

0.000808

-
0.00000

5

2010-2011 0.020676 0.002903 0.018252
-

0.002680
-

0.000643

-
0.00023

9

2011-2012 0.010754
-

0.002714
0.014749

-
0.000614

-
0.000311

-
0.00123

9

2012-2013 0.005029 0.000891 0.005234
-

0.000531
-

0.000258

-
0.00114

2

2013-2014 -0.004090
-

0.000378
-

0.002313
-

0.000327
-

0.000204

-
0.00070

4

2014-2015 -0.006978 0.000661
-

0.006626
-

0.000002
-

0.000004

-
0.00057

5

2015-2016 -0.004329 0.000808
-

0.003793
-

0.000185
-

0.000155

-
0.00000

7

2016-2017 0.000494
-

0.000254
0.001856

-
0.001050

-
0.000721

-
0.00000

7

2017-2018 0.004444 0.001240 0.003877
-

0.000783
-

0.000283

-
0.00000

3

2018-2019 0.004916 0.002854 0.002681
-

0.000178
-

0.000000

-
0.00000

1

322 Note: Keep six decimal places.
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323 The period from 2001 to 2019 is divided into four periods, namely 2001-

324 2005, 2006-2010, 2011-2015 and 2016-2019, corresponding to four periods 

325 respectively: the Tenth Five-Year Plan period, the Eleventh Five-Year Plan 

326 period, the Twelfth Five-Year Plan period and the Thirteenth Five-Year Plan 

327 period. Figure 4 includes three figures. The above two figures describe the 

328 driving factors with high contribution rate and the driving factors with low 

329 contribution rate, so as to more clearly see the contribution rate of each 

330 driving factor to carbon emissions. The figure below describes the contribution 

331 rate of each driving factor to carbon emissions as a whole and the change 

332 trend of carbon emissions.

333

334

335 Figure 4   Contribution rate and total contribution rate of different 

336 influencing factors to carbon emissions

337 It can be seen from Table 4, 5 and Figure 4 that: (1) Output scale effect 

338 (GDP ), industrial energy consumption effect ( E ), industrial investment volume 

(2)

(3)



16

339 effect ( I ) and population scale effect ( P ) are the positive driving factors for 

340 carbon emissions. (2) Output carbon intensity effect ( 2 /CO GDP ), investment 

341 carbon emission effect ( 2 /CO I ), per capita output effect ( /GDP P ), energy 

342 intensity effect ( /E GDP ), economic efficiency effect ( /I GDP ) have a negative 

343 driving effect on carbon emissions; (3) There are both positive and negative 

344 driving effects on carbon emissions: carbon intensity effect of energy 

345 consumption ( 2 /CO E ), carbon emission effect of per capita ( 2 /CO P ), industrial 

346 technological progress (T ), carbon intensity effect of technological progress 

347 ( 2 /CO T ); (4) The output scale effect (GDP ), industrial energy consumption 

348 effect ( E ), industrial investment volume effect ( I ), technological progress 

349 carbon intensity effect ( 2 /CO T ), investment carbon emission effect ( 2 /CO I ), 

350 per capita carbon emission effect ( 2 /CO P ) are the major contribution factors 

351 to carbon emissions. (5) From the overall point of view, carbon emissions are 

352 declining rapidly, because China has embarked on the ecological path of low-

353 carbon environmental protection, which also shows that the country has 

354 achieved significant results in the treatment of carbon emissions. 

355 3.2.2 Contribution Value Analysis

356 Contribution values of driving factors of China's industrial carbon 

357 emissions are decomposed based on GDIM model, and the decomposed driving 

358 effects are consistent with the decomposition of contribution rates of driving 

359 effects in 3.2.1. The specific contribution values are shown in Table 6, 7 and 

360 Figure 5.

361 Table 6   Contribution values of different influencing factors to carbon 

362 emissions

Year GDP 2 /CO GDP E 2 /CO E I 2 /CO I P
2000-2001 7168.38 -2336.91 5321.95 -606.68

10519.5
6

-
5533.00

575.44

2001-2002 7738.44 -1348.73 8019.29
-

1628.65
14361.3

7
-

7471.89
567.25

2002-2003
15297.3

9
-3133.30

15435.5
7

2874.69
22298.3

7
-

3453.95
587.89

2003-2004
20899.1

3
-2950.90

19175.4
5

-
1765.35

25250.1
8

-
7341.91

672.60

2004-2005
24400.1

3
-3186.50

19416.8
7

958.25
28358.9

9
-

7377.91
781.48

2005-2006
27792.4

1
-9290.73

14794.6
1

2147.09
29737.0

8

-
12024.3

5
797.74

2006-2007
35077.9

9
-

19546.83
15154.9

1
-

2677.95
33516.3

4

-
20012.9

5
851.28

2007-2008
32237.1

3
-

22868.72
4859.82 1908.68

37108.7
0

-
28651.3

2
891.44

2008-2009 12590.9 3454.66 9292.11 6895.26 46470.6 - 922.81
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8 5 26469.7
4

2009-2010
39487.5

7
-

20136.38
14597.7

1
1711.55

39399.5
2

-
21939.4

5
964.76

2010-2011
41347.5

3
-

14912.69
14018.3

7
9042.82

19906.7
9

-
3089.94

1358.3
7

2011-2012
18670.8

5
-4038.74 5819.55 8788.71

42308.4
2

-
25586.5

6

1813.1
9

2012-2013
17840.0

1
-9932.08 5731.62 2065.50

41732.7
3

-
31590.2

0

1506.3
9

2013-2014
14966.1

2
-

18401.41
3968.12

-
7659.79

33805.2
3

-
35548.1

0

1734.5
7

2014-2015 3698.80
-

11589.16
292.97

-
8122.61

21679.3
8

-
28349.3

5

1259.7
3

2015-2016
12387.8

3
-

15855.98
2089.65

-
5937.95

17129.6
6

-
20515.5

4

1622.1
5

2016-2017
30132.6

6
-

25651.89
3158.95

-
1242.43

14963.2
7

-
13066.4

2

1364.7
4

2017-2018
25094.4

1
-

17280.80
7255.01 -923.08

14537.0
7

-
8163.09

942.22

2018-2019
11162.6

2
-3943.30 9352.52

-
2232.78

13138.5
6

-
5931.96

857.50

363 Note: Keep two decimal places.

364 Table 7   Contribution values of different influencing factors to carbon 

365 emissions

Year 2 /CO P T 2 /CO T /GDP P /E GDP /I GDP
2000-
2001

4250.59 371.12 4368.02 -305.36 -11.94 -108.58

2001-
2002

5968.17 -259.22 6641.26 -391.70 -0.80 -313.64

2002-
2003

18485.78 1490.37 16723.41 -1329.76 -2.99 -358.14

2003-
2004

17565.73 1811.96 15542.33 -2018.88 -11.81 -185.72

2004-
2005

20626.61 -1513.76 21854.61 -2284.40 -2.04 -168.61

2005-
2006

17059.19 -188.17 17260.02 -2430.60 -254.42 -95.47

2006-
2007

12541.81 3540.51 9253.31 -3419.93 -561.50 -4.03

2007-
2008

6192.96 1072.43 5783.63 -2675.25 -1426.82 -295.37

2008-
2009

15683.51 -6552.14 22704.95 -632.77 -74.49 -3432.89

2009-
2010

16323.94 4669.04 11895.26 -3528.82 -816.68 -46.34

2010-
2011

22599.20 3173.23 19949.30 -2929.22 -702.93 -261.72

2011-
2012

12997.92 -3280.58 17827.23 -741.87 -376.15 -1497.45

2012-
2013

6444.00 1142.04 6707.05 -680.10 -330.22 -1463.35

2013-
2014

-5400.82 -499.24 -3054.22 -432.10 -269.75 -930.19

2014-
2015

-9090.88 861.35 -8632.45 -29.71 -49.23 -749.60
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2015-
2016

-5472.40 1021.32 -4794.53 -233.72 -195.35 -94.54

2016-
2017

614.70 -315.77 2310.75 -1307.89 -898.22 -92.39

2017-
2018

5577.51 1556.87 4866.32 -982.62 -355.41 -32.06

2018-
2019

6328.12 3673.21 3451.68 -228.80 -0.17 -18.75

366 Note: Keep two decimal places.

367

368 Figure 5   Contribution values of different influencing factors to carbon 

369 emissions

370 It can be seen from Table 6, 7 and Figure 5 that:

371 (1) The driving factor effects and contribution rates of positive driving 

372 effect, negative driving effect, positive and negative driving effect are 

373 consistent, which will not be repeated here;

374 (2) On the whole, carbon emissions first rose, then began to decline, and 

375 then began to rise slowly, with the peak in 2013;

376 (3) Specific analysis of positive driving factors: First: Output scale effect 

377 (GDP ) contribution value to carbon emissions continued to rise from 2000 to 

378 2005. During this period, China's economy developed rapidly, energy 

379 consumption increased, and carbon emissions also increased. During 2005 to 

380 2010, contribution value to carbon emissions first decreased and then 

381 increased. From 2011 to 2015, its contribution to carbon emissions continued 

382 to decline, and from 2016 to 2019, it showed a stable trend. As China began 

383 to save energy and reduce emissions in 2011 and reduce emissions as binding 

384 indicators of economic development, carbon emissions began to gradually 

385 reduce. Second, industrial energy consumption effect ( E ) increased from 
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386 2000 to 2005, reached a peak of 194,168,700 tons of carbon emissions, 

387 decreased in a fluctuating manner from 2006 to 2010, rapidly decreased to 

388 2,929,700 tons from 2011 to 2015, and gradually increased from 2016 to 2019. 

389 The changes of output scale effect (GDP ) and industrial energy consumption 

390 effect ( E ) are consistent, and there is a linkage between them. It is mainly the 

391 increase in output that leads to investment, which in turn increases scale, and 

392 also increases energy consumption. Third, population size effect ( P ) 

393 continued to increase from 2000 to 2014, reaching a peak of 17,345,700 tons, 

394 and then began to decline. Population size increases productivity, which 

395 increases carbon emissions; 

396 (4) Specific analysis of negative driving factors: First, carbon intensity 

397 effect ( 2 /CO GDP ) is produced, which plays a very significant role in promoting 

398 the decline of carbon emissions, and the overall decline trend is accelerated, 

399 reaching a peak of -256,518,900 tons in 2017. Second, investment in carbon 

400 emission effect ( 2 /CO I ) accelerated the decline trend of carbon emissions, 

401 which reached a peak of 355.4810 million tons in 2014. Third, its output effect 

402 per capita ( /GDP P ) peaked in 2011 at 35,288,200 tons. Fourth, energy 

403 intensity effect ( /E GDP ) promoted the decline trend of carbon emissions 

404 quickly, but on the whole, it was a fluctuation decline, reaching a peak of 

405 14.2682 million tons in 2008. Fifth, the effect of economic efficiency ( /I GDP ) 

406 fluctuates on the whole, but the effect of promoting the decline of carbon 

407 emissions slows down, reaching a peak of 34.328,900 tons in 2009; 

408 (5) There are both positive and negative driving factors: carbon intensity 

409 effect of energy consumption ( 2 /CO E ), per capita carbon emission effect 

410 ( 2 /CO P ), industrial technology progress effect (T ), carbon intensity effect of 

411 technological progress ( 2 /CO T ). The carbon intensity effect of energy 

412 consumption ( 2 /CO E ) has a positive driving effect from 2007 to 2013, 

413 indicating that the carbon intensity of energy consumption can be reduced 

414 only by timely development of the energy structure. The other is the per capita 

415 carbon emission effect ( 2 /CO P ), which is basically a positive driving effect on 

416 the whole. Since the birth rate of Chinese population has not increased 

417 significantly compared to before, but presents a downward trend. The aging 

418 degree is very high, and the per capita carbon emission is also high, which 

419 presents a positive driving effect on the whole. The effect of technological 

420 progress in the third industry (T ) also presents a positive driving effect on the 
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421 whole. As technological progress does not adjust the energy structure at the 

422 same time to bring more output, carbon emissions will increase. The carbon 

423 intensity effect of technological progress ( 2 /CO T ) is also positive driving effect 

424 in general. Only the adjustment of energy structure can reduce carbon 

425 emissions in very few years; 

426 (6) Comparison of contribution values to carbon emissions. Positive 

427 driving effect: output size effect (GDP )> industrial energy consumption effect 

428 ( E )> population size effect ( P ); negative driving effect: investment carbon 

429 emission effect ( 2 /CO I )> output carbon intensity effect ( 2 /CO GDP )> output 

430 per capita effect ( /GDP P )> economic efficiency effect ( /I GDP )> energy 

431 intensity effect ( /E GDP ).

432 3.3 Decoupling Effect Analysis

433 This section mainly analyzes the decoupling elasticity analysis of industrial 

434 carbon emissions and economic growth, the elasticity analysis of industrial 

435 carbon emission reduction and energy conservation, and the decoupling effect 

436 of industrial carbon emission drivers. 

437 3.3.1 Decoupling Elasticity Analysis

438 According to the decoupling elasticity formula, the decoupling elasticity of 

439 China's industrial carbon emissions and economic growth in each period is 

440 calculated, and the decoupling state of China's industrial carbon emissions and 

441 economic growth in different periods is divided. Figure 6 Decoupling status 

442 ranking is ranked 1, 2, 3 and 4 according to the advantages and disadvantages 

443 of decoupling status The decoupling states from good to bad are strong 

444 decoupling, weak decoupling, extended decoupling and extended negative 

445 decoupling. The difference of scores can directly see the decoupling 

446 relationship between China's industrial carbon emissions and economic 

447 growth in different periods. 

448 Table 8   Decoupling elasticity of industrial carbon emissions and economic 

449 growth in China

Year 2DCO DGDP elasticity e Decoupling condition

2000-2001 0.0576 0.0875 0.7 Weak decoupling
2001-2002 0.0733 0.0895 0.8 Weak decoupling
2002-2003 0.1953 0.1588 1.2 Expansion decoupling
2003-2004 0.1553 0.1848 0.8 Weak decoupling
2004-2005 0.1580 0.1857 0.9 Expansion decoupling
2005-2006 0.1143 0.1848 0.6 Weak decoupling
2006-2007 0.0766 0.2134 0.4 Weak decoupling
2007-2008 0.0381 0.1842 0.2 Weak decoupling

2008-2009
0.0870 0.0681 1.3 Expansion negative 

decoupling
2009-2010 0.0817 0.1964 0.4 Weak decoupling
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2010-2011 0.1058 0.1848 0.6 Weak decoupling
2011-2012 0.0601 0.0775 0.8 Weak decoupling
2012-2013 0.0306 0.0708 0.4 Weak decoupling
2013-2014 -0.0134 0.0585 -0.2 Strong decoupling
2014-2015 -0.0298 0.0146 -2.0 Strong decoupling
2015-2016 -0.0149 0.0501 -0.3 Strong decoupling
2016-2017 0.0080 0.1224 0.1 Weak decoupling
2017-2018 0.0256 0.1003 0.3 Weak decoupling
2018-2019 0.0277 0.0434 0.6 Weak decoupling

450

451   

452 Figure 6   Decoupling elasticity and decoupling status ranking of industrial 

453 carbon emissions and economic growth in China

454 It can be seen from Table 8 and Figure 6 that: 

455 (1) We divide the analysis into four periods. In the first period, from 2000 

456 to 2007, it can be seen that the decoupling of China's industrial carbon 

457 emissions and economic growth first worsened and then recovered. In 2003, 

458 the decoupling state was the worst year. The economic growth rate is slower 

459 than the growth rate of carbon emissions, which is in a relatively 

460 unsatisfactory state. Then, the state of decoupling changed from expanding 

461 decoupling to weak decoupling, indicating that the decoupling effect of 

462 economic growth and China's industrial carbon emissions began to appear. In 

463 the second period from 2008 to 2012, the decoupling state was the worst in 

464 2009, with the decoupling elasticity reaching 1.3, indicating a negative 

465 decoupling of expansion, and the growth rate of carbon emissions was 

466 significantly faster than that of economic growth. This is because after the 

467 financial crisis in 2008, the economy was depressed. As a result, the growth 

468 rate of industrial carbon emissions was faster than that of economic growth, 

469 resulting in the phenomenon of negative expansion decoupling. The third 

470 period is 2013-2016, when economic growth and industrial carbon emissions 
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471 reach an optimal decoupling state, namely a strong decoupling state. During 

472 this period, the country adopted low-carbon policies and regarded low carbon 

473 as a binding condition for economic development, so economic growth and 

474 carbon emissions reached the optimal decoupling state. The fourth period is 

475 2017-2019, which is in the weak decoupling state. In this stage, the economic 

476 growth rate is very slow, while the carbon emission growth rate is very fast. 

477 (2) From the perspective of whole decoupling status sort, the decoupling 

478 status of Chinese industrial carbon emission and economic growth is gradually 

479 improving, which indicates that Chinese governance policy is effective.

480 3.3.2 Decoupling State Analysis

481 (1) Decoupling of Emissions Reduction and Energy Conservation

482 The analysis of emission reduction elasticity and energy saving elasticity 

483 is mainly to clarify the direction of our future efforts to solve carbon emissions. 

484 Table 9   Elasticity of emission reduction and energy conservation of China's 

485 industrial carbon emissions

Year

Emission 
reduction 
elasticity 

14e
Decoupling condition

Energy 
saving 

elasticity 

3e
Decoupling condition

2000-
2001

0.884 Expansion decoupling 0.745 Weak decoupling

2001-
2002

0.789 Weak decoupling 1.038 Expansion decoupling

2002-
2003

1.206 Expansion negative 
decoupling

1.020 Expansion decoupling

2003-
2004

0.900 Expansion decoupling 0.933 Expansion decoupling

2004-
2005

1.053 Expansion decoupling 0.808 Expansion decoupling

2005-
2006

1.150 Expansion decoupling 0.538 Weak decoupling

2006-
2007

0.822 Expansion decoupling 0.436 Weak decoupling

2007-
2008

1.379 Expansion negative 
decoupling

0.150 Weak decoupling

2008-
2009

1.757 Expansion negative 
decoupling

0.727 Weak decoupling

2009-
2010

1.118 Expansion decoupling 0.372 Weak decoupling

2010-
2011

1.659 Expansion negative 
decoupling

0.345 Weak decoupling

2011-
2012

2.510 Expansion negative 
decoupling

0.309 Weak decoupling

2012-
2013

1.356 Expansion negative 
decoupling

0.319 Weak decoupling

2013-
2014

-0.871 Strong decoupling 0.263 Weak decoupling

2014-
2015

-26.061 Strong decoupling 0.078 Weak decoupling

2015-
2016

-1.768 Strong decoupling 0.168 Weak decoupling

2016-
2017

0.619 Weak decoupling 0.106 Weak decoupling
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2017-
2018

0.874 Expansion decoupling 0.292 Weak decoupling

2018-
2019

0.758 Weak decoupling 0.841 Expansion decoupling

486

487

488 Figure 7 Elasticity of emission reduction, elasticity of energy saving and 

489 decoupling status ranking

490 It can be seen from Table 9 and Figure 7 that:

491 (1) By comparing the data of energy saving elasticity and emission 

492 reduction elasticity, emission reduction elasticity is basically greater than 

493 energy saving elasticity, it shows that emission reduction has a lot of effort 

494 space, our country should start with emission reduction in the future;

495 (2) The elasticity of emission reduction fluctuated greatly and experienced 

496 four decoupling states. On the whole, the elasticity of emission reduction 

497 showed a trend of first increasing and then decreasing. The highest period was 

498 from 2008 to 2012. Later, as the country set low-carbon targets, some high-

499 polluting and energy-consuming enterprises were shut down. The elasticity of 

500 emission reduction reached its lowest point in 2004. After a few years to 

501 maintain a stable trend, in the state of weak decoupling; 

502 (3) The change trend of energy conservation elasticity is small. From 2000 

503 to 2005, when the economy was vigorously developed, energy conservation 

504 was only advocated. Later, energy conservation began to be incorporated into 

505 the law, making it mandatory; 

506 (4) In terms of decoupling status ranking, the elastic decoupling status of 

507 emission reduction and energy conservation showed a trend of improvement 

508 on the whole, and relevant national policies played a decisive role.
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509 (2) Decoupling Effect of Different Driving Factors

510 Through analyzing the decoupling effect of the driving factors of carbon 

511 emission, it can be more concrete to understand that we should solve the 

512 problem of carbon emission from those driving factors.

513 Table 10   Decoupling effect of driving factors of industrial carbon emissions 

514 in China

Year tD 2XD (10-5) 3XD 4XD (10-6) 5XD 6XD (10-5) 7XD
2000-
2001

-5.92 6.20 -1.68 7.11 -1.08 20.20 -0.22 

2001-
2002

-7.17 2.93 -2.29 16.00 -1.41 21.50 -0.19 

2002-
2003

-
10.6

1 

-3.17 -2.26 -13.00 -1.20 4.28 -0.09 

2003-
2004

-7.48 1.91 -2.07 5.07 -1.07 5.44 -0.07 

2004-
2005

-7.38 1.47 -1.78 -1.98 -1.07 3.74 -0.06 

2005-
2006

-5.24 3.10 -1.15 -3.31 -1.02 4.26 -0.04 

2006-
2007

-2.86 4.03 -0.86 2.74 -0.93 4.29 -0.03 

2007-
2008

-1.46 3.74 -0.27 -1.73 -1.13 4.88 -0.03 

2008-
2009

-7.91 -1.07 -1.12 -1.40 -3.64 8.52 -0.06 

2009-
2010

-2.62 1.92 -0.57 -1.06 -1.18 1.79 -0.02 

2010-
2011

-3.27 1.07 -0.47 -4.67 -0.56 -0.19 -0.02 

2011-
2012

-4.13 0.49 -0.38 -8.73 -2.44 2.91 -0.06 

2012-
2013

-2.26 1.14 -0.37 -2.04 -2.75 3.11 -0.05 

2013-
2014

1.16 2.23 -0.29 8.40 -2.89 3.41 -0.06 

2014-
2015

9.57 5.07 -0.08 33.60 -7.96 9.20 -0.17 

2015-
2016

1.34 1.97 -0.18 7.02 -2.02 1.75 -0.06 

2016-
2017

-0.28 0.12 -0.11 0.56 -0.74 0.40 -0.02 

2017-
2018

-0.96 0.77 -0.27 0.45 -0.82 0.26 -0.02 

2018-
2019

-2.25 0.34 -0.72 2.22 -1.59 0.38 -0.03 

515 Note: All data are reserved for two decimal places.

516 Table 11   Decoupling effect of influencing factors on China's industrial 

517 carbon emissions

Year
 8XD  (10-

5)
9XD (10-5) 10XD 11XD (10-6) 12XD (10-6) 13XD (10-6)

2000-
2001

-4.08 -10.90 -0.05 -7.21 11.60 -7.13

2001-
2002

-5.09 6.41 -0.08 -7.22 -1.55 -12.30

2002-
2003

-7.96 -17.00 -0.10 -7.44 -0.72 -6.37

2003-
2004

-5.53 -13.20 -0.07 -7.45 1.99 -2.84
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2004-
2005

-5.44 8.05 -0.08 -7.40 4.79 -2.02

2005-
2006

-3.80 70.4 -0.05 -7.39 9.45 -0.10

2006-
2007

-2.02 -9.36 -0.02 -7.38 8.81 0.03

2007-
2008

-0.96 -2.59 -0.01 -7.32 10.10 -1.28

2008-
2009

-5.60 33.80 -0.11 -6.96 2.64 -16.70

2009-
2010

-1.84 -7.14 -0.02 -7.28 4.98 -0.23

2010-
2011

-2.28 -4.02 -0.03 -7.17 3.93 2.55

2011-
2012

-2.66 7.73 -0.05 -6.65 3.46 -5.66

2012-
2013

-1.33 -2.60 -0.02 -6.70 3.03 -6.11

2013-
2014

1.26 1.27 0.01 -6.43 2.95 -5.89

2014-
2015

8.07 -8.51 0.10 -4.79 3.49 -23.50

2015-
2016

1.38 -2.98 0.02 -6.24 2.96 -1.95

2016-
2017

-5.93 0.36 0.00 -6.82 2.72 2.19

2017-
2018

-0.59 -1.91 -0.01 -6.85 1.77 1.57

2018-
2019

-1.40 -9.31 -0.01 -6.55 0.36 -0.65

518 Note: All data are reserved for two decimal places.

519
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520

521 Figure 8   Decoupling effect analysis of driving factors

522 It can be seen from Table 10, 11 and Figure 8 that:

523 (1) From the perspective of total decoupling effect tD , the strong 

524 decoupling effect was distributed from 2013 to 2016, showing undecoupling - 

525 strong decoupling - undecoupling on the whole. The degree of the two 

526 undecoupling is very different, the degree of the first undecoupling is large, 

527 and the degree of the second undecoupling is small;

528 (2) Analysis of undecoupling effect: Decoupling effect of output carbon 

529 intensity 3XD , decoupling effect of energy consumption carbon intensity 5XD , 

530 decoupling effect of investment carbon emission 7XD , decoupling effect of 

531 technological progress carbon intensity 11XD  on the whole show undecoupling 

532 effect; 

533 (3) Weak decoupling effect analysis: gross industrial product decoupling 

534 effect 2XD , industrial energy consumption decoupling effect 4XD , industrial 

535 investment decoupling effect 6XD , energy intensity decoupling effect 12XD  on the 

536 whole show weak decoupling effect; 

537 (4) Analysis of strong decoupling effect: Only the strong decoupling effect 

538 period exists in total decoupling effect, the strong decoupling period indicates 

539 that Chinese industrial carbon emissions are reducing at the same time, 

540 economic growth is accelerating, the two have very strong decoupling 

541 relationship, this is also our very expected to achieve the state. 

542 (5) Analysis of weak decoupling effect and undecoupling effect: Population 

543 size decoupling effect 8XD , per capita carbon emission decoupling effect 9XD , 

544 industrial technological progress decoupling effect 10XD  and economic 

545 efficiency decoupling effect 13XD  showed a weak decoupling effect after 2013. 
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546 It is possible that relevant national policies at that time made population size, 

547 per capita carbon emission, industrial technological progress, economic 

548 efficiency and carbon emission decoupling, but the decoupling effect was 

549 relatively small. It also needs to continue to intensify efforts to achieve a strong 

550 decoupling of carbon emissions in many sectors. 

551 3.4 Quantitative Decoupling Analysis

552 According to the three EKC curves constructed in this paper, the test and 

553 regression of the three models are carried out, and the appropriate EKC model 

554 is selected to analyze the relationship between carbon emission and per capita 

555 output, and the form of quadratic function and cubic function form EKC curves 

556 are analyzed. 

557 3.4.1 Correlation Test (Screening Variables)

558 In order to avoid multicollinearity, correlation test was carried out first, 

559 and several variables with relatively high correlation were selected as control 

560 variables. The selection was made by Pearson correlation analysis.

561 Table 12   Pearson correlation test

variabl
e

Correlation 

with 2CO
Pearson and P 

value

Pearson 
correlatio
n ranking

variable

Correlation 

with 2CO
Pearson and P 

value

Pearson 
correlatio
n ranking

Weight
ed 

ranking

0.933*** 0.975***GDP
0.000

9 lnGDP
0.000

5 6.2

-0.952*** -0.879***
2 /CO GDP

0.000
6 2( / )ln CO GDP

0.000
12 10.2

0.993*** 0.997***E
0.000

3 lnE
0.000

3 3

0.777*** 0.741***
2 /CO E

0.083
13 2( / )ln CO E

0.216
6 8.1

0.899*** 0.971***I
0.000

11 lnI
0.000

7 8.2

0.946*** -0.913***
2 /CO I

0.000
7 2( / )ln CO I

0.000
10 9.1

-0.981*** 0.927***P
0.000

4 lnP
0.000

8 6.8

0.999*** -0.999***
2 /CO P

0.000
1 2( / )ln CO P

0.000
2 1.6

0.829*** 0.841***T
0.000

12 lnT
0.000

13 12.7

0.999*** 1***
2 /CO T

0.000
1 2 /CO T

0.000
1 1

0.941*** 0.977***/GDP P
0.000

8 ( )/ln GDP P
0.000

4 5.2

-0.967*** -0.901***/E GDP
0.000

5 ( )/ln E GDP
0.000

11 9.2

0.918*** 0.925***/I GDP
0.000

10 ( )/ln I GDP
0.000

9 9.3

562 Note: The weighted ranking is set as 0.3 for the original variable and 0.7 for 

563 the variable after logarithm. *** represents a significance level of 1%.

564 According to the correlation ranking, relatively good variables are 2 /CO T , 
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565 2 /CO P , E  and /GDP P , in which /GDP P  is the explanatory variable and the 

566 remaining three variables are the control variables. Thus, three environmental 

567 Kuznets curve (EKC) models are constructed, namely, the first order model, 

568 the second order model and the third order model: 

569 2 0 1 1 2 2 3 2( / ) ( / )+ + ( / )+= + +CO ln GDP P ln CO T lnE ln CO Pb b a a a e

570
2

2 0 1 2 1 2 2 3 2( / ) ( ( / )) ( / )+ + ( / )+= + + +CO lnGDP P lnGDP P lnCO T lnE lnCO Pb b b a a a e

571
2 3

2 0 1 2 3 1 2 2 3 2( / ) ( ( / )) ( ( / )) ( / )+ + ( / )+= + + + +CO lnGDP P lnGDP P lnGDP P lnCO T lnE lnCO Pb b b b a a a e

572 Where, 2CO  refers to carbon emission; /GDP P  is per capita industrial 

573 output; 2 /CO T  refers to carbon intensity of technological progress; 2 /CO P  is 

574 per capita carbon emission; E  is industrial energy consumption; 0b , 1b , 2b , 

575 3b , 1a , 2a  and 3a  are regression coefficients; e  is the random disturbance term. 

576 3.4.2 Stationarity Test

577 The stationarity test is to determine that there is no random trend or to 

578 confirm the trend, otherwise the "pseudo-regression" problem will occur. 

579 Therefore, in order to avoid the problem of "pseudo-regression", the 

580 stationarity of data should be tested first, which is also the unit root test. This 

581 paper uses ADF test to judge the stationarity of variables, and the test results 

582 are shown in Table 13. 

583 Table 13   Unit root test

variable t p conclusion

2lnCO -8.188 0.000 steady

( / )ln GDP P -2.334 0.161 unstable
2( ( / ))ln GDP P -0.880 0.795 unstable
3( ( / ))ln GDP P 0.232 0.974 unstable

2( / )ln CO T -4.083 0.001*** steady

lnE -1.034 0.741 unstable

2( / )ln CO P -2.256 0.1969 unstable

2DlnCO -1.393 0.586 unstable

( / )Dln GDP P -1.975 0.298 unstable
2( ( / ))D ln GDP P -1.455 0.556 unstable
3( ( / ))D ln GDP P -1.949 0.309 unstable

2( / )Dln CO T -1.528 0.519 unstable

DlnE -1.132 0.702 unstable

2( / )Dln CO P -0.690 0.8205 unstable

2
2D lnCO -3.213 0.019 steady

2 ( / )D ln GDP P -4.725 0.000 steady

2 2( ( / ))D ln GDP P -3.809 0.003 steady
2 3( ( / ))D ln GDP P -3.491 0.008 steady
2

2( / )D ln CO T -16.131 0.000*** steady

2D lnE -3.492 0.008*** steady



29

2
2( / )D ln CO P -3.938 0.0104 steady

584 Note: *** represents a significance level of 1%.

585 It can be seen from Table 13 that the original sequence 2lnCO  and 2( / )lnCO T  

586 are stable, while the original sequence of other variables is not stable. All 

587 variables are unstable after first-order difference, followed by second-order 

588 difference, all variables are stable. 

589 3.4.3 Cointegration Test

590 Cointegration test is used to test whether there is a long-term stable co-

591 integration relationship between non-stationary time series. The premise of 

592 the cointegration test is that the variables must satisfy the stability of the same 

593 order. It can be seen from Table 13 that all variables are second-order 

594 stationary, so the co-integration test is conducted on the original sequence of 

595 variables to test whether there is a long-term equilibrium relationship between 

596 variables. 

597 Table 14   Cointegration test of three EKC models

Augmented Dickey-Fuller test statistic
t-Statistic p-value

Primary model -4.3747 0.0032
Quadratic model -4.4817 0.0026

Cubic model -4.3678 0.0033

598 Table 14 shows that the P-value of the three EKC models is all less than 

599 0.05, indicating that the original hypothesis is rejected and the alternative 

600 hypothesis is accepted when the confidence level is 95%. The results of the co-

601 integration test show that the null hypothesis of no co-integration relationship 

602 is rejected, and the long-term co-integration relationship between the 

603 variables of the three models is considered.

604 3.4.4 Heteroscedasticity Test

605 Heteroscedasticity means that the random error terms have different 

606 variances relative to the observed values of different explanatory variables. 

607 The heteroscedastic test is designed to exclude the correlation between the 

608 variance of the random error term and the observed value of the explanatory 

609 variable. If there is correlation, it is considered that the model has 

610 heteroscedasticity. The test methods of heteroscedasticity include BP test, 

611 Goliser test and White test. The specific test results are shown in Table 15. 

612 Table 15   Heteroscedasticity test of three EKC models

Breusch-Pagan-
Godfrey

Glejser White

F-statistic 1.9591 2.3732 1.6811
Prob. F(4,15) 0.1528 0.0988 0.2065

Primary 
model

Obs*R-squared 6.8630 7.7514 6.1905
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Prob. Chi-
Square(4)

0.1433
0.1011 0.1854

Scaled explain 
SS

4.6892
6.0794 4.2297

Prob. Chi-
Square(4)

0.3207
0.1933 0.3758

F-statistic 1.4706 1.8573 2.2592
Prob. F(5,14) 0.2608 0.1661 0.1054

Obs*R-squared 6.8872 7.9759 8.9310

Prob. Chi-
Square(5)

0.2292 0.1576 0.1118

Scaled explain 
SS

3.8937 5.7025 5.0492

Quadratic 
model 

Prob. Chi-
Square(5)

0.5648 0.3362 0.4099

F-statistic 1.8853 1.7304 2.1027
Prob. F(6,13) 0.1590 0.1914 0.1231

Obs*R-squared 9.3057 8.8804 9.8502
Prob. Chi-
Square(6)

0.1571 0.1804 0.1311

Scaled explain 
SS

4.3119 6.2682 4.5642

Cubic model 

Prob. Chi-
Square(6)

0.6346 0.3938 0.6008

613 Table 15 shows that the p-values of the three EKC models are all less than 

614 0.05, indicating that the original hypothesis is accepted and the alternative 

615 hypothesis is rejected when the confidence level is 95%. The original 

616 hypothesis is that the random error term has homoscedasticity, and the 

617 alternative hypothesis is that the random error term has heteroscedasticity. 

618 Therefore, the heteroscedasticity test results of the three EKC models show 

619 that the random error terms have homoscedasticity, that is, they pass the 

620 heteroscedasticity test. 

621 3.4.5 Autocorrelation Test

622 Autocorrelation refers to the correlation between the expected values of 

623 random error terms, which is called autocorrelation or sequence correlation. 

624 There are DW(Durbin-Watson) test and LM(Brosch-Godfrey) test to test 

625 autocorrelation. 

626 Table 15   Autocorrelation-DW test of three EKC models

model Durbin-Watson stat
Primary model 2.0704

Quadratic model 2.1165
Cubic model 2.0835

627 DW(Durbin-Watson) test in Table 16 shows that DW is 2.07, suggesting 

628 that there is no first-order autocorrelation. Since DW is limited to testing only 

629 first-order autocorrelations, LM tests are being performed. 

630 Table 16   Autocorrelation-LM test of three EKC models

F-statistic 0.5989 Prob. F(2,13) 0.5639
Primary model Obs*R-

squared
1.6873

Prob.Chi-
Square(2)

0.4301
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F-statistic 1.3909 Prob. F(2,12) 0.2862
Quadratic 
model

Obs*R-
squared

3.7638
Prob.Chi-
Square(2)

0.1523

F-statistic 2.4424 Prob. F(2,11) 0.1325
Cubic model Obs*R-

squared
6.1503

Prob.Chi-
Square(2)

0.0462

631 As can be seen from the LM test results in Table 17, if Prob. F values are 

632 all greater than 0.05. Therefore, it can be considered that the three EKC 

633 models have no autocorrelation at a confidence level of 98% and pass the 

634 autocorrelation test. 

635 3.4.6 Regression

636 The regression analysis of the three EKC models was carried out, and the 

637 overall significance of the three EKC models and the significance of different 

638 variables were judged by F test and t test. The specific results are shown in 

639 Table 17. 

640 Table 17   Regression results of three EKC models

Model Variable Coefficient Std. Error t-Statistic Prob.

( / )ln GDP P -0.0498 0.0156 -3.1832 0.0062

2( / )ln CO T 0.3955 0.0986 4.0107 0.0011

lnE 0.4546 0.0681 6.6749 0.0000

2( / )ln CO P 0.0508 0.0104 4.8881 0.0002

C 4.1721 0.1952 21.3782 0.0000
F-statistic 32525.9563 Prob. 0.0000

Primary 
model

R-squared 0.9999
Adjusted R-

squared
0.9999

( / )ln GDP P -0.0541 0.0291 -1.8600 0.0840
2( ( / ))ln GDP P 0.0021 0.0117 0.1778 0.8615

2( / )ln CO T 0.3990 0.1039 3.8413 0.0018

lnE 0.4599 0.0765 6.0100 3.1994

2( / )ln CO P 0.0507 0.0108 4.6982 0.0003

C 4.0751 0.5818 7.0047 0.0000
F-statistic 24340.8727 Prob. 0.0000

Quadratic 
model

R-squared 0.9999
Adjusted R-

squared
0.9998

( / )ln GDP P -0.0110 0.0333 -0.3294 0.7471
2( ( / ))ln GDP P -0.0337 0.0201 -1.6726 0.1183

3( ( / ))ln GDP P 0.0337 0.0162 2.0835 0.0575

2( / )ln CO T 0.3653 0.0947 3.8568 0.0020

lnE 0.2952 0.1048 2.8173 0.0145

2( / )ln CO P 0.0627 0.0113 5.5592 0.0001

C 6.3304 1.2020 5.2664 0.0002
F-statistic 25125.64 Prob. 0.0000

Cubic model

R-squared 0.9999
Adjusted R-

squared
0.9999

641

642 It can be seen from Table 17 that all three EKC models pass the F test. So, 

643 it indicates that the explanatory variables selected in this paper are suitable 

644 for explaining the changes of carbon emissions. However, the T-test of 

645 different variables shows that only EKC model 1 has passed the T-test, and all 
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646 explanatory variables are considered significant, while ( / )ln GDP P , 2( ( / ))ln GDP P  

647 and 3( ( / ))ln GDP P  in the quadratic model and cubic model of EKC are not 

648 significant. 

649 It can be seen from the regression coefficient that the regression 

650 coefficients of technological progress carbon intensity 2 /CO T , per capita 

651 carbon emission 2 /CO P  and industrial energy consumption E  are positive in 

652 the three EKC curves, and the sign of /GDP P  is stable. The sign of ( / )ln GDP P  

653 is also stable, but the sign of 2( ( / ))ln GDP P  is unstable. For every 1% increase in 

654 carbon intensity of technological progress, industrial carbon emissions will 

655 increase by 0.395%. For every 1% increase in per capita carbon emissions, 

656 industrial carbon emissions will increase by 0.0508%; For every 1% increase 

657 in industrial energy consumption, industrial carbon emissions will increase by 

658 0.4546%. Every 1% increase in per capita industrial output value will reduce 

659 industrial carbon emissions by 0.0498%, which also proves the decoupling 

660 relationship between economic growth and carbon emissions. 

661 Then R software 4.2.2 was used to draw images of quadratic and cubic 

662 functions of this paper's EKC, and the morphology of the three functions was 

663 observed, as shown in Figure 8.

664  

665 Figure 8   Curve morphology of EKC model in quadratic and cubic function 

666 forms

667

668 It can be seen from Figure 8 that the form of the quadratic function is “U” 

669 and the inflection point is ( / )=11.0987ln GDP P , which satisfies the EKC 

670 hypothesis. The cubic function form is “N” type, indicating that with the 

671 increase of per capita production capacity, China's industrial carbon emissions 
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672 experienced a change process of first rising and then decreasing, and the two 

673 inflection points are respectively ( / )=-0.0137ln GDP P  and ( / )=2.4069ln GDP P , also 

674 satisfying the EKC hypothesis. 

675 4 Prospect

676 This paper analyzes the driving factors of carbon emission and the impact 

677 of different driving factors on the decoupling of carbon emission and economic 

678 growth rate. However, in the quantitative decoupling analysis, only individual 

679 driving factors are selected instead of all driving factors as independent 

680 variables to establish a regression model. Whether the number of driving 

681 factors has an impact on the final results needs to be further studied in the 

682 future. Second, whether there is a lag effect in economic growth, and whether 

683 this year's carbon emissions will have an impact on economic growth next year 

684 or even in the following years. Finally, there are many decomposition models, 

685 so it is worth studying how to select the most suitable decomposition model 

686 for data characteristics, rather than just using the optimal model for analysis. 
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