1 Asadi, M. et al. Nanostructured transition metal dichalcogenide electrocatalysts for CO2 reduction in ionic liquid. Science 353, 467. (2016)
2 Mikkelsen, M.; Jørgensen, M.; Krebs, F. C. The teraton challenge. A review of fixation and transformation of carbon dioxide. Energy Environ. Sci. 3, 43-81. (2010)
3 Leung, D. Y. C.; Caramanna, G.; Maroto-Valer, M. M. An overview of current status of carbon dioxide capture and storage technologies. Renew. Sust. Energ. Rev. 39, 426-443. (2014)
4 Kainiemi, L.; Eloneva, S.; Toikka, A.; Levänen, J.; Järvinen, M. Opportunities and obstacles for CO2 mineralization: CO2 mineralization specific frames in the interviews of Finnish carbon capture and storage (CCS) experts. J. Clean. Prod. 94, 352-358. (2015)
5 Li, C. W.; Ciston, J.; Kanan, M. W. Electroreduction of carbon monoxide to liquid fuel on oxide-derived nanocrystalline copper. Nature 508, 504-507. (2014)
6 Lin, S. et al. Covalent organic frameworks comprising cobalt porphyrins for catalytic CO2 reduction in water. Science 349, 1208. (2015)
7 Jiang, K. et al. Metal ion cycling of Cu foil for selective C–C coupling in electrochemical CO2 reduction. Nat. Catal. 1, 111-119. (2018)
8 Nie, X.; Esopi, M. R.; Janik, M. J.; Asthagiri, A. Selectivity of CO2 reduction on copper electrodes: the role of the kinetics of elementary steps. Angew. Chem. Int. Ed. 52, 2459-62. (2013)
9 Calle-Vallejo, F.; Koper, M. T. Theoretical considerations on the electroreduction of CO to C2 species on Cu(100) electrodes. Angew. Chem. Int. Ed. 52, 7282-5. (2013)
10 Kim, C. et al. Alloy Nanocatalysts for the Electrochemical Oxygen Reduction (ORR) and the Direct Electrochemical Carbon Dioxide Reduction Reaction (CO2RR). Adv. Mater. 31, e1805617. (2019)
11 Wesselbaum, S.; vom Stein, T.; Klankermayer, J.; Leitner, W. Hydrogenation of Carbon Dioxide to Methanol by Using a Homogeneous Ruthenium–Phosphine Catalyst. Angew. Chem. Int. Ed. 51, 7499-7502. (2012)
12 Wang, Y. et al. Hydroxide Ligands Cooperate with Catalytic Centers in Metal–Organic Frameworks for Efficient Photocatalytic CO2 Reduction. J. Am. Chem. Soc. 140, 38-41. (2017)
13 Zhong, H. et al. Covalent Organic Framework Hosting Metalloporphyrin‐Based Carbon Dots for Visible‐Light‐Driven Selective CO2 Reduction. Adv. Funct. Mater. 30, e2002654. (2020)
14 Nam, D. H. et al. Metal-Organic Frameworks Mediate Cu Coordination for Selective CO2 Electroreduction. J. Am. Chem. Soc. 140, 11378-11386. (2018)
15 Zhong, H. et al. Synergistic electroreduction of carbon dioxide to carbon monoxide on bimetallic layered conjugated metal-organic frameworks. Nat. Commun. 11, 1409. (2020)
16 Schreier, M. et al. Covalent Immobilization of a Molecular Catalyst on Cu2O Photocathodes for CO2 Reduction. J. Am. Chem. Soc. 138, 1938-46. (2016)
17 Lan, Y. Q. et al. Ultrastable Dioxin-Linked Metallophthalocyanine Covalent Organic Frameworks as Photo-Coupled Electrocatalysts for CO2 Reduction. Angew. Chem. Int. Ed. (2020)
18 Chu, S. et al. Photoelectrochemical CO2 Reduction into Syngas with the Metal/Oxide Interface. J. Am. Chem. Soc. 140, 7869-7877. (2018)
19 Huang, X.; Shen, Q.; Liu, J.; Yang, N.; Zhao, G. A CO2 adsorption-enhanced semiconductor/metal-complex hybrid photoelectrocatalytic interface for efficient formate production. Energy Environ. Sci. 9, 3161-3171. (2016)
20 Jang, J.-W. et al. Aqueous-Solution Route to Zinc Telluride Films for Application to CO2 Reduction. Angew. Chem. Int. Ed. 53, 5852-5857. (2014)
21 Chang, X. et al. Stable Aqueous Photoelectrochemical CO2 Reduction by a Cu2O Dark Cathode with Improved Selectivity for Carbonaceous Products. Angew. Chem. Int. Ed. 55, 8840-5. (2016)
22 Yang, D. et al. Visible-light-switched electron transfer over single porphyrin-metal atom center for highly selective electroreduction of carbon dioxide. Nat. Commun. 10, 3844. (2019)
23 Zhou, B. et al. A GaN:Sn nanoarchitecture integrated on a silicon platform for converting CO2 to HCOOH by photoelectrocatalysis. Energy Environ. Sci. 12, 2842-2848. (2019)
24 Furukawa, H.; Cordova, K. E.; O'Keeffe, M.; Yaghi, O. M. The chemistry and applications of metal-organic frameworks. Science 341, 1230444. (2013)
25 Yang, D.-A.; Cho, H.-Y.; Kim, J.; Yang, S.-T.; Ahn, W.-S. CO2 capture and conversion using Mg-MOF-74 prepared by a sonochemical method. Energy Environ. Sci. 5, 6465-6473. (2012)
26 Zhang, J.-P.; Zhang, Y.-B.; Lin, J.-B.; Chen, X.-M. Metal Azolate Frameworks: From Crystal Engineering to Functional Materials. Chem. Rev. 112, 1001-1033. (2012)
27 Li, Y. et al. Integrating bimetallic AuPd nanocatalysts with a 2D aza-fused π-conjugated microporous polymer for light-driven benzyl alcohol oxidation. Chinese Chem Lett 31, 231-234. (2020)
28 Mikie, T.; Osaka, I. Small-bandgap quinoid-based π-conjugated polymers. J. Mater. Chem. C 8, 14262-14288. (2020)
29 Giri, D.; Raut, S. K.; Patra, S. K. Diketopyrrolopyrrole/perylene-diimide and thiophene based D-π-A low bandgap polymer sensitizers for application in dye sensitized solar cells. Dyes Pigments 174, 108032. (2020)
30 Zheng, L. et al. Solution-processed broadband polymer photodetectors with a spectral response of up to 2.5 μm by a low bandgap donor–acceptor conjugated copolymer. J. Mater. Chem. C 6, 3634-3641. (2018)
31 Weldeab, A. O. et al. Pyridine-terminated low gap π-conjugated oligomers: design, synthesis, and photophysical response to protonation and metalation. Org. Chem. Front. 5, 3170-3177. (2018)
32 Liu, J. et al. Conjugated Copper-Catecholate Framework Electrodes for Efficient Energy Storage. Angew. Chem. Int. Ed. 59, 1081-1086. (2020)
33 Pan, A. et al. CsPbBr3 Perovskite Nanocrystal Grown on MXene Nanosheets for Enhanced Photoelectric Detection and Photocatalytic CO2 Reduction. J. Phys. Chem. Lett. 10, 6590-6597. (2019)
34 Chang, K.; Zhang, H.; Chen, J. G.; Lu, Q.; Cheng, M.-J. Constant Electrode Potential Quantum Mechanical Study of CO2 Electrochemical Reduction Catalyzed by N-Doped Graphene. ACS Catal. 9, 8197-8207. (2019)
35 Cortes, M. A. L. R. M. et al. Photoelectrochemical reduction of CO2 with TiNT. Mat Sci in Semicon Proc 108, (2020)
36 Xie, S.; Zhang, Q.; Liu, G.; Wang, Y. Photocatalytic and photoelectrocatalytic reduction of CO2 using heterogeneous catalysts with controlled nanostructures. Chem. Commun. 52, 35-59. (2016)
37 Wang, Y.; Chen, J.; Wang, G.; Li, Y.; Wen, Z. Perfluorinated Covalent Triazine Framework Derived Hybrids for the Highly Selective Electroconversion of Carbon Dioxide into Methane. Angew. Chem. Int. Ed. 57, 13120-13124. (2018)
38 Yi, J. D. et al. Highly Selective CO2 Electroreduction to CH4 by In Situ Generated Cu2O Single-Type Sites on a Conductive MOF: Stabilizing Key Intermediates with Hydrogen Bonding. Angew. Chem. Int. Ed. 59, 23641-23648. (2020)
39 Li, X. et al. Selective visible-light-driven photocatalytic CO2 reduction to CH4 mediated by atomically thin CuIn5S8 layers. Nat. Energy 4, 690-699. (2019)
40 Wang, T. et al. Photoreduction of CO2 over the well-crystallized ordered mesoporous TiO2 with the confined space effect. Nano Energy 9, 50-60. (2014)
41 Varshney, S. K.; Nagayama, H.; Takezoe, H.; Prasad, V. Octasubstituted dibenzochrysenes: discotic liquid crystals with a twisted core. Liq. Cryst. 36, 1409-1415. (2009)