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Abstract 

The current study aims at GIS-based multicriteria decision analysis (AHP) to generate a landslide-susceptible map 

from Baramulla to Uri Road segment along NH-1, Kashmir Himalaya, India. The landslide causative factors examined 

to generate our AHP matrix are slope gradient, elevation, slope aspect, curvature, distance to drainage, distance to 

roads, distance to lineaments, geology, land use land cover (LULC), and Rainfall. The study mapped and identified 

the active landslides along NH-1 through extensive field investigations and other secondary data sources. The 

landslide events were dominated by rockfall and debris slides. Based on their importance in landslide occurrences, the 

thematic layers were given relative relevance scores using Saaty's scale. Besides, the Analytic Hierarchy Process 

(AHP) was employed to normalize the relative weights and attributes of the various thematic layers. In addition, all 

thematic data layers were combined using a weighted linear approach to generate the landslide susceptibility (LS) 

map. Furthermore, the resultant LS map was classed into five categories viz., very high (24.18 %), high (30.24%), 

medium (28.61%), low (15.28%), and very low (1.69 %). The study reveals that 54.42 % of the area falls under the 

high and very high susceptible zones. Likewise, 78.9% of overall model accuracy was computed from the Area under 

curve (AUC) method. Moreover, this study would aid infrastructural, geo-environmental, and landslide hazard 

planning in the studied region. 

Keywords Analytic hierarchy process (AHP) ·  Landslide susceptibility ·  Kashmir Himalaya ·  National Highway-

1(NH-1) ·  MCDA ·  Geographic Information System (GIS). 

 

Introduction 

     Landslides concern people worldwide (NDMA 2009). The movement of substantial quantities of rock, earth, or 

debris down a slope is called a landslide (Cruden 1991). Globally, landslides rank third among natural disasters 

(Castellanos Abella 2008). Landslides affect most of India, especially the Himalayas and other hilly regions. 

Landslides can cause loss of human life, animal life, infrastructure, and area finances. The Indian Himalayan Region 

(IHR) is home to one of the world's most complex mountain ranges and one of the youngest mountain chains. More 

than 2400 kilometers of length is to the east, while its width ranges from 220 to 330 kilometers (Agarwal et al. 1997). 

The Himalayas' complex geo-tectonic structure, topography, and climate cause frequent landslides (Sangra et al. 2017, 

Singh et al. 2014). Due to increased social and economic awareness and human settlement in mountainous areas, 



landslides have gained global attention (Aleotti and Chowdhury 1999). Heavy rain, earthquakes, water level changes, 

snowmelt, typhoons, etc. can cause landslides (Keefer 1984; Xie et al. 2015; Yang et al.  2016).  

     Several studies conducted in the Himalayas have mapped landslide hazards (Jamir et al. 2019; Pham et al. 2016; 

Mathew et al. 2009; Kamp et al. 2008; NRSA 2001). It has been noted by Dikshit et al. (2020) that landslide research 

is lacking in the North-Western Himalayas, particularly in Jammu and Kashmir. Research on landslides in this region 

is limited (Owen et al. 2008; Khattak et al. 2010; Mohammady et al. 2012; Chingkhei et al. 2013; Bilham and Bali 

2014; Singh et al.  2014; Hussain et al.  2015; Singh and Som 2016; Sangra et al.  2017; Hussain et al.  2018; Nanda 

et al.  2020a.b; Bashir and Ramkumar 2021; Abhijit et al.  2021; Mohsin et al.  2022). In the Kashmir Himalaya, roads 

are crucial for socioeconomic development. In hilly areas like the Kashmir Himalayas, landslides and slope failures 

are common. In hilly areas, landslides are the most destructive. Traffic congestion caused by highway slope failures 

inconveniences passengers. Landslides can cause fatalities and financial losses. Construction of roads in hilly areas 

accelerates cutting-caused slope failure (Singh and Kumar 2018). Hence, highway construction disturbs natural slopes, 

increasing their failure risk. Assessing landslide risks along roadways is essential for the successful development and 

management of infrastructure (Singh and Kumar 2018). Landslide maps are used for both planning and mitigation. A 

landslide hazard map depicts locations susceptible to landslides. Studies of landslide hazards necessitate knowledge 

of the factors that activate landslides (Singh and Kumar 2018). The likeliness and severity of landslide disasters are 

amplified by factors like earthquakes, rainfall, erosion, etc. (Tanyas et al.  2019). Geographic information systems 

(GIS) manage spatial and temporal data effectively. It allows flexible input-to-output changes. Researchers use GIS 

to map landslide hazards and susceptibility (Fan et al.  2017; Singh and Kumar 2018). In GIS landslide mapping is 

performed using qualitative, quantitative, and semi-quantitative approaches (Shano et al. 2020). Quantitative 

approaches use mathematical estimates, while qualitative approaches are descriptive (Reichnenbach et al. 2018). 

Quantitative procedures are more precise than qualitative approaches, but they rely on an accurate inventory of 

landslides to be effective. Semi-quantitative or semi-qualitative approaches are hybrids. Semi-qualitative techniques 

include AHP, ANP, fuzzy-AHP, etc. (Chaiyaphan et al. 2020). Additionally, MCDA techniques are often used to 

combine environmental, socioeconomic, and technical criteria to make suitable decisions about any spatial challenge 

on Earth (Mohebbi et al. 2013). MCDA is an evaluation method that facilitates the ranking of several likely solutions 

by identifying assessment criteria with competing objectives (Balew et al. 2020). MCDA is comprised of numerous 

ways for evaluating spatial difficulty; nonetheless, AHP and WLC techniques are commonly employed for numerous 

suitability analyses. AHP solves complex problems into simple criteria, which are then weighted (Saaty 1980; Saaty 

1987). Researchers have used AHP to map landslide hazards (Kumar and Anbalagan 2016). AHP helps find reliable 

solutions (Saaty 1980; Saaty 1987). 

     The study area selected is NH-1 from Baramulla to Uri, Kashmir Himalaya, India. NH-1 which runs near the 

Pakistan-India border in the Kashmir Himalayas, is strategically an important lifeline for the socioeconomic 

development of the region. Heavy rain or snow often triggers landslides on the highway. Landslides often damage the 

route and even road widening will make the situation worse. The present study area was chosen because it is among 

the most landslide potential areas in the Kashmir Himalaya. In addition, landslide occurrence in this region is mostly 

undocumented. Therefore, the current study is aimed at identifying the landslide-susceptible zones along NH-1 from 



Baramulla to Uri Road in the Kashmir Himalayas, India using Gis-based MCDA (AHP) approaches. Furthermore, the 

scope of this research can be extended to investigate landslides in other regions of the Northwestern Himalaya, 

particularly Kashmir Himalaya. This study also emphasizes the need for landslide early warning systems (LEWS) and 

slope stability measures to reduce future landslides. 

Study region 

     The present study area selected is situated between the Baramulla and Uri towns along the National Highway 1 

(NH-1), North Kashmir Himalayas, India. Geographically it is extended between the Latitudes 34°1'35.38"N - 

34°15'20.942"N and Longitudes 73°57'41.4"E - 74°24'10.11" E (Fig. 1). The study was conducted on a 45.0 km road 

stretch that travels along picturesque cliffs and mountainsides covered with trees. It encompasses Survey of India 

(SOI) toposheet No. 43J/4, 43J/8, and 43F/16, covering an area of 479.81 km2. Due to the increasing population trend 

and the rapid urbanization in the hilly terrains, the slopes here are at high risk. NH-1 is the lifeline and one of the 

strategically essential roads of Kashmir Himalaya. Due to reoccurring slope failures NH- 1, along with the other roads, 

is badly affected, and the area suffers vast economic losses, especially during the bad weather. Tourism, which is a 

good source of economy, is usually hampered due to road failure, especially during the monsoon period. Also, 

agricultural products are badly affected by landslides. The region's climate is broadly Mediterranean continental, 

which features chilly, wet winters and cool, dry summers. From December to May, the region experiences its highest 

levels of snowfall and Rainfall, and from June to September, its lowest levels. The maximum slope failure incidents 

are reported during this time of the year. The area also lies in seismic zone V; incidents like earthquakes and landslides 

are widespread. The elevation ranges from 1098 to 3475 m above sea level. It has a rough, undulating topography. 

Downstream from the main town of Baramulla, most of the route follows the south banks of the Jhelum River. 

Baramulla, Khanpora, Sheeri, Gantamulla, Mahura, Lagama, and Uri are well-known locations along the road. The 

magnificent view of the mighty Pir Panjal range, which rises to an average elevation of 1400 m to 4,100 m above 

mean sea level (m amsl), can be found on the road's southern side. Due to vegetation and human settlements, tracing 

geology and soil continuity over great distances is impossible.  

     The soil of the research region is comprised of four primary groups: fine loamy (41.2%), coarse loamy (44.8%), 

calcareous loamy (0.1%), and fine silty soils (13.9%). The geological formations are as old as the Proterozoic age, 

characterized by salkhala formations (carbonaceous phyllite, schist, limestone, and dolomite), and as young as Eocene 

– Miocene age which is characterized by lower Murree formations (Shale, Sandstone, and Siltstone). Alluvium, 

moraines, hill wash, and scree make up 22.2% of the lithology of the study region, followed by phyllite, quartzite, 

diamictite, and lava flows (19.8 %). Extensively dissected hills and valleys constitute the majority of the study area's 

geomorphology (78.5%). Mild erosion, heavy precipitation, snowfall, weathering, tectonic activity, and other 

anthropogenic activities including road widening and an inadequate drainage system all contributed to slope collapse 

along the section of road under study. 

Historical Landslide data 

     A study area’s hillside, drainage, and steep slopes are found to be the most favorable sites for landslide activity. 

Earthquakes, heavy rain, and snow usually cause large and small landslides. However, some landslides have been 

reported to have been caused by human activities. A historical landslide database was compiled from various 



governmental and non-governmental agencies, national and local newspapers, past research literature, and extensive 

frequent field visits. The current study shows major historical landslide events and their associated impacts as shown 

in Table 1. During fieldwork, it was observed that human activities such as haphazard hillside development, road 

widening, and inappropriate drainage embankment construction along the slope are responsible for triggering 

landslides. In addition, throughout the field visit, not all landslide events were documented if they did not injure or 

damage Construction (buildings, roads, etc.). 

Materials and methods   

     The precision of the LSZ map is dependent on the selection and quality of the landslide inventory as well as the 

elements that increase the likelihood of landslides occurring (Bathrellos et al. 2012). Likewise, a landslide inventory 

database keeps track of where landslides are, what kind they are, how big they are, and what caused them (Lageson et 

al.2016). The scope and readiness of the data, as well as the time frame and cost of the project, affect how the 

predisposing factors are chosen (Chen et al. 2014). For this study, 109 landslide locations, which occurred from 1990-

2022, were used along with 10 casual factors for the landslide susceptibility assessment. 

Landslide Inventory Mapping and Landslide Mechanism  

     The investigation of the potential for landslides always begins with the compilation of a detailed inventory 

(Pradhan- et al. 2010). Location, landslide type, activity, and physical details are all included in the inventory (Fell et 

al. 2008). Considering the same conditions that led to previous landslides is a common starting point for landslide 

hazard modeling (Dagdelenler et al. 2016). Therefore, the preparation of a comprehensive landslide inventory map is 

crucial. Mapping prior landslides helps to understand their causes and parameters (Guzzetti et al. 1999) and validate 

the final LHZ map. 

     A comprehensive landslide inventory was prepared with the aid of both primary (extensive field surveys during 

2019-2021) and secondary sources (historical material from newspapers, local interviews, Government departments 

like Border Road Organization (BRO), Geological Survey of India (GSI), and Roads and Buildings 

Department(R&B). It should be noted that the inventoried landslides did not necessarily occur in a single episode, but 

rather, in several instances, the landslides followed a sequential pattern, with numerous tiny landslides occurring in 

the same region, close together. 

     During a field survey, handheld GPS, measuring tape, and Brunton compass were employed to verify and update 

the information. The study area had 109 minor and major landslides (Fig. 2). The landslide inventory mapping data 

for model validation were divided into Training Samples (70%) and Tested Samples (30 %). Rockfalls and Debris 

slides were found to be the predominant types of landslides. The landslides were categorized by using Cruden and 

Vandine (2013) and Cruden and Varnes (1996) developed landslide classification scheme and are well depicted in 

Fig. 3. Furthermore, debris slide was revealed to be the predominant type (54 %) of landslide movement, followed by 

rockfall type (32 %) (Fig.3a-d). Most of the landslide activity observed (68 %) was of the active type. The landslide 

activity distribution was dominated by the widening type (29%), followed by the advancing type (24%) (Fig.3c). The 

most common style of landslide activity type was found to be multiple types (71%), followed by single type (22%) 

(Fig.3d).  



     According to the Literature review and fieldwork, hill cutting in the study region triggers landslides. Hills are 

frequently cut at their base to make place for highways, tunnels, and trains, for extraction purposes, or simply to make 

room for the construction of new and non-manufactured huts (prepared of poor waste materials and wood). This raises 

the steepness of the slope, which reduces its stability. Consequently, this strategy will put lives and property at 

landslide risk. Moreover, other triggers of landslide occurrences are adversely oriented structural discontinuity, weak 

and weathered materials, contrast in permeability, deforestation, incessant precipitation (rainfall), slope or its toe 

excavation, improper drainage, and irrigation. 

Thematic Layer Preparation  

     Ten thematic maps were prepared in RS and GIS platforms to prepare a final LSZ map. These thematic layers 

include slope gradient, elevation, slope aspect, slope curvature, distance to drainage, geology, distance to lineaments, 

land use/landcover, distance to roads, and precipitation (Rainfall). The lineaments were extracted from high-resolution 

satellite imagery motivated by the National Remote Sensing Centre (NRSC) Bhuvan, supporting lineament data. Using 

maximum likelihood classification and ground control points, a LULC map was generated using Landsat 8 OLI data. 

The topographic parameters like Slope gradient, elevation, slope aspect, slope curvature, and hydrological parameter 

(drainage) were generated from ALOS PALASAR-DEM. A Euclidean distance approach (proximity analysis tool) in 

ArcGIS was used to create proximity layers for drainage patterns, lineaments, and roadways. The Geological map of 

Jammu and Kashmir by Thakur and Rawat (1992) was employed to generate a geology map of the study region. After 

assessing the average annual gridded rainfall data (1990-2021) from the Indian Metrological Department (IMD), we 

converted the gridded rainfall data into point data and used an interpolation approach to construct a final rainfall map 

of the study area in ArcGIS. Likewise, steps like LSZ's projections, digitization, thematic map creation, and thematic 

map integration were accomplished in ArcGIS 10.8. All the Thematic layers were converted to raster format using 

15×15 m grid cells in a UTM Projection; Zone 43; Datum WGS 84 (Tian et al. 2008). Table 2 shows the datasets and 

sources used in the current study. The study's overall Methodological approach is depicted in Fig. 2. 

Landslide Causative Factors 

Slope gradient 

The steepness of the slope is a basic factor in determining the landslide frequency of any region. It is a crucial element 

in landslide incidence (Donnarumma et al. 2013). The steep angle of the slope causes the material to become unstable. 

Likewise, slope stability is instantly impacted due to the change in shear forces of the material (Lee and Min. 2001). 

The slope gradient also affects water flow (Pourghasemi et al. 2012). Using the Jenks natural breaks categorization 

method, the slope gradient map (Fig.5a) was divided into seven (7) groups (Jenks. 1967): 5 (Gentle Slope), 5–8.5 

(Moderate Slope), 8.5–16.5 (Strong Slope), 16.5–24 (Very Strong Slope), 24–35 (Extreme Slope), 35–45 (Steep 

Slope), and >45 (Very Steep Slope). 

Slope aspect 

The slope's aspect shows which orientation it is sloping. Aspect influences water flow, erosion characteristics, and 

solar exposure (Singh and Kumar. 2018). In the present study, the slope aspect was extracted from ALOS Dem and 



was reclassified into nine (9) distinct groups (Jenks. 1967), viz; North, Northeast, East, Southeast, South, Southwest, 

West, Northwest, and Flat (Fig.5b). Moreover, slopes towards South, North, and South-west are where most of the 

landslide regions are located. 

Curvature 

The definition of curvature is the slope of a slope. Specifically, this is a second surface derivative. A positive curvature 

value suggests a convex surface, whereas a negative value denotes a concave surface. A ‘zero’ represents a perfectly 

flat surface. Curvature infers the influence of water in landslide hazard zones (Ohlmacher. 2007). This study generated 

a curvature from ALOS Dem in ArcGIS 10.8 and classified it into three groups (Fig. 5d): concave ( -0.639999986), 

flat (-0.639999986-0), and convex (0 - 43.13851027).  

Elevation 

A key indicator of landslide risk is the elevation of the terrain. The ASTER Dem was used to extract and produce an 

elevation map. As landslides frequently occur at higher elevations, earthquakes are also significantly influenced by 

height. In the area under study, elevations vary from 1,098 to 3,475 meters. In this study, the elevation map was 

reclassified into five groups (Jenks 1967): 1,098 - 1,627 m, 1,627 - 1,903 m, 1,903 - 2,202 m, and 2,202 - 2,579 m 

(Fig.5c). 

Proximity to Drainage 

Rivers are significant in developing landslides (Park et al.  2013). Furthermore, due to slope sub-quotation, and gully 

erosion, these can destroy banks and shifting terrain, affecting landslide initiation (Bui et al. 2011). The drainage 

network of the research area was created from ALOS Dem by using hydrology tool of ArcGIS. In the present study, 

we generated five distinct buffer groups in the present investigation, including 0-150, 150-300, 300-450, 450-600, and 

>600 m (Fig.5g). 

Proximity to Lineaments 

The relatively straight alignments of linear or curvilinear patterns in satellite imagery indicate the presence of 

lineament, which is composed of structurally regulated linear or curvilinear structures. These details reveal the surface 

topography beneath the structural details. Many landslides are triggered by lineaments, which are caused by tectonic 

fractures that typically reduce rock strength and are also required for susceptibility studies. In the current study, 

lineaments were digitized using high-resolution imageries and backed up by lineament data from the NRSC Bhuwan. 

Finally, the study area was divided into five distinct buffer zones in ArcGIS 10.8 (Fig.5h). viz., 0-500, 500-1000, 

1000-1500, 1500-2000, and >2000 m. 

Proximity to Roads 

Another key aspect in affecting the likelihood of landslides is their proximity to roads. The cutting activities involved 

in road construction alter the terrain's natural slopes (Siddique et al. 2017). As a result, the slope at the toe weakens 

along the roadways. The roads were digitized manually from the SOI toposheets and updated with the high-resolution 

Google Earth Imageries. Furthermore, the study region was categorized into five buffer groups viz: 0-500, 500-1500, 

1500-2500, and >2000 m (Fig. 5i). 



Rainfall 

Increased Pore-water pressures in the ground typically cause rain-induced landslides (Sati. 2014). Rainfall, which is 

believed to be a trigger for the onset of landslides, is among the most critical elements in landslide susceptibility 

assessment. For this study, Long Period Average (LPA) yearly IMD rainfall data was used to develop a rainfall map. 

Further, this resultant map was reclassified into three groups (Fig. 5j): Low (1,014 -1,093), Moderate (1,093 -1,144), 

and High (1,144 - 1,193) mm/yr. 

Land use/Land cover  

Slope stability is greatly influenced by land use and land cover (Ocakoglu et al. 2002). Human needs are a driving 

force behind many land use shifts, including converting rural and forested areas into urban centers, cultivating forestry 

land, and leveling slopes to improve infrastructure development. Compared to areas with little or no vegetation, those 

with thick vegetation are less likely to experience landslides (Gokceoglu and Aksoy 1996). Due to the accelerated 

expansion of infrastructure and development projects in steep locations, the slope is becoming more and more 

susceptible to landslides. For this study, bare ground is considered highly landslide-prone. In this study, lulc was 

reclassified into eight categories (Fig.5f), viz., Settlement (Mixed built-up) (4.42%), Barren land (21.10%), 

Agriculture (16.65%), Dense Forest (29.63%), Scrub/Shrub (4.19%), Sparse Forest (22.58%), Pastures (0.01%) and 

Waterbodies (1.42%)  

Geology 

The primary use of the geological map of an area is for assessing landslide hazards (Thennavan and Pattukandan 

Ganapathy 2020). So different geological units are important for analyzing vulnerable zones due to their varying 

landslide sensitivity levels. In the present study, the geological map was generated from the geological map of Jammu 

and Kashmir by Thakur and Rawat (1992) and reclassified into ten categories. The spatial distribution of various 

geology types in the study region is depicted in Fig.5e. The Salkhala Formation, Upper Triassic Limestones, Panjal 

Volcanics, Thrust, Murree/Dharamshala, Pampur member (Karewa formation), Alluvium, Basement Inliers (Permian-

Triassic), Dilpur Formation (Karewa formation), and Hirpur Formation (Karewa formation) are among the ten 

geological features in the study. According to the AHP analysis, Upper Triassic limestones have the highest proportion 

(41.27 %), followed by the Salkhala formation (28.57 %) and Alluvium (11.11 %) of landslide occurrences. The 

geology types, Murree/Dharamshala, Pampur member, and Dilpur Formation classes, possess no landslide 

occurrences. Landslides are influenced by alluvium and limestone deposits because of their strong capacity to absorb 

water. Due to their weak water adsorption capacity and semi-permeability, gneiss and states-schist are geological 

blocks that are somewhat prone to landslides. 

Landslide Susceptibility Zonation (LSZ) Mapping 

Assignment of weights and normalization of weights using AHP 

     Since the findings of the integrated analysis are highly sensitive to the weights allocated to the various classes, this 

step is of utmost importance (Kayastha et al.  2013). Due to its capacity to produce fast, accurate, and cost-effective 

results, the AHP is gaining interest in landslide prediction modeling. AHP is a pairwise matrix analytical method used 

to get a single parameter's geometric mean and normalized weight (Saaty and Vargas 1980). In landslide hazard 



analysis, the AHP technique establishes a hierarchy of criteria for problem-solving by first outlining the research 

objectives and then specifying the criteria and sub-criteria to evaluate those objectives. Several studies have utilized 

the AHP to rank the significance of different criteria and sub-criteria (Myronidis et al.  2016; Kayastha et al.  2012; 

Thanh and de Smedt 2012; and Yalcin et al. 2011). On basic Saaty's 1-9 scale, where "1" means "equal importance," 

we assigned relative significant values to all data layers(themes) and their corresponding attributes. In Table 3, "9" 

indicates "great significance" for one theme over another (Saaty and Vargas 1980). Likewise, in Table 4, the Random 

Inconsistency (R.I) value is listed for the corresponding number of Criteria (Saaty 1987).  Besides, Table 5 displays 

the relative importance among various classes and their corresponding class types(attributes). 

Therefore, the final thematic layer weights were determined by the following steps. 

1. Using the formula, we added the numbers in each column of the pairwise matrix (Table 6).  

                                                                         𝐿𝑗 = ∑ 𝐶𝑖𝑗𝑛𝑖𝑗=1                                                                

Lj = sum of each pairwise matrix column's values and Cij = The Number at the ith row, jth column that corresponds 

to each criterion. 

2. A normalized pairwise matrix is obtained by dividing each matrix entry by the sum of each column (Table 7). 

                                                               𝑋𝑖𝑗 = 𝐶𝑖𝑗𝐿𝑗  

Xij = Normalized pairwise matrix values for the ith row and jth column. 

3. When determining standard weights, the normalized row matrix sum is divided to the total number of criteria used 

(N).                                                            

                                                             W𝑖 = ∑ 𝑋𝑖𝑗𝑁  

    Where Wi = Standard weight.  

 

 

4.  Analysing for Consistency. 

Multiplying each thematic layer's pairwise comparison matrix with its normalized pairwise comparison matrix 

yields the consistency vector. Likewise, the values of the consistency vector were entered into the following 

equation: λ = ∑ 𝐶𝑖𝑗𝑋𝑖𝑗  

where λ = Consistency vector. 

5. One more appealing point for the AHP is its ability to assess disagreement in ratings between pairs. A consistency 

measure that indicates inconsistencies in a given set of pairwise ratings can be quantified using the eigen values. 

For instance, Saaty (2000) showed that the maximum eigenvalue 'λMax' for a consistent reciprocal matrix is equal 
to the number of comparisons. Hence,the consistency index (CI) is a measure of consistency and is defined as 

follows:                                                                                                                                       

                                

                                                                     𝐶𝐼 = 𝜆 max −𝑛𝑛−1      

(1) 

(2) 

(3) 

(4) 

(5) 



 

 Where, “CI” and “n” correspond to Consistency Index value and the Number of criteria utilized respectively for the 

study.  

 

6. The C.R. introduced by Saaty (1977) compares the values of the consistency index with the random consistency 

index (Table 8). The formula to determine the consistency ratio (CR) is given below.  

 𝐶𝑅 = 𝐶𝐼𝑅𝐼 

Where, “RI” denotes the Random Inconsistency value (also known as Randomized index of Saaty, 1990) 

     Furthermore, we can accept inconsistency if the ratio is below 10%. If not, we'll adjust the subjective assessment 

(Saaty 1977). Moreover, the values of RI for a set of ‘n’ criteria, where ‘n’ denotes the entire number of criteria 

utilized, as given in Table 4. 

Assessment of Landslide Susceptibility Zonation (LSZ) Map 

     The LSI measures the potential for landslides and is a dimensionless quantity. Therefore, we located potential 

landslide areas using a GIS-based MCDA technique. By multiplying the thematic layers' weights with the sub-

parameter weights for each layer, we obtained the products of all the characteristics, which then were summed using 

the formula in eq. 7. 

𝐿𝑺𝑰 = 𝑨𝑾 ∑ 𝑨𝑹𝟗
𝑨=𝟏 + 𝑮𝑾 ∑ 𝑮𝑹𝟗

𝑮=𝟏 + 𝑬𝑾 ∑ 𝑬𝑹 + 𝑺𝑾 ∑ 𝑺𝑹𝟓
𝑺=𝟏 + 𝑳𝑾 ∑ 𝑳𝑹𝟓

𝑳=𝟏 + 𝑫𝑾 ∑ 𝑫𝑹𝟓
𝑫=𝟏 + 𝑳𝑼𝑾 ∑ 𝑳𝑼𝑹 + 𝑪𝑾𝟗

𝑳𝑼=𝟏
𝟒

𝑬=𝟏 ∑ 𝑪𝑹𝟑
𝑵=𝟏 + 𝑹𝑾 ∑ 𝑹𝑹𝟑

𝑵=𝟏 + 𝑹𝑭𝑾 ∑ 𝑹𝑭𝑹𝟑
𝑵=𝟏  

 

     Where LSI = Landslide susceptibility index; A.W, G.W, E.W, S.W, L.W, D.W, LUW, C.W, R.W, and RFW 

indicate the corresponding weights of slope aspect, geology, elevation, slope gradient, distance to lineament, distance 

to Drainage, land use and land cover, curvature, distance to roads, and Rainfall respectively. While as, A.R, GR, E.R, 

S.R, L.R, D.R, LUR, C.R, R.R, and RFR represent the assigned weights of each parameter sub-class, namely aspect, 

geology, elevation, slope gradient, lineament, Drainage, land use and land cover, curvature, roads, and Rainfall 

respectively. Therefore, AHP provides a comprehensive criterion ranking method by applying the comparison matrix 

among all options and data on criterion ranking. Furthermore, the most essential element is the one with the highest 

value. 

Results and discussion 

     In the current research work, ten potential causative factors have been investigated in the study region using the 

MCDA (AHP) technique, and accordingly, thematic layers have been created in the GIS platform. After that, we 

assigned a weight to numerous elements inside each thematic layer by landslide type and location. Based on expert 

opinion, values between 1 (equal) and 9 (highest) have been assigned to each set of parameters. Class and class features 

within each factor are depicted in Table 5, while as, pairwise comparisons of the causal factors are shown in Table 6, 

with the degree of the slope being given the highest weight. Also, Table 6 displays both the lower part of the matrix 

(6) 

(7) 



values and the reciprocal upper part of the matrix. The normalized principal eigenvector is tabulated in the final column 

of the matrix. For example, the slope receives the most significant weight of 0.257, and LULC receives the least 

weight of 0.020. The sum of the allocated weights equals to one. The consistency ratio is checked against the ratings 

and weights before index values are calculated using Equation 5 for the calculation of CI and Equation 6 for the 

calculation of C.R. Hence, C.R. Scores below 0.10 in (Table 8) show that the preferences used to generate the 

comparison matrix are stable. Finally, a hazard zonation map for the area was generated using the GIS-based MCDA 

(AHP) approach with the help of the given weighting values (Fig.5). The AHP-generated LSZ map was then divided 

into five hazard classes (Table 8), using the Jenks natural breaks categorization system: very high (24.18%), high 

(30.24%), moderate (28.61%), low (15.28%), and very low (1.69%). Also, Fig 7 displays the percentage of each 

categorized class's area.  

     The LSI map was prepared, categorized, and validated by using the natural break method (Jenks 1967) in GIS 

platform. The proportion of landslides found in each class of the final map was computed by combining the reclassified 

susceptibility zonation map with the landslide inventory dataset using a tabular tool in ArcGIS. The predictive 

accuracy of the AHP model for the current study was found to be 79.8%. Moreover, a detailed landslide field 

investigation was conducted in the research area (Fig.9). During the validation process, it was observed that the 

LSZ map and pre-existing landslide location datasets are showing a high level of satisfactory agreement. Therefore, 

study suggests that almost all landslide locations fall under the high and very high susceptible categories. Thus, the 

AHP method and phenomena are a perfect match for the real situations in the current study region. However, the map's 

reliability depends on the data collection's precision, method's robustness, and the landslide prediction experience. 

 

Very high susceptible zone 

A total of 116.02 km2 (24.18%) studied area lies under very high landslide susceptibility zone (Fig. 7 & Table 8). 

Moderate to very high steep slopes, Triassic limestone, Salkhala formation, Muree formation, settlement, barren land, 

proximity to drainage, lineament, road mostly 5oom, low to mid-elevations, south, southwest, North aspects are the 

characteristics of this class. Most settlements between Baramulla to Uri Road stretch fall within this category, 

particularly Uri reservoir, Chollan Kalsan, and Limber. 

 

High susceptible zone 

The high susceptibility zone encompasses 145.12 Km2 of the area accounting 30.24 % of the whole research area 

(Table 8). It is characterized by steep slopes, high elevations, predominantly salkhala, Upper Triassic limestones, 

Panjal volcanics, and Alluvium formations.  Furthermore, this zone largely lies in a moderate to high precipitation 

region which encompasses the Barrren land, scrubs, sparse forests, and settlements. The proximity to roads, 

lineaments, and rivers/streams is extremely minimal in most of this zone. The villages falling under this category are 

Uri, Boniyar, Lagama, Nalusah, Bimyar, Kitchama and Sheeri. 

 

 



Moderate susceptible zone 

A total of 136.2 km2 (28.61 percent) research area falls within the moderate susceptibility zone (Table 8), primarily 

on the Scrubs, sparse forests, Pastures, and Agriculture land use classes. This zone is further distinguished by its 

moderate to strong slopes, sandy skeletal soil, and exceptionally moderate to low precipitation region. Besides, this 

class is dominated by Salkhala, Alluvium, Hirpur and Dilpur geological formations. Furthermore, this zone resides a 

small valley with high and low altitudes, moderate slope classes, and the area at less proximity to rivers and faults. 

Moreover, the villages falling under this hazard category are Pahlipora and Khadaniar. 

 

Low and very low susceptible zone 

In the current study, these susceptible zones account for 16.97% of the 864.84 km2 study area (Table 8). Likewise, 

these zones are particularly prevalent on gentle-moderate slopes with exceptionally steep slope classes. Further, these 

zones are situated at a substantial distance from roads, lineaments, and rivers on Salkhala, Dilpur, Hirpur and Alluvium 

geological formations predominantly. The villages falling under these classes are Baramulla, Gantmulla payeen, 

Khanpora and Janbaz colony. 

 

Accuracy Assessment of LSZ map 

      For LSZ map’s validation, the ROC is a frequently used method (Roy and Saha. 2019). In addition, this method 

evaluates the accuracy of a generated LSZ map and calculates its ability to predict in terms of AUC value. Likewise, 

the True Positive Rate (TPR) versus the False Positive Rate (FPR) is often illustrated graphically utilizing ROC curves 

(Althouse. 2016). Furthermore, the specificity and sensitivity values are used to construct the AUC curve to describe 

model performance, with a value closer to 1 indicating exceptional goodness of fit and an AUC value less than 0.5 

indicating that the model precision level is unsatisfactorily low (Pradhan and Kim 2016).     

     The final resultant map in the study region was validated by superimposing data from 30 percent of the landslide 

locations, previously designated as testing samples. For this purpose, 30% of total landslide points were collected 

using a GPS device during a field survey and compared with the final LSZ map depicting five levels of susceptibility. 

Besides, AUC value calculation was the prime criteria for precisely evaluating the model (Fig.8). Therefore, from the 

ROC curve, the AHP-generated LSZ map (with an AUC value of 79.8%, which is good) is quite accurate in terms of 

landslide prediction. 

     From the past two decades, numerous approaches for mapping landslide risk have been developed including 

qualitative, semiquantitative, and quantitative methods. None of these approaches, however, are generally accepted 

for use in assessing the risk of landslides due to ongoing arguments regarding their accuracy. Consequently, for the 

current study, a GIS-based multicriteria decision-making method was utilized to determine the most probable landslide 

events. This method examines multiple landslide causal factors, although it may be hard to quantify their contributions. 

This study employed an AHP method to assign relative relevance weights to landslide-triggering causal factors. 

Likewise, a knowledge-driven expert opinion was employed for the pairwise comparison of the causative factors to 

establish consistent and trustworthy weights. Subsequently, the multicriteria criteria evaluation (MCE) analysis was 

applied for the LSI calculation of final LSZ map. The spatial efficiency of the resultant LSZ map assessed by AUC 



shows that the used model performed well (with an overall accuracy of 79.8 %). The AHP model is adaptive and 

produces good results, although causation with respect to landslide inventory in our research region is unclear. 

Likewise, availability of large-scales geological maps, high-resolution satellite imageries and digital elevation models 

(DEMs), and landslide data is scarce, limiting this study's landslide and time parameter/factor selection. Hence, AHP 

was chosen due to inadequate NH-1 landslide data and its suitability for large-scale assessments or places without 

inventory (Zhou et al. 2016).  

     Planning and control of landslide hazards could be improved with the help of the study's LSZ map. The resultant 

LSZ map might be used to recognize high-vulnerable areas and emphasize the installation of early warning systems 

and other preventative measures like increased vegetation cover, improved drainage, slope stabilization, and so on. 

The LSZ map can serve as a reference for transportation, and structural planning in the study region, with the goal of 

potentially reduce the effects of landslides. 

     Moreover, there are certain limitations to the study that should be considered. Since the study only reflected ten 

potential causal factors, additional elements including rock characteristics, soil parameters, and seismicity were not 

encompassed. Likewise, the study did not include the temporal variations of the causal parameters that could alter the 

landslide-susceptible zones, which is another limitation of the research. In addition to primary data sources, this study 

made use of some ancillary (secondary database) databases, which may have some limitations in spatial resolution 

and accuracy. 

Conclusion 

     This research focuses on a section of the NH-1 highway which is frequently impacted by landslide disasters. 

Planning and executing highway building projects necessitate a landslide hazard assessment. In the present work, a 

LSZ map was prepared using Geospatial tools and the AHP (Saaty and Vargas 1980) model along NH-1 in the Kashmir 

Himalaya, India. Ten important causal parameters of landslide occurrences were considered for the thematic data layer 

generation in a GIS platform. On Saaty's scale, suitable weights were assigned to the ten selected thematic maps and 

their characteristics based on their relative importance in AHP. Subsequently, AHP was applied to normalize the 

weights given to various GIS data layers(themes) and their corresponding classes. The LSI was estimated using 

weighted linear technique and finally LS maps were produced in a GIS. Later, LSZ map of study area was reclassified 

into five distinct susceptible classes viz; very high, high, moderate, low, and very low susceptible zones. 

     According to the landslides susceptibility Assessment (LSA), most of the study region (54.42 %) constitutes very 

high and high vulnerable zones due to lineaments (thrusts, faults, joints), steep slopes, improper drainage system, road 

widening, and weak lithology. As a result, regions near lineaments, drainage, roadways, and steep slopes are most 

vulnerable to landslides and hence highly unsafe for construction purposes. Likewise, areas that are composed of weak 

Triassic limestones and alluvium geological formations are highly insecure for construction purposes. These findings 

suggest that Limber, Chollan kalsan, Uri, sheeeri, boniyar, lagama, and Khadaniar are unsafe and highly prone to 

landslides in the future. In addition, 44% of the research area was classified as a low or moderately susceptible zone.  



From the study analysis, it is safe to build in low vulnerable zones; nevertheless, moderately vulnerable zones require 

extensive geotechnical investigation prior to any future development. 

 

     The final LSZ map was validated using the ROC curve approach. The validation data revealed that the AHP method 

has a greater prediction accuracy (78.9 %). Therefore, the produced LSZ map is valid for landslide assessment, risk 

evaluation, mitigation measures, and for any future developmental projects in the region. Furthermore, it will provide 

the public, engineers, and planners with enough knowledge about the present and future likelihood of landslides to 

mitigate construction hazards for high / very high-risk zones. 
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