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Abstract 

Background: Despite several years since the COVID-19 pandemic was declared, challenges remain in 

understanding the factors that can predict the severity of COVID-19 disease and complications of SARS-CoV-2 

infection. While many large-scale Multiomic datasets have been published, integration of these datasets has the 

potential to substantially increase the biological insight gained allowing a more complex comprehension of the 

disease pathogenesis. Such insight may improve our ability to predict disease progression, detect severe cases 

more rapidly and develop effective therapeutics.  

Methods: In this study we have applied an innovative machine learning algorithm to delineate COVID-severity 

based on integration of paired samples of proteomic and transcriptomic data from a small cohort of patients 

testing positive for SARS-CoV-2 infection with differential disease severity. Targeted plasma proteomics and an 

onco-immune targeted transcriptomic panel was performed on sequential samples from a cohort of 23 severe, 

21 moderate and 10 mild COVID-19 patients. We applied DIABLO, a new integrative method, to identify multi-

omics biomarker panels that can discriminate between multiple phenotypic groups, such as the varied severity 

of disease in COVID-19 patients. 

Results: As COVID-19 severity is known among our sample group, we can train models using this as the 

outcome variable and calculate features that are important predictors of severe disease. In this study, we detect 

highly correlated key variables of severe COVID-19 using transcriptomic discriminant analysis and multi-omics 

integration methods. 

Conclusions: This approach highlights the power of data integration from a small cohort of patients offering a 

better biological understanding of the molecular mechanisms driving COVID-19 severity and an opportunity to 

improve prediction of disease trajectories and targeted therapeutics. 
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Background 

Since the COVID-19 pandemic ensued, a plethora of symptoms have been identified to lead to stratification of 

disease severity within patients infected with SARS-CoV-2. Symptoms are akin to those observed in severe 

acute respiratory distress syndrome (SARS) inclusive of fever, dry cough, exhaustion, loss of taste and smell 

and shortness of breath [1-5]. The efficiency of the host’s immune response and the infectivity of the SARS-CoV-

2 are two core factors that define disease pathogenesis and viral survival. Despite a vast array of studies 

investigating the pathogenesis of COVID-19, we still do not fully comprehend the biomarkers that can predict 

severe disease, nor the biological pathways contributing to disease progression and severity [6-12]. High-

throughput ‘Omics technologies have been applied to rapidly understand the mechanistic pathways of viral 

infection for several viruses, including dengue, zika and West Nile virus [13-15]. Similar large-scale Multiomic 

studies have been published over the past 3 years investigating the viral pathogenesis of SARS-CoV-2 [16-26].  

As stand-alone datasets they provide valuable information on disease pathogenesis. However, 

integration of these datasets has the potential to substantially increase the depth of biological insight gained. 

Systems biology approaches can leverage multi-omics datasets, identify molecular biomarkers of disease and 

capture biological network complexity. Data Integration Analysis for Biomarker Discovery, DIABLO, is an 

integrative method that can be applied to identify multi-omics biomarker panels that can discriminate between 

multiple phenotypic groups, such as the varied severity of disease in COVID-19 patients [27, 28]. An in-depth 

understanding of the biological changes occurring in response to SARS-CoV-2 infection can be assimilated 

through evaluation of cellular and molecular features including proteins, RNA and DNA. In this study, we detect 

biomarkers of severe COVID-19 using transcriptomic discriminant analysis and multi-omics integration methods. 

Since COVID-19 severity is known among our sample group, we can train models using this as the outcome 

variable and calculate features that are important predictors of severe disease. Our study highlights the power 

of integrating datasets to understand disease pathobiology.  

  

  

  

  



Materials and Methods 

Patient recruitment and Sample Collection 

Patient samples were collected between 1 May 2020 and 9 June 2021 from patients seen at the Keck Hospital, 

Verdugo Hills, and Los Angeles (LA) County Hospital and stored in the University of Southern California (USC) 

COVID-19 Biospecimen Repository. At this time, no subjects were vaccinated nor were samples analyzed for 

SARS-CoV-2 variant. For this study, patients were assigned anonymized, coded IDs and were grouped 

according to the following cohort definitions: severe, indicating COVID-19 positive subjects who were admitted 

to the intensive care unit (ICU); moderate, indicating COVID-19 subjects who were hospitalized, but not admitted 

to the ICU; mild, indicating COVID-19 subjects who tested positive for SARS-CoV-2 but did not require 

hospitalization; and control, indicating subjects who tested negative for SARS-CoV-2 upon admission to the ICU 

for treatment of other severe diseases. Population demographics for these cohorts have been previously 

published [29]. Participants were predominantly Hispanic/Latinx (69%), reflecting the demographics of donors 

available from the source biorepository (57.4% Hispanic/Latinx, https://sc-ctsi.org/about/covid-19-biorepository).  

  

Proteomics 

Plasma proteomics datasets have been previously published [29]. In brief, plasma samples were analyzed by 

Olink proximity extension assays (PEA) for quantification of 184 secreted markers. Olink’s Target 96 

Inflammation and Target 96 Oncology II panels were chosen for the spread of proteins related to immune 

response and tissue remodeling. Of the 184 proteins in the panels, 6 were duplicates and 7 had NPX values 

under the protein-specific limit of detection (LOD) in >50% of samples in all cohorts, leaving 171 unique proteins 

for analysis. In total, 144 samples were analyzed. Samples were determined to fail quality control if internal 

incubation and detection controls deviated +/- 0.3 Normalized Protein eXpression (NPX) value from the median 

value across all samples. Four samples failed both panels and were excluded and eight samples failed the 

Oncology II panel and were only included in the analysis of the Inflammation panel.  

  

RNA Extraction & Quantitation 

Total RNA was extracted from whole blood samples using the MagMAX for Stabilized Blood Tubes RNA Isolation 

Kit (Thermo Fisher Scientific, Waltham, MA), respectively, according to the manufacturer’s high-throughput 

https://sc-ctsi.org/about/covid-19-biorepository


protocol using the KingFisher Duo Prime Purification System (Thermo Fisher Scientific). RNA was eluted in 50 

μl of MagMAX Elution Buffer, and yield was determined by quantitative real-time PCR using the TaqMan Fast 

Virus 1-Step Master Mix (Applied Biosystems, Foster City, CA) and TaqMan Gene Expression Assay, GUSB 

(Applied Biosystems), using Promyelocytic Leukemia (HL-60) Total RNA (Invitrogen) as the standard, according 

to the manufacturer’s recommendation. A concentration of 10 ng in 7 μL, or 1.43 ng/μL, was required as an 

adequate yield to proceed to cDNA synthesis. Total RNA was reverse transcribed using the SuperScript VILO 

cDNA Synthesis Kit (Invitrogen) according to the manufacturer’s specifications.  

  

Library Preparation and Next-Generation Sequencing 

RNA libraries were prepared from reverse-transcribed cDNA samples on the Ion Chef System using the Ion 

AmpliSeq Kit for Chef DL8 and Oncomine Immune Response Research Assay (Thermo Fisher Scientific). RNA 

libraries were immediately used for sequencing. Magnetic bead purification and size-selection steps were 

performed using AgenCourt AMPure XP Beads (Beckman Coulter, Brea, CA) and DynaMag-PCR Magnet 

(Invitrogen). Sequencing of prepared RNA libraries was performed on the Ion Chef and Ion GeneStudio S5 

Systems. RNA libraries were sequenced using the Ion 520 and Ion 530 Kit and Ion 530 Chips.  

  

NGS Analysis Pipeline and QC 

Base calling, alignment, read filtering, and variant calling was performed on the IonTorrent Suite (v5.16). Reads 

smaller than 25 bases were removed. Thumbnail quality control reports produced by the Ion Torrent Suite were 

assessed for percentage ion sphere particle (ISP) loading and density, total reads and percentage usable reads, 

and read length. Runs were excluded if percentage ISP loading was below 70% overall or if ISP density was 

below 50% in any region of the chip, if percentage usable reads was below 70%, or if median read length was 

below 120bp. RNA libraries were aligned to the Immune Response (v3.1) reference library and analyzed using 

the ‘immuneResponseRNA’ plugin on the Ion Torrent Suite. 

 

Single-omics data analysis 

Unpaired student’s t-test with p value ≤ 0.05 and adjusted p value (FDR) ≤ 0.1 were applied. Additionally, a fold-

change cut-off was employed to obtain the differentially expressed features. Differentially expressed proteins 



(DEPs) were subjected to hierarchical clustering analysis, volcano plot, and Principal Component Analysis (PCA) 

using Olink Statistical Analysis Application (v1.0). Gene ontology and pathway enrichment analysis were 

retrieved from KEGG and Reactome using g:profiler [30]. Transcriptome Analysis Console (TAC, Applied 

Biosystems, v4.0.1.36) was used to perform one-way ANOVA comparison of gene expression levels from the 

RNA-seq data set. TAC was used to perform hierarchical clustering, generate a heatmap of gene expression 

levels, and generate volcano plots. Distances for hierarchical clustering were computed using the complete 

linkage method. Network analysis was performed using the STRING database (STRING Consortium, version 

11.5). Protein-protein connections were assigned a combined “score” by evaluating probabilities of interaction 

derived from literature and database mining, then mapped according to these scores. The minimum required 

interaction score was set at the highest confidence (0.9) [31].  

  

Dataset Preparation for mixOmics analysis  

Both RNA and proteomic datasets required data cleaning prior to model building. For RNA data from Ion Torrent, 

individual excel sheets containing log2-scaled, housekeeping normalized counts for up to 8 samples were 

imported into R. ‘Tidyverse’ functions were used to merge these tables into one ‘feature by sample’ matrix with 

redundant gene names corrected. For proteomic data, the Olink batch-normalized data in excel format was read 

into R and filtered to retain only patient’s plasma samples. Sample name errors were fixed at this stage. The 

resulting data tables for RNA and proteomics were written to CSV format for use in downstream modeling.  

  

Sparse PLS modeling of RNA-seq data alone 

Our study included 65 matched samples with both RNA-seq and proteomic data available; the data had 398 

features (transcriptomics) and 184 features (proteomics) as inputs to the model. Both datasets were normalized 

according to the default software protocols, as described previously. Sparse Partial Least Squares Regression 

Discriminant Analysis (sPLS-DA) models on the RNA-seq data alone were calculated with and without the covid-

negative control samples included. An initial model with covid-negative samples (N=65) was created with feature 

selection disabled using ten components. A subsequent model with covid-negative samples removed (N=55) 

was subjected to performance testing with K-fold cross validation (K=5) and 50 repeats. The results showed the 

lowest error for five components (no feature selection). Feature selection tuning was then performed with K-fold 



cross validation (K=5) and 10 repeats, using the ‘Balanced Error Rate’ (BER) and ‘max.dist’ as the measure of 

performance. Feature tuning showed that just two components performed as well (BER < 15%) as 3 or more for 

certain values of “keepX” (see Supplementary Figure S1). The final sPLS-DA model on the RNA-seq data 

alone was constructed with just two components (to reduce risk of overfitting) and selected features of 40 and 

50 on each component.  

  

MixOmics multi-omics data integration  

The proteomic and transcriptomic datasets were integrated with ‘Data Integration Analysis for Biomarker 

Discovery using Latent components (DIABLO)’, a multiomics method that maximizes the correlation between 

pairs of pre-specified omics datasets using sparse PLS-Discriminant Analysis. Our study included 55 matched 

samples (as described above) as inputs to the model. Both datasets were normalized according to the default 

software protocols, as described previously. A 2x2 matrix was used as the design matrix to tune the model 

towards prioritizing sample classification performance versus maximizing feature correlations (values can range 

between 0 and 1):  

  RNA Proteomics 

RNA 0 0.1 

Proteomics 0.1 0 

  

Model building was also explored with a range of off-diagonal values including 0.5 (balance of classification and 

correlation) and 0.75 (bias toward correlation); however, we did not observe a pronounced effect on the features 

selected or sample classification performance (data not shown). An initial DIABLO model was fit with ten 

components, the design matrix described above, and no feature selection for tuning and evaluation. Performance 

testing with K-fold cross validation (K=5) and 50 repeats showed that the overall balanced error rate (BER) 

decreased with each component until leveling out around 8 components (Supplementary Figure S2A). Thus, 

we carried eight components into tuning for feature selection with the ‘tune.block.splsda’ function 

(Supplementary Figure S2B). Tuning was performed with K-fold cross-validation (K=5) and ten repeats using 

‘centroid distance’ measures. An optimal number of features was reported for each of 8 components across both 

blocks, with the BER approaching ~0.1 for the optimal solutions. Performance evaluating the DIABLO model 



again after feature selection optimization showed that a minimum in the BER (~0.1) was now reached at only 

four components. We used four components in constructing the final DIABLO model, retaining (20, 25, 25, 25) 

and (5, 7, 5, 5) features for each of four components in the RNA and proteomic data, respectively.  

  

Gene Ontology and Reactome Pathway Analysis 

Gene ontology (GO term) analysis of the features selected by the DIABLO model as significantly correlated with 

and predictive of COVID severity for the RNA-seq (N_features=91) and proteomics (N_features=22) datasets 

was conducted using the Gene Ontology Resource Portal (geneontology.org; PANTHER v17.0, GO Database 

2022-07-01). Fisher’s Exact test was used for overrepresentation analysis and an FDR correction (Benjamini 

and Hochberg) was applied. 103 out of 110 IDs were uniquely mapped (11 were multi-mapping). Pathway 

analysis of the same set of genes was performed with Reactome pathway browser (reactome.org; v3.7, database 

release 83).  

 

Study approval 

The study was approved by the institutional review board (IRB) of the University of Southern California (USC): 

Protocol#: HS-20-00519. 

  

 

 

 

  

 

 

  



Results 

In this study we examined a cohort of 70 patients which included four independent sub-groups. These comprised: 

1) ‘COVID-positive-ICU', our most severe response to SARS-CoV-2 infection with patients requiring treatment 

in the intensive care unit (ICU), 2) ‘COVID-positive-Inpatient', our moderate group comprising of patients infected 

with SARS-CoV-2 requiring hospitalization, 3) ‘COVID-positive-outpatient' samples, representing our mildest 

COVID-19 infections where patients tested positive for SARS-CoV-2 but required no hospitalization and 4) “Non-

COVID-ICU’, a control group of ICU inpatients not infected with SARS-CoV-2. In this study we refer to these 

cohorts as severe, moderate, mild, and negative, respectively, for simplicity. An overview of the experimental 

design is presented in Fig. 1 and demographic information of the study cohorts can be found in [29].  

  

Transcriptomic analysis of COVID-19 severity 

To evaluate transcriptomic changes, we used a targeted next generation sequencing (NGS) Oncomine Immune 

Response Research Assay to quantify the expression of 395 genes specifically associated with inflammatory 

signaling and immune-oncology research. This automated workflow allows for reproducibility across samples 

and requires a low RNA input allowing for evaluation of repeat blood samples from COVID-19 patients. 

Unsupervised clustering of gene expression shown in the heatmap in Supplementary Figure S3A represents 

the gene expression from the first sample collected from all subjects in the severe, moderate, and mild COVID-

19 cohorts and highlights three major clusters of gene expression representing mild/moderate (purple/red), 

severe/moderate (blue/red) and severe COVID-19 (blue). From the targeted Oncomine-Immune panel of 395 

genes evaluated in this study there are 181 significant differentially expressed genes (DEG) comparing severe 

to mild, 68 DEG comparing severe from moderate, and 104 DEG comparing moderate to mild COVID-19 cohorts 

(Supplementary Figure S3B-C and Supplementary Database S1). Among the DEG there are 67 genes that 

separate severe COVID-19 from both moderate and mild cases (Supplementary Database S1 and 

Supplementary Figure S3C). Comparison of transcript levels across the top 25 most DEG between severe and 

all cohorts (Fig. 2A) shows 4 clusters of gene expression: 1) genes with low expression in mild and with 

decreased expression with severity, 2) genes highly expressed in mild and with decreased expression with 

severity, 3) genes expressed in mild and highly decreased with severity and 4) genes expressed in mild and 

greatly increased with severity. The bar charts are example of significant DEG with severity of COVID 19 with 



distinct changes in expression levels (Fig. 2B-D). S100A9 and ARG1 increase with severity and as two of the 

most significant genes following this trend (Fig. 2B). CLEC4C and KRT5 and genes that are decreased with 

severity with exceptionally low expression in severe COVID-19 cases (Fig. 2C) and HLA-B and IFNA17 are 

genes that are increased with severity, but only in distinct clusters of the cohort (Fig. 2D). STRING (Search Tool 

for the Retrieval of Interacting Genes/Proteins) evaluation of the physical and functional protein-protein 

interaction network of the top 25 most significant DEG between severe and all other cohorts (Supplementary 

Database S1) highlights two major clusters of predicted interactions centering around mTOR-FOXO1 signaling 

and PTPRC signaling. The colored nodes are proteins in our dataset and the white nodes are proteins with 

predicted interactions in these networks (minimum interaction score of 0.7) (Fig. 2E).  

 

Single ‘omics’ modeling with sparse PLS discriminant analysis  

Next, we performed a sparse partial least squares model with discriminant analysis (sPLS-DA) that separated 

severe, moderate, and mild COVID-19 (Fig. 3A), but not the ‘COVID-19-positive-inpatient' (moderate) from 

‘COVID-19-negative-inpatient' (negative) (Fig. 3A). We removed the COVID-19-negative inpatient samples 

since they are not directly relevant to the investigation of biomarkers of COVID-19 severity; this had no impact 

on the ability of the model to predict COVID-19 status on RNA sequencing (RNA-seq) expression data (Fig. 3B). 

Classification receiver operating characteristic (ROC) curves for the RNA-seq sPLS-DA model, with the COVID-

19 negative samples removed, illustrates the diagnostic ability of the model with values of 0.98 for severe versus 

all other samples, 0.97 for moderate vs all other samples, and 1.0 for mild vs all other samples (Fig. 3C). The 

sPLS-DA model of the RNAseq data alone demonstrates nearly perfect clustering and prediction of COVID-19 

severity based on just 2 components, comprised of 40 and 50 features in the data, respectively (Fig. 3).  

 

‘Omics’ integrative modeling with DIABLO 

As transcriptomics and proteomics are interrelated layers of the overall system that determines a cells response 

to SARS-CoV-2 infection, we performed a multivariate analysis (described in the Methods) to integrate the 

changes observed in the proteomics data (described previously in [29]) and the transcriptomic data described 

above. We applied the Data Integration Analysis for Biomarker discovery using Latent variable approaches for 

‘Omics studies method (DIABLO) of the MixOmics package which applies the sPLS-DA model in the context of 



two or more related datasets on the same set of samples. Modeling the COVID-19 positive samples 

demonstrated a clear separation of severe, moderate, and mild COVID-19 patient samples when observing latent 

variables (“Components”) 1 and 2 using a weighted average of both blocks (Fig. 4A). Introspection of the features 

selected by the DIABLO model enables the identification of key molecular drivers from our dataset in the context 

of COVID-19 severity. The top 117 features selected by the DIABLO model are reported in Supplementary 

Table S1. We note that the first component (‘variate 1’) primarily separates the mild samples from the rest, while 

the second component partially (‘variate 2’) separates the moderate from the severe. The top features (genes 

and/or proteins) that contribute to each of the ‘blocks’ of the first and second component (of four total 

components) are shown in Fig. 4B-C. The top features contributing to the classification performance of the final 

DIABLO model along the first component in the RNA dataset include genes IL2RB, ARG1, CD4, IL10RA, CA4, 

MYC, CD6, CSF1R, TCF7, ZAP70, ITK, S100A9, CD8B, SIT1, and FCGR1A and SYND1, EN-RAGE, and 

WFDC-2 in the proteomic dataset. This group of genes and proteins forms a highly enriched protein-protein 

network (STRING analysis PPI enrichment p-value 1^-16) with functional enrichments in IL-15 signaling (GO: 

Biological Processes), T-cell receptor complex (GO: Cellular components) and KEGG pathways for primary 

immune deficiency and Th1 and Th2 cell differentiation (Supplemental Database S2). The second component 

is comprised of top-weighted genes IRS1, CCR4, TFRC, CD79A, IGSF6, SELL, MIF, IL15, CD19, CXCR2, 

IFITM1, and AIF1 in the RNA data and GZMB, CD70, SPARC, CD5, and LYPD3 in the proteomic dataset (Figure 

4D-E). This group of genes and proteins forms a highly enriched protein-protein network (STRING analysis PPI 

enrichment p-value 2.75^-14) with functional enrichments in negative regulation of myeloid cell apoptosis and 

neutrophil activation (GO: Biological Processes), plasma membrane and cell surface (GO: Cellular components) 

(Supplemental Database S3).  

Circos style plots in Figure 5A show how selected RNA and proteomic features, having the largest 

loadings and cross-block correlations, in Component 1 are positively and negatively correlated to each other. 

The “Clustered Image Map” (CIM) heatmap shown in Figure 5B highlights the correlation strength between a 

given pair of features represented by the differences in “cell” color. The CIM visualizes the correlation structure 

extracted from both the RNA and proteomic datasets. Blocks homogeneous in color depict subsets of features 

from each dataset that are correlated and is suggestive of a potential causal relationship. Visualizing this data 

as a network plot provides additional context to the correlation between features (Fig. 5C). The strength of a 



positive (red) or negative (green) correlation between core features defining the dataset clustering is shown in 

the lines connecting proteins (green) and RNA (blue). The core of these correlations center around connections 

with Syndecan-1, EN-RAGE, WFDC2, HGF and CDCP1. Unbiased, hierarchical clustering of gene and protein 

expression data based on genes used to construct the two components of the sPLS-DA model shows almost 

perfect separation of severe and mild COVID-19 samples (Figure 6), highlighting the strength of this model to 

predict signatures associated with COVID-19 severity. 

  

GO term and pathway analysis of selected biomarkers of COVID-19 severity 

As described in Methods, the final DIABLO model selected 95 and 22 features from the RNA-seq and proteomics 

datasets, respectively, after model tuning. These ~117 features were used as inputs to Gene Ontology (GO) 

term analysis (Table 1) and Reactome pathway analysis (Table 2) to identify ontologies and pathways that are 

enriched in our COVID severity biomarkers. Because we are starting from a panel of genes already selected for 

oncology and inflammation, we expect to see enrichment for general or high-level terms and pathways. 

Therefore, we only considered GO terms and pathways an FDR-corrected p-value < 0.001 and fold enrichment 

>10 (GO terms) as potentially significant. GO term analysis showed an enrichment in terms related to “immune 

system process,” as expected. However, terms with the largest fold enrichments (>10) as well as significant FDR 

p-values were related to regulation of “lymphocyte activation”, “T-cell activation”, “leukocyte activation”, and 

“leukocyte proliferation.” Among the enriched pathways from ReactomeDB analysis, only four had FDR-

corrected p-values less than 0.001 (“Interleukin-4 and Interleukin-13 signaling”, “Cytokine Signaling”, “Immune 

System” and “Interleukin-10 signaling”).  

 

  

  



Discussion 

By applying MixOmics to combine approaches to interrogate high dimensional datasets we have been able to 

interrogate the molecular basis of COVID-19 disease severity more comprehensively. This integrative approach 

contrasts with most existing studies which only focus on a single ‘omics approach which likely masks valuable 

information. Our data highlights the power of combined analysis of independent transcriptomic and proteomic 

data sets taken from the same subjects across different disease severity cohorts to elucidate complex biological 

mechanism leading to severe COVID-19. 

Integrative modeling discovered correlations between features previously found to be significantly 

differentially expressed and associated with COVID-19 severity in our proteomic data alone [29]. Application of 

DIABLO allowed us to identify key ‘omics variables from our transcriptomic and proteomic datasets and was able 

to discriminate between COVID-19 severity cohorts (Fig. 6). Importantly, the features that our model used to 

drive clustering of the datasets are consistent with data from other published ‘omics data analysis. Examples 

include elevated protein expression with severity of COVID-19 for proteins including: 1) Syndecan-1 (SYND1) 

[32-34], 2) S100 calcium binding protein A12 (EN-RAGE or S100A12) [35-37], 3) Hepatocyte Growth Factor 

(HGF) [38-40] and 4) CUB domain containing protein 1 (CDCP1) [41]. Examples for elevated RNA transcript 

expression with severity of COVID-19 for genes included 1) IFNA17 [42, 43], 2) ARG1 [44, 45]. Interestingly 

IFNA17 and HLA-B are two examples of genes where expression is associated with severity, but only in a sub-

population of patients. HLA-B is known to exhibit significant genetic diversity among individuals and will influence 

one’s ability to recognize and respond to viral infection by COVID-19 [46, 47]. IFNA17 is an interferon that is a 

critical part of the innate immune response in viral infection. In support of this data, IFNA17 was discovered to 

be differentially expressed in a study evaluating interferon stimulated gene profiles of post-mortem lung tissues 

from severe cased of COVID-19 [42]. While its expression remains an active area of research in COVID-19 it is 

likely that its overexpression may lead to hyperinflammation in severe COVID-19 [48, 49].  

  While our study was designed to interrogate high-dimensional datasets where the patient sample may 

be limited, the small number of subjects in our study can also be viewed as a limitation. Furthermore, repeat 

samples were only obtained from inpatients in the USC COVID-19 Biorepository leading to an unbalanced design 

of the study cohorts. The study designed to investigate targeted panels of genes and proteins rather than taking 

a whole transcriptome and proteome approach. While this limits the scope of the target signatures associated 



with COVID-19 severity it allowed for the development of a multivariate integrative classification method that can 

predict signatures associated with COVID-19 severity that can be applied to integrate larger transcriptomic and 

proteomic datasets. The GO terms discovered through DIABLO highlighted a link between interleukin 4 and 

Interleukin 13 signaling and COVID-19 severity. Il-13 was recently discovered to be a core driver of COVID-19 

severity; patients prescribed Dupliumab, an antibody that blocks IL-13 and Il-4 has significantly less severe 

disease. This observation was backed up by data in murine COVID-19 models [50]. Indeed, IL-13 signaling has 

been linked to the regulation of hyaluronic acid and the persistence of post COVID-19 conditions [50, 51]. 

Similarly, PD-1 and the PD-L1 axis has also been connected clinically to severity of COVID-19 [52-54]. PD-1 

(CD279) is known to be involved in the maintenance of immune tolerance and several studies have now reported 

that regulation of the PD-1/PD-L1 axis is critical in the regulation of a variety of infectious diseases [55, 56]. While 

acutely a reduction in infection-associated inflammation and inflammation-mediated tissue damage may be 

noted, chronic activation can drive immune exhaustion and be associated with increased severity of infectious 

diseases, such as SARS-CoV-2. 

These examples and the analysis presented in this study clearly demonstrates the capacity for MixOmics 

to discover correlations between the features of independent datasets and generate biomarker signatures 

specific to disease status. Wider application of this approach to published datasets should substantially enhance 

our ability to identify specific biomarkers predictive of COVID-19 disease severity and assist in understanding 

the biomolecular pathways defining the phenotype pathogenesis. 
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Figure Legends 

Figure 1. COVID-19 multiomic study design. Schematic diagram of experimental design for the study.  

 

Figure 2. RNAseq analysis comparing all COVID-19 cohorts. (A) Heatmap showing unsupervised clustering 

of the top 25 most significant DEG between severe and all other COVID-19 study cohorts. Relative expression 

is on the scale of 0 (blue) to 17 (red) for COVID-19 cohorts severe (blue), moderate (red) and mild (purple). (B) 

STRING analysis showing predicted protein-protein interactions between the top 25 DEG from Severe COVID-

19 compared to all other cohorts. Colored nodes represent query proteins, white nodes represent second shell 

of interactions. Known interactions are shown from curated databases (teal lines) or experimentally determined 

(pink lines). Predicted interactions shown are based on gene neighborhood (green lines), gene fusions (red 

lines), gene co-occurrence (blue lines). (C-E) Bar charts comparing Log2 fold change in average transcript level 

across Day 1 samples from all subjects in severe, moderate, and mild COVID-19 cohorts. Examples of 

significantly DEG include S100A9 and ARG1, consistently elevated with severity of COVID-19 (C), CLEC4C an 

KRT5, consistently decreased with severity of COVID-19 (D) and HA-B and IFNA17, elevated with severity of 

COVID-19 in a portion of the subjects within the severity category (E).  

 

Figure 3. sPLS Discriminant Analysis for classification of COVID-19 severity. RNA-seq single dataset 

sPLS-DA component plots with decision background with (A) and without (B) COVID negative samples. Samples 

are projected onto their XY-Variate latent spaces using only the RNA-seq data and are colored by COVID-19 

status. The prediction background generated by the model is plotted behind the samples, showing decision 

boundaries for classifying new samples. (C) ROC analysis of the model in (B) showing very high AUCs for each 

sample category. 

 

Figure 4: MixOmics Integration of the RNA and Protein datasets using DIABLO. (A) PCA plot of component 

1 (Variate 1) and component 2 (Variate 2) of 4 components used to define sample clusters. (B-E) Top genes (B 

and D) and proteins (C and E) defining the clustering of the samples based on component 1 (B-C) and 

component 2 (D-E).  The X-axis represents the “loading” on each feature: a measure of how important it is to the 



trained model. This is a vector of the weight of each original variable’s contribution to the corresponding “latent” 

variable (Variate 1, Variate 2, etc.). 

 

Figure 5. Positively and negatively correlated features of the datasets. (A) Circos plot showing highly 

positively and negatively correlated features between the RNA and protein datasets (with correlation cutoff of 

0.65). The two different datasets are segmented and colored across the circle with each subsection representing 

a specific feature. The lines within the circle represent positive or negative correlations between linked variables. 

(B) Clustered expression heatmap of the highly correlated features in the DIABLO sPLS-DA model. Both features 

(Y-axis) and samples (X-axis) are clustered in an unsupervised manner. (C) Network plot of highly correlated 

variables where the connections represent correlations in the data (red is positive correlation and green is 

negative correlation). Genes are found in the blue circles and proteins in the green circles. 

 

Figure 6: Highly correlated dataset features that maximizing connections to outcomes. Heatmap 

generated based on analysis of all features and removing non-informative features to maximally connect highly 

correlated variables to outcome. Proteins (green) and genes (blue) are depicted on the y-axis and cohorts, grey 

(mild), blue (moderate) and orange (severe) are shown on the x-axis. The scale represents a relative expression 

from -3 (blue) to 3 (red). 

.  

  



Tables 

Table 1. Top 25 GO terms enriched among DIABLO-selected features  

GO biological process 
complete 

Homo 
sapiens - 
REFLIST 
(20589) 

Upload 
# (110) 

Upload 
(expected) 

Upload 
(over/ 
under) 

Upload 
(fold 
Enriched) 

Upload (raw 
P-value) 

Upload 
(FDR) 

immune system process 
(GO:0002376) 

2429 73 12.98 + 5.63 1.08E-40 1.69E-36 

regulation of immune 
system process 
(GO:0002682) 

1520 56 8.12 + 6.9 1.57E-33 1.23E-29 

immune response 
(GO:0006955) 

1621 55 8.66 + 6.35 4.74E-31 2.48E-27 

positive regulation of 
immune system process 
(GO:0002684) 

967 43 5.17 + 8.32 5.24E-28 2.05E-24 

regulation of lymphocyte 
activation (GO:0051249) 

591 34 3.16 + 10.77 2.86E -25 8.98E-22 

regulation of T cell 
activation (GO:0050863) 

377 29 2.01 + 14.4 8.19E-25 2.14E-21 

regulation of leukocyte 
activation (GO:0002694) 

684 35 3.65 + 9.58 2.00E-24 4.47E-21 

regulation of cell 
activation (GO:0050865) 

741 35 3.96 + 8.84 2.49E-23 4.89E-20 

regulation of immune 
response (GO:0050776) 

935 37 5 + 7.41 3.54E-22 6.16E-19 

leukocyte activation 
(GO:0045321) 

581 31 3.1 + 9.99 4.52E-22 7.09E-19 

response to stimulus 
(GO:0050896) 

8209 93 43.86 + 2.12 7.35E-22 1.05E-18 

response to organic 
substance (GO:0010033) 

2704 55 14.45 + 3.81 2.32E-20 3.03E-17 

cell activation 
(GO:0001775) 

700 31 3.74 + 8.29 8.05E-20 8.41E-17 

regulation of cell 
population proliferation 
(GO:0042127) 

1674 44 8.94 + 4.92 7.79E-20 8.73E-17 

cellular response to 
stimulus (GO:0051716) 

6569 82 35.1 + 2.34 7.34E-20 8.86E-17 

cell surface receptor 
signaling pathway 
(GO:0007166) 

2174 49 11.61 + 4.22 1.38E-19 1.35E-16 

regulation of leukocyte 
proliferation 
(GO:0070663) 

271 22 1.45 + 15.19 2.36E-19 2.18E-16 

defense response 
(GO:0006952) 

1478 41 7.9 + 5.19 3.50E-19 3.05E-16 

regulation of leukocyte 
cell-cell adhesion 
(GO:1903037) 

369 24 1.97 + 12.17 5.69E-19 4.46E-16 

lymphocyte activation 
(GO:0046649) 

465 26 2.48 + 10.47 5.54E-19 4.57E-16 

signal transduction 
(GO:0007165) 

4887 70 26.11 + 2.68 9.53E-19 7.12E-16 

positive regulation of T 
cell activation 
(GO:0050870) 

253 21 1.35 + 15.54 1.10E-18 7.84E-16 



regulation of response to 
stimulus (GO:0048583) 

4034 63 21.55 + 2.92 4.41E-18 3.00E-15 

positive regulation of 
leukocyte cell-cell 
adhesion (GO:1903039) 

276 21 1.47 + 14.24 5.78E-18 3.78E-15 

positive regulation of 
leukocyte proliferation 
(GO:007066) 

168 18 0.9 + 20.05 6.15E-18 3.86E-15 

 
 
 Table 2. Reactome Pathway Enrichment for DIABLO-selected features  
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R-HSA-
6785807 

Interleukin-4 and 
Interleukin-13 
signaling 

20 211 3 162 0.013845 1.37E-10 1.76E-07 9 47 

R-HSA-
1280215 

Cytokine Signaling 
in Immune system 

65 1115 50 2999 0.073162 4.59E-08 2.95E-05 290 740 

R-HSA-
168256 

Immune System 88 2703 62 4209 0.177362 3.38E-07 1.44E-04 530 1659 

R-HSA-
6783783 

Interleukin-10 
signaling 

11 86 2 93 0.005643 6.72E-07 2.16E-04 13 15 

R-HSA-
380108 

Chemokine 
receptors bind 
chemokines 

8 57 2 70 0.003740 4.74E-06 0.001212 12 19 

R-HSA-
449147 

Signaling by 
Interleukins 

43 658 35 2161 0.043176 5.08E-05 0.010863 187 505 

R-HSA-
389948 

PD-1 signaling 5 45 1 4 0.002953 6.68E-05 0.012223 4 5 

R-HSA-
202430 

Translocation of 
ZAP-70 to 
Immunological 
synapse 

5 42 3 14 0.002756 1.18E-04 0.018894 4 4 

R-HSA-
9012546 

Interleukin-18 
signaling 

3 11 1 5 7.22E-04 2.93E-04 0.041670 4 4 
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Figures

Figure 1

COVID-19 multiomic study design. Schematic diagram of experimental design for the study.



Figure 2

RNAseq analysis comparing all COVID-19 cohorts. (A) Heatmap showing unsupervised clustering  of the
top 25 most signi�cant DEG between severe and all other COVID-19 study cohorts. Relative expression  is
on the scale of 0 (blue) to 17 (red) for COVID-19 cohorts severe (blue), moderate (red) and mild (purple).
(B)  STRING analysis showing predicted protein-protein interactions between the top 25 DEG from Severe
COVID-19 compared to all other cohorts. Colored nodes represent query proteins, white nodes represent



second shell  of interactions. Known interactions are shown from curated databases (teal lines) or
experimentally determined (pink lines). Predicted interactions shown are based on gene neighborhood
(green lines), gene fusions (red  lines), gene co-occurrence (blue lines). (C-E) Bar charts comparing Log2
fold change in average transcript level  across Day 1 samples from all subjects in severe, moderate, and
mild COVID-19 cohorts. Examples of  signi�cantly DEG include S100A9 and ARG1, consistently elevated
with severity of COVID-19 (C), CLEC4C an  KRT5, consistently decreased with severity of COVID-19 (D)
and HA-B and IFNA17, elevated with severity of  COVID-19 in a portion of the subjects within the severity
category (E).

Figure 3

sPLS Discriminant Analysis for classi�cation of COVID-19 severity. RNA-seq single dataset  sPLS-DA
component plots with decision background with (A) and without (B) COVID negative samples. Samples
 are projected onto their XY-Variate latent spaces using only the RNA-seq data and are colored by COVID-
19  status. The prediction background generated by the model is plotted behind the samples, showing
decision  boundaries for classifying new samples. (C) ROC analysis of the model in (B) showing very high
AUCs for each  sample category.



Figure 4

MixOmics Integration of the RNA and Protein datasets using DIABLO. (A) PCA plot of component  1
(Variate 1) and component 2 (Variate 2) of 4 components used to de�ne sample clusters. (B-E) Top genes
(B  and D) and proteins (C and E) de�ning the clustering of the samples based on component 1 (B-C) and
 component 2 (D-E). The X-axis represents the “loading” on each feature: a measure of how important it is
to the  trained model. This is a vector of the weight of each original variable’s contribution to the
corresponding “latent”  variable (Variate 1, Variate 2, etc.).



Figure 5

Positively and negatively correlated features of the datasets. (A) Circos plot showing highly  positively
and negatively correlated features between the RNA and protein datasets (with correlation cutoff of
 0.65). The two different datasets are segmented and colored across the circle with each subsection
representing  a speci�c feature. The lines within the circle represent positive or negative correlations
between linked variables. (B) Clustered expression heatmap of the highly correlated features in the



DIABLO sPLS-DA model. Both features  (Y-axis) and samples (X-axis) are clustered in an unsupervised
manner. (C) Network plot of highly correlated  variables where the connections represent correlations in
the data (red is positive correlation and green is  negative correlation). Genes are found in the blue circles
and proteins in the green circles.
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