[1] World Health Organization, “World Malaria Report 2020: 20 years of global progress and challenges.,” 2020. [Online]. Available: https://www.who.int/teams/global-malaria-programme/reports/world-malaria-report-2020. [Accessed: 15-Dec-2020].
[2] World Health Organization, “World malaria report 2019.” [Online]. Available: https://www.who.int/publications/i/item/world-malaria-report-2019. [Accessed: 26-Oct-2020].
[3] World Health Organization, “Prequalified Vector Control Products.” [Online]. Available: https://www.who.int/pq-vector-control/prequalified-lists/VCP_PQ-List_26August2020.pdf?ua=1. [Accessed: 26-Oct-2020].
[4] C. Clarkson, A. Miles, N. Harding, D. Weetman, D. Kwiatkowski, and M. Donnelly, “The genetic architecture of target-site resistance to pyrethroid insecticides in the African malaria vectors Anopheles gambiae and Anopheles coluzzii,” bioRxiv, p. 323980, Aug. 2018.
[5] L. M. J. Mugenzi et al., “Cis-regulatory CYP6P9b P450 variants associated with loss of insecticide-treated bed net efficacy against Anopheles funestus,” Nat. Commun., vol. 10, no. 1, pp. 1–11, Dec. 2019.
[6] B. S. Assogba et al., “An ace-1 gene duplication resorbs the fitness cost associated with resistance in Anopheles gambiae, the main malaria mosquito,” Sci. Rep., vol. 5, no. 1, p. 14529, Oct. 2015.
[7] X. Grau-Bové et al., “Resistance to pirimiphos-methyl in West African Anopheles is spreading via duplication and introgression of the Ace1 locus,” bioRxiv, p. 2020.05.18.102343, May 2020.
[8] P. Müller et al., “Field-Caught Permethrin-Resistant Anopheles gambiae Overexpress CYP6P3, a P450 That Metabolises Pyrethroids,” PLoS Genet., vol. 4, no. 11, p. e1000286, Nov. 2008.
[9] B. J. Stevenson et al., “Cytochrome P450 6M2 from the malaria vector Anopheles gambiae metabolizes pyrethroids: Sequential metabolism of deltamethrin revealed,” Insect Biochem. Mol. Biol., vol. 41, no. 7, pp. 492–502, Jul. 2011.
[10] T. L. Chiu, Z. Wen, S. G. Rupasinghe, and M. A. Schuler, “Comparative molecular modeling of Anopheles gambiae CYP6Z1, a mosquito P450 capable of metabolizing DDT,” Proc. Natl. Acad. Sci. U. S. A., vol. 105, no. 26, pp. 8855–8860, Jul. 2008.
[11] S. S. Ibrahim, J. M. Riveron, R. Stott, H. Irving, and C. S. Wondji, “The cytochrome P450 CYP6P4 is responsible for the high pyrethroid resistance in knockdown resistance-free Anopheles arabiensis,” Insect Biochem. Mol. Biol., vol. 68, pp. 23–32, Jan. 2016.
[12] J. M. Riveron et al., “A single mutation in the GSTe2 gene allows tracking of metabolically based insecticide resistance in a major malaria vector,” Genome Biol., vol. 15, no. 2, p. R27, 2014.
[13] V. A. Ingham, P. Pignatelli, J. D. Moore, S. Wagstaff, and H. Ranson, “The transcription factor Maf-S regulates metabolic resistance to insecticides in the malaria vector Anopheles gambiae,” BMC Genomics, vol. 18, no. 1, Aug. 2017.
[14] V. A. Ingham, S. Wagstaff, and H. Ranson, “Transcriptomic meta-signatures identified in Anopheles gambiae populations reveal previously undetected insecticide resistance mechanisms,” Nat. Commun., vol. 9, no. 1, Dec. 2018.
[15] V. A. Ingham et al., “A sensory appendage protein protects malaria vectors from pyrethroids,” Nature, vol. 577, no. 7790, pp. 376–380, 2020.
[16] A. T. Isaacs, H. D. Mawejje, S. Tomlinson, D. J. Rigden, and M. J. Donnelly, “Genome-wide transcriptional analyses in Anopheles mosquitoes reveal an unexpected association between salivary gland gene expression and insecticide resistance,” BMC Genomics, vol. 19, no. 1, p. 225, 2018.
[17] V. Balabanidou et al., “Mosquitoes cloak their legs to resist insecticides,” Proc. R. Soc. B Biol. Sci., vol. 286, no. 1907, Jul. 2019.
[18] C. S. Clarkson et al., “Genome variation and population structure among 1142 mosquitoes of the African malaria vector species Anopheles gambiae and Anopheles coluzzii,” Genome Res., vol. 30, no. 10, pp. 1533–1546, Oct. 2020.
[19] A. Miles et al., “Genetic diversity of the African malaria vector anopheles gambiae,” Nature, vol. 552, no. 7683, pp. 96–100, Dec. 2017.
[20] G. Favia et al., “Bacteria of the genus Asaia stably associate with Anopheles stephensi, an Asian malarial mosquito vector.,” Proc. Natl. Acad. Sci. U. S. A., vol. 104, no. 21, pp. 9047–51, May 2007.
[21] G. Gimonneau et al., “Composition of Anopheles coluzzii and Anopheles gambiae microbiota from larval to adult stages,” Infect. Genet. Evol., vol. 28, pp. 715–724, Dec. 2014.
[22] L. C. Ezemuoka, E. A. Akorli, F. Aboagye-Antwi, and J. Akorli, “Mosquito midgut Enterobacter cloacae and Serratia marcescens affect the fitness of adult female Anopheles gambiae s.l.,” PLoS One, vol. 15, no. 9, p. e0238931, Sep. 2020.
[23] E. V Kozlova et al., “Microbial interactions in the mosquito gut determine Serratia colonization and blood-feeding propensity,” ISME J., 2020.
[24] A. D. O. Gaio, D. S. Gusmão, A. V. Santos, M. A. Berbert-Molina, P. F. P. Pimenta, and F. J. A. Lemos, “Contribution of midgut bacteria to blood digestion and egg production in aedes aegypti (diptera: Culicidae) (L.),” Parasites and Vectors, vol. 4, no. 1, 2011.
[25] A. Cappelli et al., “Asaia activates immune genes in mosquito eliciting an anti-plasmodium response: Implications in malaria control,” Front. Genet., vol. 10, no. SEP, Sep. 2019.
[26] A. Muhammad, P. Habineza, T. Ji, Y. Hou, and Z. Shi, “Intestinal Microbiota Confer Protection by Priming the Immune System of Red Palm Weevil Rhynchophorus ferrugineus Olivier (Coleoptera: Dryophthoridae),” Front. Physiol., vol. 10, Oct. 2019.
[27] L. Bai, L. Wang, J. Vega-Rodríguez, G. Wang, and S. Wang, “A Gut Symbiotic Bacterium Serratia marcescens Renders Mosquito Resistance to Plasmodium Infection Through Activation of Mosquito Immune Responses,” Front. Microbiol., vol. 10, no. JULY, p. 1580, Jul. 2019.
[28] N. Jupatanakul, S. Sim, and G. Dimopoulos, “The insect microbiome modulates vector competence for arboviruses,” Viruses, vol. 6, no. 11. MDPI AG, pp. 4294–4313, 11-Nov-2014.
[29] C. M. Cirimotich, Y. Dong, L. S. Garver, S. Sim, and G. Dimopoulos, “Mosquito immune defenses against Plasmodium infection,” Developmental and Comparative Immunology, vol. 34, no. 4. Dev Comp Immunol, pp. 387–395, Apr-2010.
[30] N. J. Dennison, R. G. Saraiva, C. M. Cirimotich, G. Mlambo, E. F. Mongodin, and G. Dimopoulos, “Functional genomic analyses of Enterobacter, Anopheles and Plasmodium reciprocal interactions that impact vector competence,” Malar. J., vol. 15, no. 1, Aug. 2016.
[31] L. Gonzalez-Ceron, F. Santillan, M. H. Rodriguez, D. Mendez, and J. E. Hernandez-Avila, “Bacteria in Midguts of Field-Collected <I>Anopheles albimanus</I> Block <I>Plasmodium vivax</I> Sporogonic Development,” J. Med. Entomol., vol. 40, no. 3, pp. 371–374, May 2003.
[32] Y. Dong, F. Manfredini, and G. Dimopoulos, “Implication of the Mosquito Midgut Microbiota in the Defense against Malaria Parasites,” PLoS Pathog., vol. 5, no. 5, p. e1000423, May 2009.
[33] A. Boissière et al., “Midgut Microbiota of the Malaria Mosquito Vector Anopheles gambiae and Interactions with Plasmodium falciparum Infection,” PLoS Pathog., vol. 8, no. 5, p. e1002742, May 2012.
[34] M. Gendrin et al., “Antibiotics in ingested human blood affect the mosquito microbiota and capacity to transmit malaria,” Nat. Commun., vol. 6, Jan. 2015.
[35] P. Wu et al., “A Gut Commensal Bacterium Promotes Mosquito Permissiveness to Arboviruses,” Cell Host Microbe, vol. 25, no. 1, pp. 101-112.e5, Jan. 2019.
[36] X. Xia et al., “DNA Sequencing Reveals the Midgut Microbiota of Diamondback Moth, Plutella xylostella (L.) and a Possible Relationship with Insecticide Resistance,” PLoS One, vol. 8, no. 7, p. e68852, Jul. 2013.
[37] Y. Kikuchi, M. Hayatsu, T. Hosokawa, A. Nagayama, K. Tago, and T. Fukatsu, “Symbiont-mediated insecticide resistance,” Proc. Natl. Acad. Sci., vol. 109, no. 22, pp. 8618–8622, May 2012.
[38] N. Dada, M. Sheth, K. Liebman, J. Pinto, and A. Lenhart, “Whole metagenome sequencing reveals links between mosquito microbiota and insecticide resistance in malaria vectors.,” Sci. Rep., vol. 8, no. 1, p. 2084, 2018.
[39] N. Dada et al., “Pyrethroid exposure alters internal and cuticle surface bacterial communities in Anopheles albimanus,” ISME J., 2019.
[40] A. Arévalo-Cortés, A. M. Mejia-Jaramillo, Y. Granada, H. Coatsworth, C. Lowenberger, and O. Triana-Chavez, “The Midgut Microbiota of Colombian Aedes aegypti Populations with Different Levels of Resistance to the Insecticide Lambda-cyhalothrin,” Insects, vol. 11, no. 9, p. 584, Sep. 2020.
[41] A. Soltani, H. Vatandoost, M. A. Oshaghi, A. A. Enayati, and A. R. Chavshin, “The role of midgut symbiotic bacteria in resistance of Anopheles stephensi (Diptera: Culicidae) to organophosphate insecticides,” Pathog. Glob. Health, vol. 111, no. 6, pp. 289–296, Aug. 2017.
[42] K. Barnard, A. C. S. N. Jeanrenaud, B. D. Brooke, and S. V Oliver, “The contribution of gut bacteria to insecticide resistance and the life histories of the major malaria vector Anopheles arabiensis (Diptera: Culicidae),” Sci. Rep., vol. 9, no. 1, p. 9117, 2019.
[43] D. Omoke et al., “Western Kenyan Anopheles gambiae showing intense permethrin resistance harbour distinct microbiota,” Malar. J., vol. 20, no. 1, p. 77, 2021.
[44] M. du P. et du D. (MPD) Institut National de la Statistique (INS), M. de la S. et de l’Hygiène P. (MSHP) Programme National de Lutte contre le Paludisme (PNLP), I. The DHS Program, and U. Rockville, Maryland, “Côte d’Ivoire Enquête de prévalence parasitaire du paludisme et de l’anémie 2016.”
[45] A. Meiwald et al., “Reduced long-lasting insecticidal net efficacy and pyrethroid insecticide resistance are associated with over-expression of CYP6P4, CYP6P3 and CYP6Z1 in populations of Anopheles coluzzii from South-East Côte d’Ivoire,” J. Infect. Dis., Nov. 2020.
[46] B. K. Fodjo et al., “Insecticides Resistance Status of An. gambiae in Areas of Varying Agrochemical Use in Côte D’Ivoire,” Biomed Res. Int., vol. 2018, pp. 1–9, Oct. 2018.
[47] M. T. Gillies and M. Coetzee, “A supplement to the Anophelinae of Africa south of the Sahara (Afrotropical Region).,” A Suppl. to Anophelinae Africa south Sahara (Afrotropical Reg., 1987.
[48] J. C. Morgan, H. Irving, L. M. Okedi, A. Steven, and C. S. Wondji, “Pyrethroid Resistance in an Anopheles funestus Population from Uganda,” PLoS One, vol. 5, no. 7, p. e11872, Jul. 2010.
[49] Nishikoi Aquaculture Ltd, “Nishikoi Aquaculture Ltd.” [Online]. Available: https://www.nishikoi.com/. [Accessed: 23-Nov-2020].
[50] Y. Wang, T. M. Gilbreath, P. Kukutla, G. Yan, and J. Xu, “Dynamic Gut Microbiome across Life History of the Malaria Mosquito Anopheles gambiae in Kenya,” PLoS One, vol. 6, no. 9, p. 24767, 2011.
[51] “Guideline for Evaluating Insecticide Resistance in Vectors Using the CDC Bottle Bioassay.”
[52] “(EN) - DNeasy Blood & Tissue Handbook - QIAGEN.” [Online]. Available: https://www.qiagen.com/gb/resources/resourcedetail?id=6b09dfb8-6319-464d-996c-79e8c7045a50&lang=en. [Accessed: 14-Feb-2020].
[53] F. Santolamazza, E. Mancini, F. Simard, Y. Qi, Z. Tu, and A. della Torre, “Insertion polymorphisms of SINE200 retrotransposons within speciation islands of Anopheles gambiae molecular forms,” Malar. J., vol. 7, no. 1, p. 163, Aug. 2008.
[54] “KAPA HiFi HotStart ReadyMix | Roche Sequencing Store.” [Online]. Available: https://rochesequencingstore.com/catalog/kapa-hifi-hotstart-readymix/. [Accessed: 14-Feb-2020].
[55] E. Bolyen et al., “Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2,” Nat. Biotechnol., vol. 37, no. 8, pp. 852–857, Aug. 2019.
[56] M. Martin, “Cutadapt removes adapter sequences from high-throughput sequencing reads,” EMBnet. J., vol. 17, no. 1, p. pp--10, 2011.
[57] B. J. Callahan, P. J. McMurdie, M. J. Rosen, A. W. Han, A. J. A. Johnson, and S. P. Holmes, “DADA2: High-resolution sample inference from Illumina amplicon data,” Nat. Methods, vol. 13, no. 7, pp. 581–583, Jul. 2016.
[58] B. J. Callahan, P. J. McMurdie, and S. P. Holmes, “Exact sequence variants should replace operational taxonomic units in marker-gene data analysis,” ISME J., vol. 11, no. 12, pp. 2639–2643, Dec. 2017.
[59] D. McDonald et al., “The Biological Observation Matrix (BIOM) format or: how I learned to stop worrying and love the ome-ome,” Gigascience, vol. 1, no. 1, p. 7, 2012.
[60] N. A. Bokulich et al., “Optimizing taxonomic classification of marker-gene amplicon sequences with QIIME 2’s q2-feature-classifier plugin,” Microbiome, vol. 6, no. 1, p. 90, Dec. 2018.
[61] F. Pedregosa et al., “Scikit-learn: Machine learning in Python,” J. Mach. Learn. Res., vol. 12, no. Oct, pp. 2825–2830, 2011.
[62] M. N. Price, P. S. Dehal, and A. P. Arkin, “FastTree 2--approximately maximum-likelihood trees for large alignments,” PLoS One, vol. 5, no. 3, p. e9490, 2010.
[63] K. Katoh and D. M. Standley, “MAFFT multiple sequence alignment software version 7: improvements in performance and usability,” Mol. Biol. Evol., vol. 30, no. 4, pp. 772–780, 2013.
[64] D. J. Lane, “16S/23S rRNA sequencing,” in Nucleic Acid Techniques in Bacterial Systematics, E. Stackebrandt and M. Goodfellow, Eds. New York: John Wiley and Sons, 1991, pp. 115–175.
[65] D. P. Faith, “Conservation evaluation and phylogenetic diversity,” Biol. Conserv., vol. 61, no. 1, pp. 1–10, 1992.
[66] S. Weiss et al., “Normalization and microbial differential abundance strategies depend upon data characteristics,” Microbiome, vol. 5, no. 1, p. 27, Mar. 2017.
[67] W. H. Kruskal and W. A. Wallis, “Use of ranks in one-criterion variance analysis,” J. Am. Stat. Assoc., vol. 47, no. 260, pp. 583–621, 1952.
[68] T. Sorenson, “A method of establishing groups of equal amplitude in plant sociology based on similarity of species content.,” K. Danske Vide- nskabernes Selsk., 1948.
[69] P. Legendre and L. Legendre, “Numerical Ecology,” Third., Elsevier, 2012, p. 499.
[70] M. J. Anderson, “A new method for non-parametric multivariate analysis of variance,” Austral Ecol., vol. 26, no. 1, pp. 32–46, 2001.
[71] P. J. McMurdie and S. Holmes, “phyloseq: An R Package for Reproducible Interactive Analysis and Graphics of Microbiome Census Data,” PLoS One, vol. 8, no. 4, p. e61217, Apr. 2013.
[72] J. T. Morton et al., “Establishing microbial composition measurement standards with reference frames,” Nat. Commun., vol. 10, no. 1, p. 2719, 2019.
[73] M. W. Fedarko et al., “Visualizing ’omic feature rankings and log-ratios using Qurro,” NAR Genomics Bioinforma., vol. 2, no. 2, 2020.
[74] S. Mandal, W. Van Treuren, R. A. White, M. Eggesbø, R. Knight, and S. D. Peddada, “Analysis of composition of microbiomes: a novel method for studying microbial composition,” Microb. Ecol. Heal. Dis., vol. 26, no. 0, May 2015.
[75] S. Mandal, W. Van Treuren, R. A. White, M. Eggesbø, R. Knight, and S. D. Peddada, “Analysis of composition of microbiomes: a novel method for studying microbial composition,” Microb. Ecol. Heal. Dis., vol. 26, no. 0, May 2015.
[76] H. Zhu, S.-J. Sun, and H.-Y. Dang, “PCR detection of Serratia spp. using primers targeting pfs and luxS genes involved in AI-2-dependent quorum sensing.,” Curr. Microbiol., vol. 57, no. 4, pp. 326–330, Oct. 2008.
[77] C. L. Jeffries et al., “Novel Wolbachia strains in Anopheles malaria vectors from Sub-Saharan Africa [version 2; peer review: 3 approved],” Wellcome Open Res., vol. 3, no. 113, 2018.
[78] X. Ren and J. L. Rasgon, “Potential for the <em>Anopheles gambiae</em> Densonucleosis Virus To Act as an ‘Evolution-Proof’ Biopesticide,” J. Virol., vol. 84, no. 15, pp. 7726 LP – 7729, Aug. 2010.
[79] A. Soltani, H. Vatandoost, M. A. Oshaghi, A. A. Enayati, and A. R. Chavshin, “The role of midgut symbiotic bacteria in resistance of Anopheles stephensi (Diptera: Culicidae) to organophosphate insecticides,” Pathog. Glob. Health, vol. 111, no. 6, pp. 289–296, Aug. 2017.
[80] N. Dada, N. Jupatanakul, G. Minard, S. Short, J. Akorli, and L. M. Villegas, “Considerations for mosquito microbiome research from the Mosquito Microbiome Consortium,” 2020.
[81] X. Xia, B. Sun, G. M. Gurr, L. Vasseur, M. Xue, and M. You, “Gut Microbiota Mediate Insecticide Resistance in the Diamondback Moth, Plutella xylostella (L.),” Front. Microbiol., vol. 9, no. JAN, p. 25, Jan. 2018.
[82] S. Chen et al., “Biodegradation of beta-cypermethrin and 3-phenoxybenzoic acid by a novel Ochrobactrum lupini DG-S-01,” J. Hazard. Mater., vol. 187, no. 1–3, pp. 433–440, Mar. 2011.
[83] B. zhan Wang et al., “Biodegradation of synthetic pyrethroids by Ochrobactrum tritici strain pyd-1,” World J. Microbiol. Biotechnol., vol. 27, no. 10, pp. 2315–2324, Oct. 2011.
[84] M. P. Talwar, S. I. Mulla, and H. Z. Ninnekar, “Biodegradation of organophosphate pesticide quinalphos by Ochrobactrum sp. strain HZM,” J. Appl. Microbiol., vol. 117, no. 5, pp. 1283–1292, Nov. 2014.
[85] X. H. Qiu, W. Q. Bai, Q. Z. Zhong, M. Li, F. Q. He, and B. T. Li, “Isolation and characterization of a bacterial strain of the genus Ochrobactrum with methyl parathion mineralizing activity,” J. Appl. Microbiol., vol. 101, no. 5, pp. 986–994, Nov. 2006.
[86] X. Hao et al., “Screening and Genome Sequencing of Deltamethrin-Degrading Bacterium ZJ6,” Curr. Microbiol., vol. 75, no. 11, pp. 1468–1476, Nov. 2018.
[87] G. P. Hu et al., “Isolation, identification and cyfluthrin-degrading potential of a novel Lysinibacillus sphaericus strain, FLQ-11-1,” Res. Microbiol., vol. 165, no. 2, pp. 110–118, 2014.
[88] M. Ozdal, O. G. Ozdal, and O. F. Algur, “Isolation and Characterization of α-Endosulfan Degrading Bacteria from the Microflora of Cockroaches ,” Polish J. Microbiol., vol. 65, no. 1, pp. 63–68, 2016.
[89] N. A. Broderick, K. F. Raffa, and J. Handelsman, “Midgut bacteria required for Bacillus thuringiensis insecticidal activity,” 2006.
[90] S. Fang et al., “Bacillus thuringiensis Bel Protein Enhances the Toxicity of Cry1Ac Protein to Helicoverpa armigera Larvae by Degrading Insect Intestinal Mucin,” Appl. Environ. Microbiol., vol. 75, no. 16, pp. 5237–5243, 2009.
[91] A. Capone et al., “Interactions between Asaia, Plasmodium and Anopheles: New insights into mosquito symbiosis and implications in Malaria Symbiotic Control,” Parasites and Vectors, vol. 6, no. 1, p. 182, Jun. 2013.
[92] A. J. Castro, “Antimalarial activity of prodigiosin [11],” Nature, vol. 213, no. 5079. Nature Publishing Group, pp. 903–904, 01-Mar-1967.
[93] C. D. Patil, S. V. Patil, B. K. Salunke, and R. B. Salunkhe, “Prodigiosin produced by Serratia marcescens NMCC46 as a mosquito larvicidal agent against Aedes aegypti and Anopheles stephensi,” Parasitol. Res., vol. 109, no. 4, pp. 1179–1187, Oct. 2011.
[94] R. N. C. Guedes, S. S. Walse, and J. E. Throne, “Sublethal exposure, insecticide resistance, and community stress,” Current Opinion in Insect Science, vol. 21. Elsevier Inc., pp. 47–53, 01-Jun-2017.
[95] S. Rajatileka, J. Burhani, and H. Ranson, “Mosquito age and susceptibility to insecticides,” Trans. R. Soc. Trop. Med. Hyg., vol. 105, no. 5, pp. 247–253, May 2011.
[96] C. M. Jones, A. Sanou, W. M. Guelbeogo, N. Sagnon, P. C. D. Johnson, and H. Ranson, “Aging partially restores the efficacy of malaria vector control in insecticide-resistant populations of Anopheles gambiae s.l. from Burkina Faso,” Malar. J., vol. 11, no. 1, pp. 1–11, Jan. 2012.
[97] M. Rowland and J. Hemingway, “Changes in malathion resistance with age in Anopheles stephensi from Pakistan,” Pestic. Biochem. Physiol., vol. 28, no. 2, pp. 239–247, Jun. 1987.
[98] J. D. LINES and N. S. NASSOR, “DDT resistance in Anopheles gambiae declines with mosquito age,” Med. Vet. Entomol., vol. 5, no. 3, pp. 261–265, Jul. 1991.
[99] M. H. Hodjati and C. F. Curtis, “Evaluation of the effect of mosquito age and prior exposure to insecticide on pyrethroid tolerance in Anopheles mosquitoes (Diptera: Culicidae),” Bull. Entomol. Res., vol. 89, no. 4, pp. 329–337, 1999.
[100] E. Collins et al., “The relationship between insecticide resistance, mosquito age and malaria prevalence in Anopheles gambiae s.l. from Guinea,” Sci. Rep., vol. 9, no. 1, p. 8846, 2019.