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Abstract
Background:

Cardiovascular disease (CVD) remains a major public health concern, and developing effective interventions at the population
level requires a thorough understanding of the spatial distribution and contextual determinants of cardiometabolic risk factors
(CMRFs). However, knowledge on these issues at small spatial scales is still limited, especially in Europe. The aim of this study
was to explore the spatial patterns of CMRFs and to identify key individual and contextual factors associated with these risk
factors in the city of Lausanne, Switzerland.

Methods:

Using individual-level data from a population-based cohort of middle-aged and older adults (CoLaus), we examined
hypertension, obesity, diabetes, and dyslipidemia as key CMRFs. Intensity functions were used to identify areas of elevated risk
for each outcome. Geographically weighted regressions were then employed to examine local associations between outcomes
adjusted for individual confounders, and characteristics of physical and social environments such as air pollution, noise,
greenness, street connectivity, socioeconomic position, and ethnic composition.

Results:

We analyzed data from 3,695 participants (mean age of 64.1 years, 56.8% females). The prevalence of hypertension was
48.2%, obesity 17.7%, diabetes 10.7% and dyslipidemia 33.2%. Among the individual factors associated with CMRFs, older age,
male sex, lower education level, and being foreign-born emerged as common contributors. Persistent spatial clusters for
hypertension, obesity, and diabetes were identified across the city, as well as areas with concurrent increased risk for multiple
CMRFs. After adjustment for individual confounders, a global association between neighborhood income and hypertension,
obesity, and diabetes emerged. Obesity showed the strongest contextual influence, with significant local associations identified
between obesity and higher unemployment rates, lower income, education, and greenness. Notably, hypertension showed local
associations with lower neighborhood income and PM2.5 concentrations, while diabetes was associated with lower income
and higher unemployment. Dyslipidemia did not show significant associations with contextual factors.

Conclusions:

Using individual-level data, the study combined spatial approaches to delineate high-risk areas for CMRFs within an urban area
and to reveal significant associations with characteristics of physical and social environments. This methodological
framework can be applied elsewhere, providing public health practitioners with essential insights to prioritize and tailor local
population-level initiatives for CVD prevention.

Background
Cardiovascular disease (CVD) is a major cause of death and disability in European countries, and there is growing concern
about its increasing prevalence in the future (1). The COVID-19 pandemic has further exacerbated the challenges faced by
individuals with CVD. Not only do they face an increased risk of severe COVID-19, but they also experience collateral damage
from pandemic response measures, including poor management of behavioral risk factors for noncommunicable disease
during lockdown and disruptions in access to routine health services (1–3).

Geographic variations in the prevalence of the most common CVD risk factors, such as diabetes, obesity, hypertension, and
dyslipidemia (collectively referred to as cardiometabolic risk factors or CMRFs), have been observed at different spatial scales,
and these variations have been associated with characteristics of the social and physical environment (4–6). While obesity has
been extensively studied compared to hypertension, diabetes, and dyslipidemia, all CMRFs consistently showed associations
with the social environment, with higher risks found in low socioeconomic neighborhoods (7). Obesity has also been
associated with low neighborhood walkability, low greenness, and physical deterioration of the neighborhood (8, 9).



Page 3/20

Hypertension has been associated with traffic noise, air pollution, low walkability, and low greenness (10–13). Diabetes has
been shown to be associated with road traffic noise, air pollution, low walkability, and low access to green spaces (9, 13–15).
Dyslipidemia has been associated with low greenness and higher urbanization (11, 16).

These associations between CMRFs and contextual factors may explain the limited effectiveness of individual-centered
prevention strategies, which often fail to address environmental and societal barriers to healthy lifestyles (7, 17). In contrast,
population-level interventions, which have been advocated for decades (18), focus on modifying the environment to promote
lifestyle behaviors and minimize risk factors for the entire population (19). The integration of both individual- and population-
based strategies is therefore crucial to effectively reduce the overall prevalence of CVD and address health inequities (18–20).

Developing population-level interventions requires two key components: identifying high-risk areas to prioritize interventions
and understanding the specific characteristics of the social and physical environment on which to focus prevention efforts.
However, achieving this at the local level can be challenging due to the limited availability of fine-scale health data, which are
typically only available at the national or regional level (4, 6). Furthermore, generalizing findings on health-environment
associations is hampered by the heterogeneity of methods and indicators used, as well as by inherent contextual differences
between regions and countries (21, 22).

Therefore, the aim of this study is to perform a spatial analysis using individual-level data from a large population-based
cohort in Lausanne, Switzerland. The study aims to (1) assess the intra-urban spatial variation in cardiometabolic risk factors,
(2) investigate the characteristics of the social and physical environment that may explain these variations while controlling for
individual confounders, and (3) discuss the implications of these findings for the development of population-level interventions
to address CMRFs.

Materials and methods
Data

Study population
Data were obtained from the CoLaus-PsyColaus population-based study (23), which aims to assess the prevalence and identify
the genetic, biological, and environmental determinants of CVD in the city of Lausanne, Switzerland (41 km2 and 140,202
inhabitants in 2021 (24)). Participants were chosen to be representative of the population aged 35–75 years, following the
selection procedure described in Firmann et al. (23). The study was approved by the Institutional Ethics Committee of the
University of Lausanne and complies with the 1964 Helsinki declaration. All participants provided written informed consent.

A baseline recruitment phase took place between 2003 and 2006 (N = 6733) and was followed by three follow-up studies
carried out from 2009 to 2012 (N = 5064), 2014 to 2017 (N = 4881), and 2018 to 2021 (N = 3751). In this study, we used the
data from the second follow-up period (2014–2017) as the last follow-up was highly perturbed by the COVID-19 pandemic.

Health outcomes
The presence of cardiometabolic conditions (diabetes, hypertension, obesity, and dyslipidemia) was assessed by medical
examination. Diabetes was defined as a fasting blood glucose level of ≥ 7 mmol/L and/or the use of antidiabetic treatment
(25). Hypertension was identified as a systolic blood pressure > 140 mmHg or a diastolic blood pressure 90 mmHg and/or the
use of antihypertensive drug treatment. Obesity was defined as a body mass index (BMI) ≥ 30 kg/m2, according to World
Health Organization guidelines (26). Dyslipidemia was determined by a total cholesterol level > 6.5 mmol/L and/or an LDL-
cholesterol level > 4.1 mmol/L, and/or the use of hypolipidemic medication (27).

Individual factors
Demographic (age, sex, marital status, country of birth), socioeconomic (education, poverty), and behavioral risk factors
(smoking status, alcohol consumption, physical inactivity) were assessed using validated questionnaires administered to the
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study participants. Home addresses provided by the participants at the time of the examination were geocoded by matching
with the official Swiss address directory (28).

Marital status was classified as married/cohabiting or living alone. Country of birth was categorized as "born in Switzerland" or
"not born in Switzerland". Education level was divided into low (obligatory school or apprenticeship), medium (high school), or
high (university degree). Poverty was considered for individuals who answered positively to “Are you experiencing real financial
difficulties to meet needs?”. Smoking status was classified as current or former/never smoker. Hazardous drinking was
considered for participants consuming over 14 units per week (one unit = one glass of wine, one can of beer or one shot of
spirit). Physical inactivity was defined as having a sedentary lifestyle.

Contextual variables
To comprehensively assess the influence of the residential environment on CMRFs, we considered several indicators of the
social and physical environments that have previously been associated with diabetes, hypertension, obesity, or dyslipidemia.
Our analysis included measures of urban walkability, environmental exposures, material deprivation, and ethnic composition.

Two key measures were used to reflect urban walkability: greenness and street connectivity. Greenness was determined by
calculating the proportion of green space within a 500-meter radius buffer around each hectare centroid using land cover data
for the year 2015 (Source: Géodonnées Etat de Vaud). The choice of a 500-meter buffer was justified by its common use in
assessing walkability in European urban areas (12, 29), corresponding to places accessible within a 5–10-minute walk. For
street connectivity, we calculated intersection density by counting the number of intersections with three or more legs within the
500-meter buffer. The walkable street network from January 2016 was retrieved from OpenStreetMap using the Overpass API,
excluding private roads and nonrelevant intersections (parking aisles, service driveways, etc.).

Nighttime traffic noise exposure was obtained from the 2015 sonBASE dataset (10x10 m resolution) (30), and the
concentrations of PM2.5 and NO2 were extracted from the 2015 Pollumap immission model developed by MeteoTest (20x20 m

resolution) (31). We then calculated the mean exposure in noise (dB) and air pollutants (in µg/m3) in the 500-meter buffers
around hectare centroids.

To reflect the material deprivation and ethnic composition of the neighborhood, we considered indicators reflecting the
proportion of the population with compulsory education, median neighborhood income, unemployment rate, and proportion of
non-Swiss citizenship (i.e., foreign population). Data for these indicators were obtained from MICROGIS for the Swiss
neighborhoods in 2015 (32).

All contextual variables were computed using Python and QGIS at the resolution of inhabited hectares (100x100 m cells),
which is the scale used by the Swiss Federal Statistical Office for population statistics (33). The assignment of contextual
factors to CoLaus participants was achieved by spatial intersection.

Methods

Spatial relative risk of cardiometabolic risk factors
To assess the spatial variation in CMRFs across the study area, we compared the spatial density estimations between cases
(i.e., individuals with the disease) and controls (i.e., non-cases) by modeling the individual’s home locations as point patterns
following a heterogeneous Poisson distribution (34, 35). Random perturbations and edge correction techniques were applied to
address potential issues with duplicate point locations and boundary effects (36).

The log relative risk surface, obtained by taking the ratio of the density functions of cases and controls, allowed the
identification of high-risk and low-risk areas, indicating areas with significantly elevated or reduced probabilities of observing a
case, respectively (35). We also assessed the overall clustering of CMRFs across the study area using the method proposed by
Kelsall and Diggle (37).
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The choice of the kernel form and, more importantly, the kernel bandwidth play a critical role in the estimation of spatial relative
risk as it determines the degree of smoothing applied to the risk surface (see Supplementary Fig. 1, Additional File 1 for
bandwidth comparisons). A larger bandwidth could mask small-scale patterns and reduce local variations, whereas a
bandwidth that is too small could introduce noise and overfitting. For this study, we chose a circular Gaussian kernel with a
bandwidth of 200 m, which was a compromise between the jointly optimal bandwidths proposed by Kelsall and Diggle (38)
and Davies (39).

Statistical inference of the relative risk surface involved testing the random labeling hypothesis through 999 Monte Carlo
permutations. In each permutation, the set of events (cases and controls) was randomly assigned to point locations. Tolerance
contours were then derived from the resulting p-value surface, defining high-risk and low-risk areas at significance levels of 5%
and 1%.

To ensure the robustness of the findings, the spatial patterns of CMRFs observed in the study sample (i.e., second follow-up of
the CoLaus study) were compared with those observed at baseline and at the first follow-up. It aimed to address concerns
about the representativeness of the cohort and identify consistent high-risk areas over a 10-year period.

As an initial exploration prior to the modeling phase, we analyzed differences in participant characteristics and contextual
factors between areas with significantly elevated risk, reduced risk, or a neutral risk pattern (where the observed variation is not
statistically significant) of CMRFs. Pairwise comparisons of study participants and inhabited hectares located in high-risk, low-
risk, and neutral areas were performed using chi-square and Kruskal-Wallis tests for categorical and continuous variables,
respectively. A Bonferroni correction was applied to p-values to account for multiple comparisons.

Analyses were performed in R using the sparr (40) and smacpod (41) packages.

Regression models
To investigate the associations between CMRFs (hypertension, diabetes, obesity, and dyslipidemia) and the physical and social
environments, we used several regression models. Our aim was to disentangle the effects of contextual factors and known
individual confounders while exploring the spatially varying relationships between CMRFs and the environment.

As the spatial variation in disease risk could be misattributed to contextual factors rather than differences in individual
characteristics acting as confounders (7), we initially adjusted our binary health outcomes using logistic regression models.
These models accounted for important individual confounders, including age, sex, poverty status (yes vs. no), education level
(low, medium, high), and country of birth (Swiss-born vs. foreign-born). By considering the Pearson residuals of these logistic
regression models, we obtained adjusted health outcomes that captured the proportion of the health outcome not explained by
the individual factors (42). These adjusted health outcomes were then used to assess the associations with contextual factors.
In addition, to account for the nonlinear relationships between age and conditions like diabetes, obesity, and dyslipidemia, we
incorporated quadratic terms for these outcomes into the regression models.

Standard regression models, such as ordinary least squares (OLS), face challenges in examining health-environment
relationships due to the inherent spatial clustering and potential spatial heterogeneity of geographic data. Spatial clustering
refers to the tendency for nearby locations to exhibit similar values, violating the assumption of independence in OLS. On the
other hand, spatial heterogeneity implies that the relationship between an outcome and its explanatory variables may vary
across space, rendering global models inadequate. To address these issues, we used geographically weighted regression
(GWR) models (43). GWR determines model parameters at each regression point, based on nearby data points. The influence
of each data point is weighted by its distance from the regression point, typically using a bisquare kernel. In contrast, OLS
weights all points in the study area equally.

Our analysis proceeded in two stages. First, we conducted an OLS analysis to gain insight into the overall associations
between the adjusted CMRFs and the contextual factors described above, including street connectivity, greenness, traffic noise,
PM2.5 and NO2 exposure, median income, unemployment rate, proportion of compulsory education, and proportion of foreign
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population. The OLS analysis provided an opportunity to identify potential multicollinearity issues using the variance inflation
factor (VIF) and to assess the spatial autocorrelation of the residuals using the global Moran's I index. For the latter, we used a
Gaussian kernel bandwidth of 200 meters, consistent with the bandwidth employed for kernel density estimation.

We then built GWR models to explore the spatially varying relationships between the adjusted CMRFs and the contextual
factors with VIF < 10. The selection of the kernel bandwidth (i.e., the number of nearby points considered in the regression
calculations) involved a golden search method that minimizes the corrected Akaike Information Criterion (AICc) (44). To
account for variations in point density, we chose a bisquare adaptive kernel. While GWR used the same kernel bandwidth for
each process included in the model (i.e., each explanatory variable), we also considered the multiscale extension (MGWR),
which recognizes that spatial processes may vary at different scales and determines a unique bandwidth for each explanatory
variable. The GWR and MGWR models provided coefficient estimates, t-values, and local model diagnostics for each regression
point, allowing us to identify statistically significant health-environment associations using t-values adjusted for multiple
comparisons (45).

To visualize the results of the GWR and MGWR models, we mapped the coefficient estimates for each contextual variable, and
the locations where the associations were statistically significant. We used the AICc criterion to compare spatial models, with a
reduction in AICc values > 2 was considered indicative of substantial improvement (29).

The regression modeling steps were performed using R (46) and the mgwr (44) and PySAL (47) libraries in Python.

Results
Out of the 4,881 participants included in the study during the second follow-up period (2014–2017), 61 individuals (1.25%)
could not be geocoded, and 1,117 individuals (22.88%) were excluded because they resided outside the urban districts of
Lausanne. Additional exclusions comprised participants with missing individual confounder data (N = 4, 0.08%) and those with
missing neighborhood characteristics (N = 4, 0.08%). Thus, 3,695 participants (75.70%) were included in the final analysis
(Supplementary Fig. 2C, Additional File 1).

The mean age of the participants was 64.1 ± 10.5 years, and 56.8% were females. The prevalence of CMRFs in the study
sample was as follows: 48.2% were hypertensive, 17.7% were obese, 10.7% had diabetes, and 33.2% had dyslipidemia. Detailed
information on outcome variables and participant characteristics, including demographic, socioeconomic, and behavioral
factors, is presented in Supplementary Tables 1 and 2, Additional File 2. Supplementary Table 1 also provides comparative
statistics between the study sample, the baseline population, and the population excluded from the study.

Regarding the characteristics of the physical and social environments, all variables displayed spatial variation across the city
(see Supplementary Fig. 3, Additional File 1). Within a 500-meter radius buffer, the mean values of environmental factors were
as follows: intersection density was 1.0e-4 (std: 5.0e-5), proportion of green spaces was 52.2% (std: 18.1), nighttime traffic
noise was 41.6 dB (std: 3.67), PM2.5 concentration was 10.5 µg/m3 (std: 0.32), and NO2 concentration was 22.4 µg/m3 (std:
2.07). Additionally, the average median income per inhabited hectare was 41.2 kCHF/year (std: 19.2), (1 CHF = 1.04 € or 1.14
US$ as of 31st July 2023) the unemployment rate was 3.97% (std: 2.64), the proportion of the population with compulsory
education was 20.2% (std: 12.2), and the proportion of the foreign population was 40.5% (std: 17.2).

Intra-urban variation in cardiometabolic risk

Log relative risk surfaces of CMRFs are shown in Fig. 1, along with the delineation of areas of significantly elevated risk at the
5% (dashed line) and 1% (solid line) significance levels. The delineation of high-risk, low-risk and neutral-risk areas is shown in
Supplementary Fig. 4, Additional File 1.

Hypertension
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Hypertension exhibited spatial variation across the city, with four large areas exceeding the 95% tolerance interval, in
landmarks #2, #3, #4, and #7 (Fig. 1A). The test for global clustering was also significant, with a p-value of 0.04. High-risk
areas were characterized by lower income and education levels than low-risk and neutral areas (Supplementary Fig. 5,
Additional File 1). We also observed lower street connectivity and, surprisingly, higher greenness and lower environmental
exposure (nighttime noise and air pollution) compared to low-risk areas, but the difference was not statistically significant
compared to neutral areas. Study participants in high-risk areas were older (p = 0.005), had lower levels of education (p < 
0.001), and were more likely to be foreigners (p = 0.013) and unemployed (p = 0.029).

Obesity
Obesity showed a global clustering pattern (p = 0.03), and we identified five local clusters exceeding the 99% tolerance interval
(Fig. 1B), in landmarks #1, #2, #5, #6, and #8. High-risk areas were associated with higher socioeconomic deprivation and a
higher proportion of foreign population than low-risk and neutral areas (Supplementary Fig. 6, Additional File 1). While there
were no significant variations in walkability, high-risk areas had statistically higher environmental exposures (nighttime noise
and air pollution). In addition, study participants in high-risk areas were younger (p < 0.001) and more likely to be foreigners (p 
< 0.001), to live alone (p = 0.002), to have a low level of education (p < 0.001), and to experience financial difficulties (p < 0.001).

Diabetes
Diabetes demonstrated spatial variation across the study area, with two local clusters detected at a significance level of 1% in
landmarks #2 and #6 (Fig. 1C). There was no evidence of global clustering (p = 0.61). High-risk areas had lower walkability and
higher environmental exposures compared to low-risk and neutral areas (Supplementary Fig. 7, Additional File 1). Inhabited
hectares in high-risk areas were also characterized by a lower median income, a higher proportion of the population with
compulsory education, and a higher proportion of foreign population. Study participants in high-risk areas were more likely to
have lower levels of education (p < 0.001), higher unemployment rates (p = 0.020), and higher financial difficulties (p = 0.004).

Dyslipidemia
Dyslipidemia exhibited a less pronounced spatial pattern than the other CMRFs, but one local cluster in the northeastern part of
the city (landmark #5) was significant at the 1% significance level (Fig. 1D). There was no evidence of global clustering (p = 
0.37). High-risk areas were characterized by lower median income, higher unemployment rate, and higher nighttime traffic noise
and NO2 exposure compared to other risk areas (Supplementary Fig. 8, Additional File 1). No significant differences were
observed between study participants, except for education level (p < 0.001).

The spatial pattern of CMRFs was generally consistent with the patterns observed at baseline and the first follow-up study
period (Supplementary Figs. 9–12, Additional File 1), highlighting the long-term persistence of high-risk areas despite
individuals leaving the cohort.

Impact of individual confounders on cardiometabolic risk factors

Results of multivariate logistic regressions, adjusting CMRFs for individual confounders, are presented in Supplementary
Table 3, Additional File 2. Together, age, sex, poverty, education, and country of birth explained 11%, 4%, 12%, and 6% of the
variation in hypertension, obesity, diabetes, and dyslipidemia, respectively. Males were more likely than females to have
hypertension, obesity, diabetes, and dyslipidemia. Individuals with lower education levels, older age, and those born outside
Switzerland were also at higher risk for these CMRFs. Although individuals with financial difficulties had an increased risk of
hypertension, obesity, and diabetes, the association with dyslipidemia was not statistically significant.

Associations with the physical and social environments

The results of the global regression model are presented in Table 1. After adjustment for individual confounders, only median
neighborhood income was negatively associated with hypertension, obesity, and diabetes. However, no significant global
associations were found between adjusted dyslipidemia and characteristics of the physical and social environments. VIF
values were all below the common threshold of 10 for each CMRF, so all the explanatory variables were included in the spatial
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regression models. Notably, Global Moran's I suggested a positive spatial autocorrelation of the residuals, indicating that the
OLS model may not be suitable for effectively modeling the relationships between adjusted CMRFs and contextual factors.

Table 1
Results of the ordinary least squares (OLS) regression model. Health outcomes were previously adjusted for individual

confounders, including age, sex, education, income, and country of birth, using a logistic regression model (see Supplementary
Table 3, Additional File 2 for details). n/a: not available, I: Global Moran’s I of residuals, p: p-value, Coeff.: Coefficient estimates,

VIF: Variance Inflation Factor.

  Hypertension Obesity Diabetes Dyslipidemia

N = 3569 N = 3411 N = 3460 N = 3405

  I = 0.033 (p = 0) I = 0.041 (p = 0) I = 0.031 (p = 0) I = 0.026 (p = 0)

Variable Coeff. p VIF Coeff. p VIF Coeff. p VIF Coeff. p VIF

Intercept 0.000 0.984 n/a 0.000 1.000 n/a -0.002 0.926 n/a -0.001 0.945 n/a

Street
connectivity

0.042 0.276 5.34 -0.023 0.567 5.29 -0.031 0.426 5.310 -0.011 0.779 5.26

Greenness 0.001 0.984 4.52 -0.018 0.612 4.48 -0.042 0.239 4.490 -0.023 0.527 4.44

Nighttime
noise

0.005 0.848 2.72 -0.013 0.653 2.73 0.024 0.390 2.720 0.016 0.569 2.72

PM2.5 -0.076 0.148 9.71 0.012 0.820 9.76 0.009 0.868 9.710 0.008 0.880 9.60

NO2 -0.018 0.622 4.86 0.000 0.995 4.89 -0.053 0.149 4.840 -0.027 0.475 4.82

Median
income

-0.061 0.002 1.35 -0.046 0.019 1.35 -0.044 0.023 1.340 -0.008 0.694 1.34

Unemployment
rate

0.025 0.208 1.41 0.031 0.120 1.40 0.018 0.375 1.400 -0.003 0.899 1.40

Compulsory
education

0.010 0.648 1.61 0.011 0.616 1.60 0.014 0.517 1.610 -0.003 -0.142 1.61

Foreign
population

0.004 0.846 1.41 0.006 0.763 1.41 0.037 0.062 1.410 0.012 0.578 1.40

Hypertension
The MGWR model demonstrated superior performance in capturing the relationships between adjusted hypertension and
contextual factors, as evidenced by its lower AIC (10,135) compared with the OLS (AIC = 10,139) and GWR (AIC = 10,141)
models (Supplementary Table 4, Additional File 2). In both spatial models, the local condition numbers remained below 15,
indicating no multicollinearity issues (Supplementary Fig. 13, Additional File 1). The bandwidths used in the MGWR model were
similar to those used in the GWR model, except for PM2.5 exposure (1137 neighbors for MGWR bandwidth vs. 3568 for GWR,
Supplementary Table 5, Additional File 2). Contextual factors that significantly explained the spatial variation in adjusted
hypertension are shown in Fig. 2 for the MGWR model and in Supplementary Fig. 13, Additional File 1 for GWR. Neighborhood
median income displayed a small negative association with hypertension, and this association was statistically significant
throughout the city except in the southeastern region. In addition, we observed a negative local association between PM2.5

exposure and adjusted hypertension, which was significant only in the MGWR model and overlapped the high-risk areas in
landmarks #3 and #4.

Obesity
The MGWR model (AICc = 9649) outperformed both the OLS (AIC = 9676) and GWR (AIC = 9654) models (Supplementary
Table 4, Additional File 2). The map of local condition numbers (Supplementary Fig. 16, Additional File 1) indicated that certain
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locations in the GWR model exceeded the common threshold of 30, suggesting potential multicollinearity problems in these
areas. In addition, the different bandwidths used in the MGWR model (ranging from 1010 to 3409 neighbors, Supplementary
Table 5, Additional File 2) suggested different process scales among the contextual factors.

The left panels of Fig. 3 illustrate the spatial variation in the MGWR coefficient estimates. Neighborhood income and
unemployment rate showed respectively negative and positive associations with obesity risk across the city, albeit with modest
effects (coefficient estimates between − 0.1 and 0.1). These spatial associations were regionally significant (right panels of
Fig. 3) and overlapped with high-risk areas identified in the log relative risk surface, specifically in landmarks #1, #2, #3, and #5
for median income, and #1, #2, #6, and #8 for unemployment. Both greenness and the proportion of compulsory education
showed spatial heterogeneity across the city, with their associations changing sign depending on the area. In the south, a
moderate local negative association between greenness and obesity risk was observed, partially overlapping with the high-risk
area located in landmark #2. The proportion of compulsory education was positively associated with obesity risk in the eastern
high-risk area (landmark #1).

In contrast to the MGWR model, the GWR model (Supplementary Fig. 14, Additional File 1) did not reveal a significant
association between education level and adjusted obesity but showed a significant positive association with greenness in the
northern areas (landmark #5) and a negative association with street connectivity in landmark #1.

Diabetes
For adjusted diabetes, a modest increase was observed in the proportion of explained variance between the global and spatial
models (GWR and MGWR), but model fit did not show improvement (Supplementary Table 4, Additional File 2). The MGWR
model (AICc = 9743) slightly outperformed the GWR model (AICc = 9745). Local multicollinearity was low across the study area
(Supplementary Fig. 16, Additional File 1), and all explanatory variables operated at the global scale except for median income
(659 neighbors for MGWR bandwidth vs. 3458 for GWR). Significant contextual associations with diabetes were exclusively
related to social characteristics (Fig. 4, Supplementary Fig. 15, Additional File 1). Both spatial models showed significant
negative associations between neighborhood income and obesity in the northern areas. However, the coefficient estimate
surface showed moderate spatially heterogeneous associations in the MGWR model and small negative associations in the
GWR model, which can be explained by the different process scales considered in the two models. The proportion of the
foreign population showed a slight negative association in both GWR and MGWR, with locally significant associations in the
south of the city (landmark #8).

Dyslipidemia
As suggested by the global regression model, the GWR and MGWR models corroborated the negligible effect of the physical
and social environments on adjusted dyslipidemia across our study area. This was highlighted by the lack of improvement in
model performance and the absence of significant local associations for all contextual factors (Supplementary Table 4,
Additional File 2 and Fig. 20, Additional File 1).

Discussion
Our study aimed to investigate the spatial variation in cardiometabolic risk factors (CMRFs) in an urban context and to explore
the role of the physical and social environments in shaping these patterns while considering individual confounders. The
results revealed significant spatial patterns in CMRFs as well as several local associations with the environment, providing
valuable insights to support local interventions and improve the living environment of affected populations.

Intra-urban variation in cardiometabolic risk factors

We observed substantial spatial variation in CMRFs across Lausanne, with obesity exhibiting the most pronounced pattern,
followed by hypertension and diabetes. The log relative risk of these cardiometabolic outcomes exceeded the 99% tolerance
interval in several areas, and we also observed a global clustering pattern for obesity and hypertension. In particular, our
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investigation revealed a higher risk of obesity in the western areas of the city (landmarks #1, #2, #3). This finding is consistent
with previous research by Joost et al. (48), who reported a striking westward gradient in BMI for the baseline and first follow-up
of the same medical cohort, although the magnitude of the gradient was somewhat attenuated in our study.

Furthermore, our study identified overlapping high-risk areas associated with multiple cardiometabolic risk factors. Specifically,
the neighborhood in landmark #2 had a concurrent elevated risk for obesity and diabetes, whereas the neighborhood in
landmark #5 had an elevated risk for obesity and dyslipidemia. These findings suggest that targeted interventions should be
prioritized in these areas, as they may indicate a higher risk of multimorbidity.

Associations with the physical and social environments

The associations between cardiometabolic risk factors and characteristics of the physical and social environments were
examined using geographically weighted regressions (GWR) on health outcomes previously adjusted for known individual
confounders, including age, sex, education, country of birth, and poverty.

For obesity, our analysis revealed significant local positive associations with unemployment rate and compulsory education,
and negative associations with neighborhood income, even after controlling for individual socioeconomic status. These
findings are in line with the literature, which consistently highlights the association between weight status and neighborhood
socioeconomic position (7). We also observed a significant negative local association between obesity and greenness in the
southern areas, consistent with other studies (8, 49).

Hypertension displayed a negative global association with neighborhood income, which was significant in the eastern and
northern areas in our spatial models. This association between hypertension and socioeconomic deprivation is consistent with
findings from other studies (50, 51). However, it is interesting to note that while several variables were included in our study to
characterize the socioeconomic position of the neighborhood, only neighborhood income emerged as a significant negative
association with hypertension. This differs from the study by Chaix et al. (52), where neighborhood education, not income, was
identified as a significant factor. Surprisingly, we also found a local negative association between the concentration of PM2.5

and adjusted hypertension, which might suggest potential mediating interactions with another environmental characteristic. It
is worth noting that the neighborhoods in question (landmarks #3 and #4) are situated next to a small civil airport, and our
variable for nighttime traffic noise did not include aircraft sources. This could provide a clue for further investigations, as
associations between aircraft noise exposure and hypertension have been observed in other studies (53, 54).

Our study did not detect any local association between diabetes and the characteristics of the physical environment, in
contrast with previous studies that reported significant associations between diabetes and walkability (9, 55). These variations
in findings between studies may be attributed to the use of different measures to assess greenness and street connectivity.
However, we observed a significant negative association between adjusted diabetes and neighborhood income in the northern
areas and a positive association with the proportion of the foreign population in the southern areas, which highlights the
importance of addressing socioeconomic disparities in diabetes (50, 56).

Dyslipidemia showed no significant local associations with characteristics of the social and physical environments. Previous
literature on the association between blood lipids and the built environment has often emphasized urban-rural differences, with
higher blood lipid levels observed in urban areas (16). Given that our study area was limited to an urban context, it is possible
that the associations between dyslipidemia and the environment occur at a broader spatial scale, and thus we may not have
sufficient spatial variation within the city to detect them.

Spatial associations between CMRFs and the contextual factors showed heterogeneity across the city. Some associations were
consistent in direction but varied in magnitude, while others shifted in sign between areas. This underscores the value of
geographically weighted regressions for capturing these intricate, local variations. Interestingly, similar to the findings of Kauhl
et al. (56) in northeast Germany, we observed a varying directional association between neighborhood income and diabetes
across the city.
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We recognized the importance of the multiscale extension of geographically weighted regression (MGWR), particularly for
disentangling associations between obesity and the physical and social environments. The GWR model encountered problems
with local multicollinearity and inadequately captured the multiple process scales among contextual factors. For diabetes and
hypertension, where associations were predominantly global and no multicollinearity problems were identified, the multiscale
extension was less critical. Nevertheless, while insights can still be gained from interpreting the GWR results, greater reliance
should be placed on the results of the MGWR model due to its improved performance and better handling of multiscale effects
(45).

It is noteworthy that although our study revealed substantial differences in contextual factors between high-risk, low-risk, and
neutral areas on the log relative risk surfaces for hypertension, diabetes, and obesity, these associations were not fully reflected
in the GWR and MGWR models, except for obesity. This divergence could be explained by the fact that the spatial variation in
diabetes and hypertension was largely attributable to individual-level characteristics rather than contextual factors.

Policy implications

Several areas identified as high-risk in the log relative risk model align closely with significant local associations determined by
the GWR and MGWR models. This congruence enables the formulation of valuable recommendations for targeted preventive
public health actions to enhance the living conditions of local populations. Our findings highlight the importance of addressing
socioeconomic barriers when designing population-level interventions for hypertension. In particular, we observed a consistent
negative association between neighborhood median income and hypertension risk in almost all high-risk areas. For obesity, the
large high-risk area in landmark #2 was characterized by a negative association with median income, a positive association
with unemployment rate, and a negative association with greenness. Policymakers should consider strategies to improve
walkability and increase vegetation in this area while taking into account socioeconomic barriers. In addition, the high-risk area
in landmark #1 shows a negative association with neighborhood income and a positive association with the proportion of
compulsory education. Although not statistically significant in the MGWR model, the GWR model also indicates a negative
association with street connectivity, which should be considered in future policy planning, especially given the proximity to
surrounding highways. In essence, a neighborhood with high street connectivity provides multiple route options, reducing travel
distances. This promotes an environment for active mobility, which in turn could reduce the risk of obesity (57).

Strengths and limitations

Our study has several strengths. First, we conducted our analysis using individual data from a population-based cohort, which
provides a robust basis for assessing spatial variation in CMRFs. The use of health outcomes assessed during medical
examinations, rather than relying on self-reported data, helps to mitigate common biases in epidemiological studies (58).
Through the analysis of georeferenced home addresses of study participants, we mitigated inherent biases in ecological
studies, such as the modifiable unit areal problem (59). Moreover, by adjusting for important individual-level confounders, such
as age, sex, socioeconomic status, and country of birth, we reduced the likelihood that observed associations between
neighborhood characteristics and health outcomes were solely attributable to unaccounted individual-level factors (20).

Another strength is that we studied four major metabolic risk factors for CVD simultaneously, allowing comparisons of their
respective geographic patterns. We also attempted to capture several dimensions of the social and physical environments that
may be associated with CMRFs (20, 21), including material deprivation, ethnic composition, environmental exposures such as
nighttime noise and air pollution, and walkability.

Our study benefits from the acquisition of environmental characteristics for the year 2015, ensuring temporal alignment with
the study period, and we also observed residential stability for a significant proportion of study participants over a 10-year
period (from baseline to study period). Despite these considerations, the cross-sectional nature of our study still limits our
ability to fully account for participants' cumulative exposures over time.

Although the GWR and MGWR models identified local associations between obesity, hypertension, and diabetes and specific
environmental characteristics, their explanatory power was limited. This is partly due to our use of health outcomes previously
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adjusted for individual confounders (Pearson residuals of logistic regression), which explained 5–10% of the total variance of
CMRFs. The contribution of contextual factors, approximately 2.5% for obesity and 1.5% for diabetes and hypertension, was
modest compared to individual-level factors, consistent with literature (21, 29). In addition, modeling individual disease risk
rather than area-level prevalence introduced noise and overfitting, which contributed to the observed lower R2 values. Despite
these limitations, our study may still fail to capture significant individual or contextual predictors of these CMRFs. Examining
factors beyond the residential environment and including additional confounding variables may improve the explanatory power
of future models and provide more comprehensive insights into the multifactorial determinants influencing CMRFs. From a
policy perspective, this approach may also open the way to constructing a 'portrait' of populations susceptible to CMRFs and
then using fine-scale area-level data to identify regions within the administrative territory with significant concentrations of
such profiles. This proactive strategy could serve as a valuable tool for targeting preventive population health interventions.

Furthermore, it is important to consider the temporal context of our study, which reflects the state of the city in 2017. While the
spatial health inequalities observed during the baseline period (2003–2006), the first follow-up (2009–2012), and the second
follow-up (2014–2017) remained relatively stable, changes may have occurred since then. A third follow-up (2019–2022) was
available, but the examination of participants was significantly affected by the COVID-19 pandemic, which may have
introduced bias into the data. In addition, the departure of several participants from the cohort since baseline increases the
possibility of deviations from the general population of Lausanne. However, it is noteworthy that we did not detect significant
differences in population characteristics between baseline and the second follow-up, except for those related to aging (e.g.,
occupational activity, physical inactivity, proportion of females, and individuals living alone).

Conclusion
In conclusion, we identified high-risk areas for CMRFs and several associations with specific features of the physical and social
environments, independent of individual-level factors. These findings provide an important basis for the design of targeted
population-level interventions for cardiovascular disease.
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Figures
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Figure 1

Log relative risk (Log RR) surface of CMRFs: (A) hypertension, (B) obesity, (C) diabetes, and (D) dyslipidemia. Density
estimations were performed using Gaussian Kernels with a Bandwidth of 200 meters. High-risk areas were determined by
tolerance contours (Tol. Intervals) based on 999 Monte Carlo permutations. Indicative landmarks are shown on the map to help
interpret the results (#1-#8). The basemap layer consists of a Digital Heights Model (DHM) from 2012 (Géodonnées Etat de
Vaud, 2012), and the maps were generated using QGIS (v. 3.22.16).
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Figure 2

Local contextual determinants of hypertension. The figure shows the results of Multivariate Geographically Weighted
Regression (MGWR) highlighting local associations between adjusted hypertension and characteristics of the physical and
social environments. Maps in the left column show coefficient estimates reflecting the magnitude of associations with
contextual factors, while the right column differentiates these associations by statistical significance: white dots for non-
significant, blue for negative, and red for positive associations. Solid and dashed lines delineate areas of high hypertension
incidence. Indicative landmarks are shown on the maps to help interpret the results (#1-#8). Only determinants with
statistically significant variation based on corrected t-values are shown; others can be found in Supplementary Figure 17,
Additional File 1. For privacy reasons, the Digital Heights Model (DHM) base map layer was intentionally excluded.
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Figure 3

Local contextual determinants of obesity. The figure shows the results of Multivariate Geographically Weighted Regression
(MGWR) highlighting local associations between adjusted obesity and characteristics of the physical and social environments.
Maps in the left column show coefficient estimates reflecting the magnitude of associations with contextual factors, while the
right column differentiates these associations by statistical significance: white dots for non-significant, blue for negative, and
red for positive associations. Solid and dashed lines delineate areas of high obesity incidence. Indicative landmarks are shown
on the maps to help interpret the results (#1-#8). Only determinants with statistically significant variation based on corrected t-
values are shown; others can be found in Supplementary Figure 18, Additional File 1. For privacy reasons, the Digital Heights
Model (DHM) base map layer was intentionally excluded.
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Figure 4

Local contextual determinants of diabetes. The figure shows the results of Multivariate Geographically Weighted Regression
(MGWR) highlighting local associations between adjusted diabetes and characteristics of the physical and social
environments. Maps in the left column show coefficient estimates reflecting the magnitude of associations with contextual
factors, while the right column differentiates these associations by statistical significance: white dots for non-significant, blue
for negative, and red for positive associations. Solid and dashed lines delineate areas of high diabetes incidence. Indicative
landmarks are shown on the maps to help interpret the results (#1-#8). Only determinants with statistically significant variation
based on corrected t-values are shown; others can be found in Supplementary Figure 19, Additional File 1. For privacy reasons,
the Digital Heights Model (DHM) base map layer was intentionally excluded.
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