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Abstract 8 

This study estimates both hourly and daily Downward Surface Solar Radiation (SSR) in 9 

Istanbul while determining the importance of variables on SSR using tree-based machine 10 

learning methods, namely Decision Tree (DT), Random Forest (RF), and Gradient 11 

Boosted Regression Tree (GBRT). The hourly and daily data of climatic factors for the 12 

period between January 2016 and December 2020 are gathered from the European Centre 13 

for Medium-Range Weather Forecasts' (ECMWF) ERA5 reanalysis data sets. In addition 14 

to the meteorology data, hourly data of selected aerosols are obtained from the Ministry 15 

of Environment, Urbanization and Climate Change. Temperature, cloud coverage, ozone 16 

level, precipitation, pressure, and two components of wind speeds, PM10, PM2.5, and SO2 17 

are utilized to train and test the established models. The model performances are 18 

determined with the out-of-bag errors by calculating R-squared, MSE, RMSE, and MBE. 19 

The GBRT model is found to be the most accurate model with the lowest error rates. 20 

Furthermore, this study provides the variable importance in determining the SSR. 21 

Although all models provide different values for the variable importance; temperature, 22 

ozone level, cloud coverage, and precipitation are found to be the most important 23 

variables in estimating daily SSR. For the hourly estimation, the time of day (hour) 24 

becomes the most important factor in addition to temperature, ozone level, and cloud 25 

coverage. Finally, this study shows that the tree-based machine learning methods used 26 

with these variables to estimate hourly and daily SSR results are very accurate when it is 27 

not possible to measure the SSR values directly. 28 
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1. Introduction 

1.1. Research Background 

Surface Solar Radiation (SSR), which is the solar radiation reaching the earth’s surface, 

is one of the vital surface energy balance elements. Observing the radiative fluxes using 

land-based monitoring stations became widespread after the 1950s, mainly metering the 

downward solar element (Hartmann et al. 2013).  

Based on this SSR monitoring, SSR has exhibited notable variations, from declining to 

raising, which is also denoted as from global dimming to brightening. However, it should 

be noted that the word “global” here refers to “global radiation”, rather than denoting the 

worldwide aspect of the phenomenon. In this context, there are two different SSR trends; 

i) a decline trend between the 1950s and 1980s (Global Dimming), and ii) an increase 

trend from the 1980s to the 2000s (Brightening) (Wild et al. 2005; Wild 2009; Ohmura 

2009). Rather than external impacts by the sun, the origination of these variations is 

mostly based on the changes in transparency of the atmosphere resulting from cloud type, 

aerosols, and radiatively active gases such as water vapour (Wild 2012; Willson and 

Mordvinov 2003). 

SSR, also named as global solar radiation, surface insolation, or downward shortwave 

irradiance, is one of the main components used to build agricultural crop modelling, 

analyse watershed and run-off in hydrology, optimize building energy use, estimate solar 

energy potential (AWG Radiation Budget Application Team 2018). In today’s world, the 

role of solar energy in the transition towards cleaner and greener energy production has 

been growing expeditiously. The share of solar power in total electricity production has 

increased from 0.15% in 2010 to 3.7% in 2021 (EMBER 2022). Hence, forecasting and 

analysing of SSR have become very important, especially for the electricity market. 

Currently, there are four primary techniques to obtain SSR, including ground 

measurements, reanalysis data, Global Circulation Models (GCMs), and satellite 

observations (Wei et al. 2019). Although most of the machine learning techniques do not 

provide any information for the physics while forecasting SSR, former studies showed 

that machine learning methods are one forceful way to estimate SSR using satellite 

observations in addition to the aforementioned techniques (Fan et al. 2020; Chen et al. 



2019). Machine learning techniques provide many advantages: i) determining the most 

important variables in estimating SSR, ii) providing mechanisms to quantify the 

uncertainties, iii) utilizing different types of remote sensing data, iv) capturing the non-

linear relations between dependent and independent variables, and v) assessing the 

robustness of the model (Zhou et al. 2017).  

1.2. Research significance and case study characteristics 

Climate change is one of the most significant phenomena at the present time. It is well-

known that greenhouse gases are the main reason of climate change. To abate the 

greenhouse gases released into the atmosphere, the energy sector has been experiencing 

a radical change in terms of the entrance of renewable energy sources into the electricity 

market. However, the amount of electricity generated from renewable energy sources is 

highly dependent on meteorological parameters such as wind speed and solar irradiance. 

Since the unpredicted electricity generation from renewable energy sources may cause 

some problems for both electricity transmission and distribution systems, the estimation 

of these parameters is also very useful for better planning and integration of the produced 

energy into the grid (Luiz et al. 2018).  

The electricity generated from solar photovoltaic (PV) and solar thermal systems 

constitutes more than 3.7 percent of global electricity production as of 2021. Besides, PV 

systems have been the fastest-growing sources for electricity generation for 17 years 

(EMBER 2022). This means that the prediction of output from PV and solar thermal 

systems is becoming more important for electricity grid operators, energy companies, and 

governments (Voyant et al. 2017).  

Over the past few years, Türkiye has been actively working towards diversifying its 

energy sources and boosting its utilization of renewable energy. The country possesses 

substantial potential for renewable energy, specifically solar, wind, hydro, and 

geothermal resources. As a result of these endeavours, Türkiye has managed to raise the 

proportion of renewable energy sources (excluding hydro) in its overall installed capacity 

from 3.5 percent to 22.96 percent within a decade. In this regard, the installed solar energy 

capacity of Türkiye as of December 2022 stood at 9425 MW, constituting 9.1% of the 

total installed power (Ministry of Energy and Natural Resources 2023). Thus, to 

maximize the benefit of PV systems, analysing the determinants of SSR is crucial. 



Determining the most significant variables for the SSR and exhibiting how much these 

variables influence the SSR may set groundwork for maintaining an efficient and 

profitable operation for PV systems.  

1.3. Adopted literature review 

The number of studies on solar radiation forecasting is gradually increasing in the 

literature. As mentioned in the previous section, there are four major methods to obtain 

solar radiation. However, this literature review includes studies with machine learning 

methods. 

Artificial Neural Networks (ANN) is one of the most common machine learning models 

for estimating solar radiation. Within this context, Jiang (2008) utilized the ANN model 

to determine the monthly mean daily diffuse solar radiation for China using solar radiation 

data from nine stations. Furthermore, the established ANN model was tested for 

Zhengzhou station, and the results showed that the model can forecast the actual values 

with an accuracy of about 94.8 percent. Similarly, Mubiru and Banda (2008) applied the 

same method to examine SSR in Uganda using sunshine duration, maximum temperature, 

cloud cover, and location parameters. The prediction accuracy was found to be very 

successful, with a Mean Bias Error (MBE) of 0.059 MJ/m2 and a Root Mean Square Error 

(RMSE) of 0.385 MJ/m2. Furthermore, Voyant et al. (2011) predicted the daily global 

solar radiation using ANN for France. They also investigated the contribution of 

exogenous meteorological data. As a result of this study, the insertion of endogenous and 

exogenous data into the model provided a 1% decrease in the nRMSE (Normalized Root 

Mean Square Error) for the power production. More recently, Ryu et al. (2018) used ANN 

to estimate shortwave radiation, diffuse, and total photosynthetically active radiation 

globally. The result showed that the inter-annual variability of shortwave radiation at both 

site and continental levels are captured successfully.  

In addition to ANN, there are a few studies using tree-based machine learning models. 

For instance, Zhou et al. (2017) examined Downward Solar Radiation in the U.S. with 

the Random Forest method. The spatiotemporal patterns were found to be consistent with 

the expected trends. Based on the RF model, the black sky albedo (BSA) near infrared 

band, BSA visible band, and clear day coverage were detected as the most important 

parameters to estimate downward solar radiation. Using the same method, Hou et al. 



(2020) predicted surface downward shortwave radiation for China based on ground-

measured data from 86 stations of the Climate Data Center of the Chinese Meteorological 

Administration. The results suggested that the RF method is adequate to predict surface 

downward shortwave radiation. For the daily forecasting, the results showed an overall R 

value of 0.92 and a RMSE value of 35.38 W/m2. Yang et al. (2018) used the GBRT 

method to estimate SSR for China. On the daily time scale, the established GBRT model 

estimated SSR with an R2
 value of 0.82 and a RMSE value of 27.71 W/m2. Furthermore, 

on the monthly time scale, it determined SSR with an R2
 value of 0.92 and a RMSE value 

of 15.4 W/m2.  

There are also some studies that use more than one method. Lima et al. (2016) established 

a model to predict solar irradiation in the North-eastern Brazil using a combination of the 

Weather Research and Forecasting Model (WRF) and ANN as post-processing method. 

The forecasted atmospheric outputs of the WRF model were utilized as forecaster by the 

established ANN model. This study revealed that the combination of WRF and ANN 

models provides a remarkable improvement in RMSE and the correlation coefficient. Wei 

et al. (2019) applied four different machine learning methods (i.e., RF, ANN, GBRT, and 

MARS (Multivariate Adaptive Regression Spline)) to estimate Downward shortwave 

radiation for China. The analysis showed that the best-performed method is GBRT. The 

GBRT model at the daily time scale predicted it with an RMSE of 30.34 W/m2 and an R2 

of 0.90 under clear sky conditions, while these values were 42.03 W/m2 and 0.86, 

respectively, under cloudy sky conditions. In their study, Srivastava et al. (2019) tried to 

forecast hourly solar radiation in India utilizing four different machine learning methods, 

namely MARS, Classification and Regression Tree (CART), M5Tree, and RF. It is shown 

that the RF model performs the best, on the other hand; the CART model is the worst 

among all four models. 

1.4. Research gap and motivation 

In Table 1, there is a summary of some examples of solar radiation forecasting studies. 

As far as is known, there is no specific study to Türkiye using tree-based machine learning 

models to determine the importance of variables in analysing the downward surface solar 

radiation. Furthermore, none of these studies present how and how much the selected 



factors impact the SSR. Hence, this study tries to fill these gaps by applying three different 

tree-based machine learning methods to the specific case of Istanbul, Türkiye. 

Referance Location Method Estimation for 

Tymvios et al. (2005) Cyprus ANN, Ångström’s 

linear approach 

Global Solar Radiation 

Jiang (2008) China ANN Monthly Mean Daily Diffuse Solar 

Radiation 

Mubiru and Banda (2008) Uganda ANN Monthly Average Daily Global Solar 

Radiation 

Hocaoglu et al. (2008) Türkiye 2-D linear filters and 

ANN 

Daily Solar Radiation 

Lam et al. (2008) China ANN Daily Global Solar Radiation 

Mellit et al. (2010) Saudi Arabia ANN Hourly Global, Diffuse And Direct Solar 

Irradiance 

Qin et al. (2011) China ANN Monthly-Mean Daily Global Solar 

Radiation 

Voyant et al. (2011) France ANN Daily Global Solar Radiation 

Wang et al. (2012) U.S ANN Land Surface Shortwave and Longwave 

Radiation 

Martins  et al. (2012) Brazil ANN Downward Solar Radiation  

Rahimikhoob et al. (2013) Iran ANN Global Solar Radiation 

Lima et al. (2016) Brazil ANN, NWP Surface Solar Irradiance 

Tang et al. (2016) China ANN Surface Solar Radiation 

Jiang et al. (2016) U.S MARS Surface All-Wave Net Radiation 

Zhou et al. (2017) U.S RF Downward Solar Radiation 

Deo and Sahin (2017) Australia ANN Global Solar Radiation 

Wang et al. (2017) China Neuro-Fuzzy and 

ANN 

Daily Global Solar Radiation 

Yang et al. (2018) China GBRT Surface Downward Shortwave Radiation 

Ryu et al. (2018) Global ANN Shortwave Radiation, Diffuse and 

Total Photosynthetically Active Radiation 

Feng and Li (2018) China ANN and M5Tree Total, direct and diffuse solar radiation 

Ghimire et al. (2019) Australia SVR, PSO Global Solar Radiation 

Sharafati et al. (2019) Burkina Faso RF, RT, RC Daily Global Solar Radiation 

Srivastava et al. (2019) India MARS, CART, M5, 

RF 

Daily Solar Radiation 

Kisi et al. (2019) Türkiye MARS, M5Tree, 

DENFIS 

Monthly average daily global radiation 

Wei et al. (2019) China RF, GBRT, ANN, 

MARS 

Surface Downward Shortwave Radiation 

Hou et al. (2020) China RF Surface Downward Shortwave 



Radiation 

Gürel et al. (2020) Türkiye ANN, Time series, 

Empirical 

Monthly average daily global radiation 

Zeng et al. (2020) China RF Daily Global Solar Radiation 

Hai et al. (2020) Algeria ELM, ARIMA, MLR Daily Global Solar Radiation 

Chen et al. (2021) U.S. RF Half- hourly Global Solar Radiation 

Qin et al. (2021) Australia Physics-based method Surface Downward Shortwave Radiation 

Sianturi et al. (2021) Indonesia Post-processing 
methods 

Daily and monthly solar radiation 

Vakitbilir et al. (2022) North Cyprus CNN, LSTM, SVR Global horizontal irradiation 

Singla et al. (2022) - LSTM Global horizontal irradiation 

Zhang and Chen (2022) China 

Spatial downscaling 

and temporal 

extrapolation 

Daily Average Shortwave Solar Radiation 

Bhattacharjee and 

Chowdhury (2022) 
US LSTM Global horizontal irradiation 

Basilio et al. (2023) Brazil 

ANN, Multivariate 

Adaptive Regression 

Spline 

Daily Global Solar Radiation 

Chen et al. (2023) China RNN, CNN, LSTM Surface Solar Radiation 

Table 1. Summary of the literature 

1.5. Research objectives 

In this study, three different tree-based machine learning techniques, namely Decision 

Tree (DT), Random Forest (RF), and Gradient Boosted Regression Tree (GBRT), are 

utilized to analyse the SSR. Each tree-based machine learning method has different 

advantages and disadvantages. While DT provides a very useful graphical display to 

interpret and explain the output very easily, its prediction accuracy is weaker than other 

methods, and it is very sensitive to small changes in data. Although RF and GBRT 

methods require higher computational time to train the model, they can provide variable 

importance and work with missing values. 

Although the Neural Networks (NN) are very popular in prediction problems, tree-based 

methods do not require a GPU to complete training as NN does. In addition to this, tree-

based algorithms may provide higher accuracy than NNs. Deep learning methods are 

more pertinent for applications including image and speech recognition, and language 

processing, whereas, tree-based algorithms surpass deep learning methods on tabular-

style datasets. Furthermore, where the patterns or features that the model reveals may be 



more important than the prediction performance of the model, the interpretability power 

of tree-based models comes to the forefront in applications such as medical and 

meteorology (Lundberg et al. 2020). Thus, the tree-based models are more convenient for 

the purpose of this study. 

In addition to machine learning methods, Radiative Transfer Models (RTM) also perform 

well to estimate SSR. However, physical parametrization techniques like RTM usually 

need various input parameters, such as aerosol optical depth (AOD) and cloud optical 

depth (COD), cloud height, cloud type, and the height of the cloud top and base. In most 

locations, it is inconvenient to obtain these parameters accurately and completely. Since 

the accuracies of these parameters have a great impact on the estimation accuracy, this 

situation may cause uncertainties for the results (Tymvios et al 2005; Wei et al 2019). 

Besides, these models are not suitable for common users because of their complexity 

(Wang et al. 2012). In light of this information, three different tree-based machine 

learning approaches are employed to fulfil the aim of this study.  

Furthermore, certain variables within the dataset exhibit a significant correlation with 

each other. Given that tree-based ML methods employ decision trees, they possess the 

ability to effectively address the issue of multicollinearity (Yoon 2021). Hence, in the 

context of this study, utilizing tree-based approaches would be more advantageous. 

Depending on the advantages of tree-based ML methods, the main purpose of this study 

is three-fold; i) examining the forecast accuracies of tree-based models, ii) investigating 

the determinants of hourly and daily SSR, and iii) presenting how and how much the 

selected factors impact the SSR, which is the main contribution of this paper to the 

literature. This paper is organised as follows: The second section exhibits a review of the 

methodologies used and explains the data, as well as the estimation results are presented 

and discussed. Finally, the conclusion is given in the last section. 

2. Case Study and Data 

To established the above-mentioned methods, the hourly meteorology data covering the 

January 2016 - December 2020 period were gathered from ERA5. The ERA5 database is 

created by the efforts of the fifth generation of the European Centre for Medium-Range 

Weather Forecasts' (ECMWF) atmospheric reanalysis of the global climate (Copernicus 

Climate Change Service 2021). ERA5 is acquired using data assimilation methods 



depending on the ECMWF's latest Integrated Forecasting System (IFS). The IFS 

aggregates model data with all convenient recorded in-situ and space-borne observations. 

It has been providing hourly data of worldwide atmospheric and surface parameters at the 

resolution of 0.28125° (31km) since 1979. In addition to the meteorology data, hourly 

data of PM10, PM2.5, and SO2 are obtained from the Ministry of Environment, 

Urbanization and Climate Change (2022). 

The performance of established models that use reanalysis data can be tested using in-situ 

observation data. In this study, ground-based global radiation data is obtained from the 

Meteorological Service. However, the number of data points for the working domain and 

time period is considerably low to test the established models. Since the number of data 

points may affect the validation process, ground-based measurement data is not included 

in this study to test the established ML models. 

To obtain daily data, the means of hourly data were calculated for every day. The analysis 

was examined for Istanbul, Türkiye, and hence the coordinates of the interested area were 

selected accordingly. Furthermore, Antalya, Türkiye was selected to validate the best 

model accuracy. The units of data used in the models are given in Table 2.  

Data Unit Data Source 

Surface Solar Radiation (SSR) W/m2 

ECMWF 

Temperature (Temp) °C 
Cloud Coverage (CC) % 
Total Ozone column (O3) * Dobson unit 
Precipitation (PREC) m 
Pressure (PRES) hPa 
Eastward Wind Speed (u10) m/s 
Northward Wind Speed (v10) m/s 
Zenith Angle (ZA) Degree NOAA 
PM10 (PM10) μg/m3 Ministry of Environment, Urbanization and 

Climate Change 
PM2.5 (PM2.5) μg/m3 
SO2 (SO2) μg/m3 

Table 2. List of data and their units 

* The ozone data used in this study is the total ozone column in the atmosphere. This parameter can also be referred to as vertically 

integrated ozone. 

It is very helpful and useful to use the exploratory data analysis before the analysis. It 

helps the visualization of descriptive statistics. In this context, the summaries of hourly 

and daily data for the selected area are shown in Table 3-4, respectively. Hourly 

Downward Surface Solar Radiation ranges between 0.0 W/m2 and 949.2 W/m2, whereas 

daily average Downward Surface Solar Radiation varies in the range of 8.87 W/m2 and 



341.3 W/m2. Comparing the interquartile range (IQR) of the aerosols (PM10, PM2.5, and 

SO2), it can be said that PM10 has a wider range of variability than other particles. Besides, 

the variability of northward wind speed is slightly bigger than that of eastward wind 

speed. The Bosphorus (also known as the Strait of Istanbul) could be the main reason for 

this situation since it lies in the north-south direction. 

Variable Min q1 Mean Median q3 Max St. Dev. IQR 

SSR 0.0 0.0 175.2 7.8 306.6 949.2 251.40 306.6 
Temp 270.3 282.9 288.7 288.6 295.0 305.4 6.95 12.14 
u10 -10.32 -3.47 -1.38 -1.62 0.66 9.82 2.86 4.13 
v10 -14.01 -3.91 -1.52 -2.02 1.01 10.56 3.34 4.92 
O3 256.3 301.5 329.8 324.8 355.0 481.5 35.80 53.48 
PREC 0.0 0.0 0.09 0.0 0.02 7.81 0.30 0.02 

PRES 979.7 1001.4 1005.7 1005.1 1009.7 1029.7 6.33 8.33 
CC 0.0 0.09 0.47 0.41 0.88 1.0 0.38 0.79 
PM10 0.24 22.9 40.88 34.18 51.02 68.30 28.21 28.09 
ZA 17.6 62.53 89.7 89.65 117.02 162.43 35.63 54.79 
PM2.5 0.01 11.59 20.24 17.19 25.00 67.38 13.21 13.41 
SO2 0.07 3.18 6.70 5.05 7.98 10.35 7.74 4.8 

Table 3. Brief statistical analysis of hourly data 

 

Variable Min q1 Mean Median q3 Max St. Dev. IQR 

SSR 8.87 90.80 175.19 175.14 258.12 341.43 91.91 167.32 
Temp 271.4 283.0 288.7 288.5 295.4 300.6 6.78 12.32 
u10 -8.61 -3.28 -1.38 -1.44 0.49 6.34 2.54 3.77 
v10 -11.64 -3.78 -1.52 -2.09 0.76 7.48 3.02 4.54 
O3 259.4 302.0 329.8 325.2 355.8 470.3 34.87 53.82 
PREC 0.0 0.0 0.09 0.01 0.07 2.86 0.20 0.07 

PRES 983.9 1001.4 1005.7 1005.0 1009.4 1027.9 6.14 8.00 
CC 0.0 0.19 0.47 0.45 0.74 1.0 0.31 0.55 
ZA 17.81 62.28 89.66 89.5 

 
117.07 161.74 35.63 

 
54.79 

PM10 5.7 26.63 40.66 36.43 50.45 284.83 20.36 23.82 
PM2.5 2.84 12.96 20.08 18.01 24.63 74.61 10.32 11.67 
SO2 0.78 3.51 6.67 5.32 8.02 92.4 7.05 4.51 

Table 4. Brief statistical analysis of daily data 

3. Methodology  

3.1. Models 

In this section, three tree-based machine learning methods are explained. 

3.1.1. Decision Tree 

Decision Tree method provides one of the most efficient analyses for both regression and 

classification cases. DT is a supervised machine learning technique applying a group of 

hierarchical rules. An illustration with five regions is given in Figure 1. In this illustration, 

the variables x1 and x2 are separated by the set of predetermined points (a1- a4).  



 

a)        b) 

Fig. 1 a) The partition of a two-dimensional example b) The output of recursive binary 
splitting example 

A decision tree structure comprises of a root node, a set of internal nodes, a group of 

terminal node known also as leaf, and a set of branches which attaches the nodes (See 

Figure 2). The main concept of DT method is to divide a complicated decision into diverse 

more elementary decisions, which conduct to an explanation that is simpler to interpret. 

Throughout the dividing process, DT algorithm separates the predictor space into J 

district and non-overlapping regions such as R1, R2, …, RJ. The model targets to find 

rectangles R1, R2, …, RJ that minimizes the Residual Sum of Squares (RSS) which is 

given as ∑ ∑ (𝑦𝑖 − �̂�𝑅𝑗)2𝑖∈𝑅𝑗𝐽𝑗=1       (1) 

where �̂�𝑅𝑗 stands for the mean dependent variable for the training data within the jth 

rectangle. The calculation of RSS is given in Eq. 2 (Gareth et al. 2013). 𝑅𝑆𝑆 = ∑ (𝑦𝑖 − �̂�𝑖)2𝑛𝑖=1                                                            (2) 

On the other hand, it is not practicable to regard all potential partition of the feature space 

into J rectangles.  Hence, a top-down approach, called recursive binary splitting, is 

applied. To apply it, the predictor Xj and the threshold point a that separates the predictor 

spaces into two non-overlapping regions {X|Xj ≤ a} and {X|Xj > a} must be selected, 

while minimizing the RSS given in Eq. 2 (Gareth et al. 2013). ∑ (𝑦𝑖 − �̂�𝑅1)2𝐽𝑖:𝑥𝑖∈𝑅1(𝑗,𝑎)=1 + ∑ (𝑦𝑖 − �̂�𝑅2)2𝐽𝑖:𝑥𝑖∈𝑅2(𝑗,𝑎)=1     (3) 

 



 

Fig. 2 Structure of Decision Tree 

3.1.2. Random Forest 

Random Forest (RF) algorithm also depends on the same concept with DT. After a 

number of trees (the forest) is composed, RF model uses a vote to unify the trees' 

forecasts. The structure of a RF model is shown in Figure 3. In Figure 3, the red circles 

indicate the prediction of each tree. After determining the prediction, the outputs of all 

trees are aggregated based on majority voting (for classification) or averaging (for 

regression). 

RF possesses a built-in feature selection algorithm and, hence it is capable of managing 

many input variables without having to remove some variables to reduce dimensionality. 

Variable importance scores can be evaluated by calculating the growth in prediction error 

in the case of the values of a variable are exchanged across the out-of-bag observations, 

so called permutation testing. This score is determined for each individual tree, averaged 

across the whole ensemble and divided by the standard deviation (Shaikhina et al. 2019). 

 

Fig. 3 Structure of a Random Forest model 



The equation of average prediction of trees is (Breiman 2001): 𝐹(𝑥) = 1𝐽 ∑ 𝑐𝑗𝑓𝑢𝑙𝑙 + ∑ (1𝐽 ∑ 𝑐𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛𝑗(𝑥, 𝑘))𝐽𝑗=1𝐾𝑘=1𝐽𝑗=1    (4) 

where cfull is the mean of the whole dataset, K is the total number of features, and J 

represents the number of trees in the forest. 

3.1.3. Gradient boosted regression tree 

Gradient Boosted Regression Tree algorithm originates an assemblage of shallow trees in 

a row with each tree learning and developing on the preceding tree, whereas RF algorithm 

establishes an ensemble of deep independent trees. Input of GBRT consists of Data {(𝑥𝑖, 𝑦𝑖)}𝑖=1𝑛  and a differentiable Loss Function 𝐿(𝑦𝑖, 𝐹(𝑥)). The first step is to build a 

tree with only one leaf which is the mean value of all predictions (Eq. 4) (Yang et al. 

2018): 𝐹(𝑥)0 = 𝑎𝑟𝑔𝑚𝑖𝑛𝛾 ∑ 𝐿(𝑦𝑖, 𝛾)𝑛𝑖=1      (5) 

Second step is to estimate the pseudo-residuals for every sample 𝑟𝑖𝑚 = − [𝜕𝐿(𝑦𝑖,𝐹(𝑥𝑖))𝜕𝐹(𝑥𝑖) ]𝐹(𝑥)=𝐹𝑚−1(𝑥)  for i=1,…,n   (6) 

where M is the maximum number of tree. After estimating the pseudo-residuals, a 

regression tree to the rim is fitted and terminal regions Rjm for j=1,…,Jm is established. The 

output value minimizing the RSS is calculated for each leaf. 𝛾𝑗𝑚 = 𝑎𝑟𝑔𝑚𝑖𝑛 ∑ 𝐿(𝑦𝑖, 𝐹𝑚−1(𝑥𝑖) + 𝛾)𝑥𝑖∈𝑅𝑖𝑗     (7) 

As the last step, new predictions are made by renewing the predictions based on the 

learning rate (𝑙𝑟 ∈ (0,1)) (Yang et al. 2018). 𝐹𝑚(𝑥) = 𝐹𝑚−1(𝑥) + 𝑙𝑟 × ∑ 𝛾𝑚𝐼(𝑥 ∈ 𝑅𝑗𝑚)𝐽𝑚𝑗=1    (8) 

There are three significant parameters to build up a GBRT model, namely the number of 

trees (K), the learning rate or shrinkage (R), and the maximum depth of interactions (D). 

The optimum performance of the model may be obtained by choosing the best compound 

of these parameters.  (Zhang and Haghani 2015). While the number of trees is tantamount 

to the number of iterations for minimizing the future risks associated with prediction, the 



learning rate specifies the influence of each tree on the result. The maximum depth of 

variable interactions indicates how complex the tree is. Reducing the learning rate and 

utilizing a larger number of trees may improve the generalizability capability of the 

established model and refrain from over-fitting. In this study, a grid search method is 

utilized to calibrate the parameters. To achieve the best combination, three learning rates 

(0.0005, 0.001, 0.01), and three tree complexities (1, 3, 5) are tested with the number of 

trees from 1 to 10000 for the daily model. For the hourly model, due to the high number 

of data points, four learning rates (0.0005, 0.001, 0.01, 0.1) and three tree complexities 

(1, 3, 5) are evaluated with the number of trees from 1 to 40000 to find the best grid 

structure. 10-fold cross-validation is applied to provide performance robustness for both 

models. 

In addition to accurate prediction capability, GBRT models can also present the variable’s 

importance in two different ways, namely relative influence (impurity-based) and 

permutation-based variable importance. Impurity-based importance may dedicate higher 

importance to variables that are not predictive on unseen data, in cases where the 

established model is overfitting. On the contrary, permutation-based importance does not 

have this kind of issue as it is computed on unseen data. 

The idea behind assessing the relative importance of a predictor is that the more 

frequently it is used to split a tree, the more significant it becomes. In this particular 

scenario, when considering a single decision tree “T”, the equation below is used to 

measure the relative importance of the predictor xi (Breiman et al. 1984). 𝐼𝑖2(𝑇) = ∑ 𝜏𝑗2𝐼(𝑣(𝑗) = 𝑖)𝐽−1𝑗       (9) 

where j stands for the jth
 splitting node and J is the number of nodes in tree T. xi is the 

splitting predictor related to the node j, whereas τ2
j symbolizes the corresponding 

improvement in the model performance following the splitting at the jth node. 

The final predictor importance is calculated by averaging the predictor importance of all 

individual trees unitedly following the estimating the predictor importance of all trees in 

an ensemble tree model involving K trees (Breiman et al. 1984): 𝐼𝑖2(𝐾) = 1𝐾 ∑ 𝐼𝑖2(𝑇𝑘)𝐾𝑘=1       (10) 



In addition to the relative importance, the final permutation-based importance of 

predictors can be calculated as (Breiman et al. 1984): 𝐼𝑖 = 𝑠 − 1𝐾 ∑ 𝑠𝑘,𝑗𝐾𝑘=1        (11) 

where s is the reference score of the model m on data D; j is the feature (column of D); K 

is the number of trees and sk,j is the score of the model m on corrupted data Ḋk,j. The 

structure of GBRT model is provided in Figure 4. 

 

Fig. 4 Structure of GBRT model 

The GBRT model can also provide the partial influence of factors on SSR. The partial 

dependence plot (PDP) presents the marginal impact that one or two factors have on the 

prediction output of a machine learning model (Friedman 2001). A PDP may exhibit 



whether the relationship between the dependent variable and a factor is linear, monotonic, 

or more complex. Most of the machine learning techniques are black-box algorithm, that 

do not provide an equation. However, PDPs are very useful tools to present the relations 

between predictors and dependent variables, as aforementioned. 

For a training data involving N samples and p predictors, the partial dependence function 

of the jth
 predictor is calculated by (Friedman 2001) ∅𝑗(𝑥) = 1𝑁 ∑ 𝑓(𝑥1,𝑘, … , 𝑥𝑗−1,𝑘, 𝑥, 𝑥𝑗+1,𝑘, … , 𝑥𝑝,𝑘)𝑁𝑘=1    (12) 

where f(.) represents the approximation function of the tree ensemble model.  

3.2. Performance metrics 

As mentioned in the Introduction section, the main purpose of this study is three-fold. 

The first purpose is to examine the forecast accuracies of tree-based models. The accuracy 

can be computed using a number of methods. In this study, the accuracy of models is 

evaluated with four different error measurements, including Mean Bias Error (MBE), 

Root Mean Square Error (RMSE), Mean Square Error (MSE), and R-squared (R2). 

MBE is the arithmetic mean of the errors between actual value and predicted value. It is 

estimated as 𝑀𝐵𝐸 = 1𝑛 ∑ (𝑦𝑖 − �̂�𝑖)𝑛𝑖=1       (13) 

where yi is the predicted value and �̂�𝑖the actual value. This method does take into account 

the direction of errors. Values close to 0 are considered optimal, negative values indicate 

underestimation, and positive values indicate overestimation. Additionally, all individual 

differences have the same weight, hence, it does not penalise the larger differences. Since 

RMSE is a quadratic scoring method which is the square root of the average of squared 

differences between predicted value and actual value, it penalises large error. This denotes 

that RMSE is more functional in case large errors are particularly undesired. The equation 

of RMSE is given as 

𝑅𝑀𝑆𝐸 = √1𝑛 ∑ (𝑦𝑖 − �̂�𝑖)2𝑛𝑖=1       (14) 



MSE measures the magnitude of the average of the squares of the errors, and its 

formulation is given in Eq. 15. 𝑀𝑆𝐸 = 1𝑛 ∑ (𝑦𝑖 − �̂�𝑖)2𝑛𝑖=1       (15) 

Finally, R-squared (R2), also known as the coefficient of determination, is a statistical 

measure used to evaluate the goodness-of-fit of a model. It indicates the proportion of the 

variance in the dependent variable that can be explained by the independent variables in 

the model. R-squared is a value between 0 and 1. A higher R-squared value indicates a 

better fit of the model to the data. The equation of R2 is given as: 

𝑅2 = 1 − 𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙 𝑠𝑢𝑚 𝑜𝑓 𝑠𝑞𝑢𝑎𝑟𝑒𝑠𝑇𝑜𝑡𝑎𝑙 𝑠𝑢𝑚 𝑜𝑓 𝑠𝑞𝑢𝑎𝑟𝑒𝑠 = 1 − ∑ (𝑦𝑖−�̂�𝑖)2𝑖∑ (𝑦𝑖−�̅�)2𝑖    (16) 

where �̅� is the mean of the observed data. 

Based on these error calculation methods, the model with the lowest out-of-bag RMSE 

will be utilized for forecasting. However, the data is divided into two parts, namely, the 

train dataset and the test dataset. Train and test datasets for hourly data consist of values 

of 35040 (01.01.2016-31.12.2019) and 8760 (01.01.2020-31.12.2020) hours, 

respectively. On the other hand, train and test datasets for daily estimation comprise 1460 

(01.01.2016-31.12.2019) and 365 (01.01.2020-31.12.2020) days, respectively. The 

established models are trained with the train dataset, and their errors are calculated based 

on the test dataset (out-of-bag error). In this regard, the flowchart of the proposed models 

utilized in this paper is shown in Figure 5. 

https://en.wikipedia.org/wiki/Expected_value
https://en.wikipedia.org/wiki/Error_(statistics)


 

Fig. 5 Flowchart of the tree-based machine learning methods 

4. Applications Results and Discussion 

4.1. Application Results 

The out-of-bag error comparison of established models are given in Table 5. As seen from 

Table 5, the method with lowest out-of-bag error rate is found to be Gradient Boosted 

Regression Tree for both daily and hourly estimations.  

Method MBE MSE RMSE R2 

 Hourly Daily Hourly Daily Hourly Daily Hourly Daily 

Decision Tree 8.23 6.00 5912.31 2471.60 76.89 49.72 0.91 0.71 
Random Forest 7.70 5.99 3913.92 1715.35 62.56 41.08 0.94 0.80 
Gradient Boosted 
Reg. Tree 

7.47 5.78 3671.50 1599.79 60.59 39.99 0.95 0.81 

Table 5. Out-of-bag error comparison of estimations 

Considering the different cloud coverage percentages, two examples of the diurnal 

variations of the values obtained from established tree-based models compared to the real 

data of ERA5 are shown in Figure 6. As seen from Figure 6, all ML methods perform 

very well in cases of low/partially cloud coverage. Among the three ML methods, DT has 

the lowest ability to predict the peak points of SSR. For the case of high cloud coverage, 

the performance of ML methods (especially DT) decreases compared to the low/partially 

cloud coverage case. On the other hand, the GBRT model still performs considerably well 

under high variability.  



 

Fig. 6 Hourly model output comparison with real data 

In Figure 7, the performance examples of the established ML models are given for 

different seasons. Similar to the low/partially cloud coverage case, all ML models show 

outstanding performance for spring and summer. While the output of the GBRT model is 

the best among all tree-based ML methods, the DT is the weakest method to reflect the 

variability of the SSR. Considering the fall and winter seasons, it is obvious that the 

performances of all methods are lower compared to their performances in the spring and 

summer. On the other hand, it can be revealed that DT overestimates the SSR, and the 

GBRT model is capable of catching the variability of the SSR. As a result, the GBRT 

model performs quite better than the RF and DT models. 

 



Fig. 7 Daily model output comparison with real data 

4.1.1. Decision Tree Model 

The second aim of this study is to investigate the determinants of Downward Surface 

Solar Radiation. As mentioned in the Methodology section, the Decision Tree method is 

very useful for explaining the model output in graphical form. To run the DT model, the 

“rpart” package of R software is utilized. The DT model for daily data is given in Figure 

8a. In the case of a temperature smaller than 293K, precipitation larger than 0.1m, a solar 

zenith angle larger than 105°, and cloud coverage larger than 80%, the daily average SSR 

is found to be at the lowest level with a value of 40 W/m2. On the contrary, the daily 

average SSR is at the highest point with a value of 298 W/m2 when the temperature is 

higher than 293K, the ozone level is higher than 316 Dobson, and total precipitation is 

less than 0.01 mm. The other way around, SSR is at its highest point with a value of 790 

W/m2 when cloud coverage is less than 30% and the hour is between 10:00 and 13:00 



(See Fig. 8b). Moreover, when the decision tree nodes are examined, the time of day 

(hour) is detected as the most important factor in determining the downward surface solar 

radiation. 

 

Fig. 8 Decision Tree model for a) daily b) hourly estimation 



4.1.2. Random Forest Model 

To execute the daily and hourly Random Forest models, the “randomForest” package of 

R software is used. As mentioned in the Methodology section, the argument K (mtry) 

implies how many predictors are to be taken into consideration for each split of the tree. 

In addition to the mtry argument, the number of grown trees (ntree) is another argument 

that affects the performance of the model. Figure 9 shows the RMSE comparison of 

different configurations of ntree and mtry arguments. The configurations with the lowest 

RMSE for both daily and hourly models are chosen for determining the variance 

importance. The model with mtry= 7 and ntree= 1750 provides the lowest error rate for 

the daily model, whereas the model with mtry= 8 and ntree= 750 performs the best for 

the hourly model. 

 

Fig. 9 RMSE comparison of different models for daily and hourly estimations 

A graphical portrait of the relative variable importance of the daily and hourly data 

is shown in Figure 10. Temperature is found to be the most important factor to estimate 

the daily SSR followed by zenith angle and cloud coverage. Temperature accounts for 

29.2% of the overall variable importance. Contrariwise, aerosols (SO2, PM10, PM2.5) and 

eastward wind speed (u10) have minimal impact on determining the SSR, with values of 

1.1, 1.0, 0.9, and 0.9 percent, respectively. When it comes to the hourly model, the time 



of day (hour) becomes the most important factor, with a value of 68.1 percent. Similar to 

the daily model, temperature is detected as the most important atmospheric variable for 

the hourly model, while eastward wind speed (u10) is determined as the least important 

one.  

 

Fig. 10 Relative importance of a) daily and b) hourly RF model 

 

4.1.3. Gradient Boosted Regression Tree Model 

As mentioned in the Methodology section, the GBRT model should be tuned to achieve 

the desired error rates. In this context, the best hypergrid structures used in the Tuned-

GBRT resulted from minimizing RMSE are given both for the daily and hourly models 

in Table 6 and 7, respectively. The best performance for daily model is attained with the 

learning rate parameter of 0.0005, the subsample parameter of 0.25, the interaction depth 

parameter of 5, and the number of trees parameter of 32241. Moreover, for the hourly 

model, the lowest error is achieved when the learning rate is 0.01, the interaction depth 

parameter is 5, the subsample parameter is 0.85, and the number of trees parameter is 

39998. 

 



Shrinkage Interaction depth n.minobsinnode bag.fraction optimal_trees min_RMSE 

0.0005 5 5 0.25 32241 30.621 
0.0005 5 7 0.25 39987 30.624 
0.0005 5 3 0.5 40000 30.679 
0.001 5 7 0.25 16437 30.768 
0.01 5 5 0.25 1591 30.801 

Table 6. Best hyper grid structures for daily model   

 

Shrinkage Interaction depth n.minobsinnode bag.fraction optimal_trees min_RMSE 

0.01 5 3 0.85 39998 40.280 
0.01 5 7 0.85 39998 40.351 
0.01 5 3 0.85 39964 40.366 
0.01 5 5 0.85 40000 40.390 
0.01 5 7 0.85 39996 40.415 

Table 7. Best hyper grid structures for hourly model   

When the main determinants of daily SSR resulting from the RF model are compared 

with those of the GBRT model (See Fig. 11a), temperature is obviously more important 

in the GBRT model. At the same time, ozone level, zenith angle, precipitation, and cloud 

coverage are found to be the most important factors in determining the SSR for the 

Istanbul region, whereas PM10 and SO2 are detected as the least important ones.  

The permutation-based importance provides better performance with the unseen data, and 

hence, it gives more precise results. Although temperature is determined to be the most 

important factor in determining the SSR by both importance calculation methods, the 

importance of ozone level is higher than that of cloud coverage and zenith angle in the 

permutation-based importance method.  

Similar to the RF model, the most significant variable in determining the hourly SSR is 

the time of day (hour) for both permutation-based and relative importance methods (See 

Figure 11b). Following the hour variable, temperature is detected as the second-most 

important factor. Notwithstanding that the importance ranks of aerosols are the same in 

both variable importance methods, ozone level is observed to be more important than 

cloud coverage and zenith angle in the permutation-based method. 



 

Fig. 11 Importance plots of a) daily and b) hourly GBRT models 

In furtherance, the partial dependence plots of factors are given in Figure 12-15. It can be 

seen that there is a positive relationship between hourly and daily downward surface solar 

radiation and temperature. On the other hand, there is a negative relationship between 

precipitation, cloud coverage, and downward surface solar radiation, as expected. After 

the temperature exceeds 292K, daily downward surface solar radiation starts to increase 

sharply. The positive impact of ozone levels on hourly SSR continues until the level of 

400 Dobson, at which point it starts to have a negative effect. Although the influence of 

zenith angle on SSR is almost stable between 0 and 90 degrees, SSR sharply decreases 

after the solar zenith angle exceeds 90 degrees. The impact of westward winds is almost 

negligible, whereas, eastward winds have a positive impact on SSR. On the contrary, 

when the northward wind speed increases, hourly SSR decreases almost linearly.  



Although the impacts of the aerosols are relatively smaller than the meteorological 

parameters, it can be said that when PM2.5 increases until the level of 55 μg/cm3, it has a 

dimmering effect on the calculated SSR. Furthermore, PM10 has a positive relationship 

with SSR until it reaches 50 μg/cm3. After this level, the impact of PM10 is almost 

neglectable. 

Fig. 12 Partial dependence plots of meteorological variables (hourly) 

 



Fig. 13 Partial dependence plots of aerosols (hourly) 

Similar to the hourly PDP, there is a negative relationship between northward wind speed 

and the daily SSR. However, there is some local peaks for the eastward wind speed (See 

Fig. 14). The negative impacts of PM2.5 and SO2 on daily SSR continue until they reach 

levels of 35 and 12.5 μg/cm3, respectively, at which point they start to have a positive 

effect. Surprisingly, PM10 has an additive effect on the daily SSR calculation, while it is 

practically ineffectual on determining hourly SSR. 



Fig. 14 Partial dependence plots of meteorological variables (daily) 

 

Fig. 15 Partial dependence plots of aerosols (daily) 

 



Another output of this analysis is the interaction plots which are very useful method to 

show relationships between two predictors and a dependent variable. In the interaction 

plots, the predictors are examined two at a time. An x–y grid is set up based on the 

possible combinations of predictors in the range of both variables. The rest of the 

predictors are held at their means. Model predictions (SSR, in this case) are presented on 

the z axis. The interaction plots of the most important variables are given in Figure 16 

and 17 for the hourly and daily models, respectively.  

 

 

Fig. 16 Interaction plots of most important variables (hourly) 

From Fig. 16, it can be revealed that hourly SSR reaches its maximum value when the 

cloud coverage is at its minimum and the ozone level is at its maximum. Furthermore, 

SSR shows a rapid increase when the ozone level exceeds a certain level. Different from 

cloud coverage-ozone level combination, which has an S-shaped graphic, the 

combination of cloud coverage and temperature shows a more linear profile. The hourly 

SSR regarding to temperature and ozone level reaches its maximum level when both 

temperature and ozone level are at their highest points. The combination of increasing 

temperature and ozone level creates an S-shaped increase in SSR levels, similar to the 

combination of cloud coverage and ozone level. 



When the interaction plot of daily average SSR is examined, it can be said that the 

combination of cloud coverage and temperature almost has a linear relationship with daily 

average SSR. Similar to the hourly plot, SSR reaches its maximum value when the cloud 

coverage is at its minimum and the temperature is at its maximum. However, daily 

average SSR has a sharper increasing trend regarding the temperature compared to hourly 

SSR. Daily and hourly plots of cloud coverage and ozone level show the same S-shaped 

profile. On the other hand, the impact of precipitation with the combination of 

temperature, cloud coverage, and ozone level on daily SSR can be seen better in Figure 

17. When it is rainy, SSR decreases suddenly, and then it follows a linear trend. 

 

Fig. 17 Interaction plots of most important variables (daily) 

To validate the capability of established model, it is applied to another location which has 

a relatively similar climate to Istanbul. Thus, the daily and hourly models, which are 

established with data gathered from Istanbul, are utilized for Antalya, Türkiye. While 

comparing two different datasets, it is needed to use normalized performance indicators. 

Thus, nMBE (%) and nRMSE (%) are used to compare model performances for both 

locations. These performance criteria can be calculated by dividing Eq. 13 and Eq. 14 by 

the mean of the SSR of each location. The performances of both daily and hourly models 

are given in Table 8. These results indicate that both daily and hourly GBRT models 

perform well with the datasets gathered from different locations. 



Model Location nMBE (%) nRMSE (%) 

Daily 
Istanbul 3.3% 22.8% 

Antalya 3.9% 23.8% 

Hourly 
Istanbul 4.3% 34.6% 

Antalya 4.1% 34.2% 

Table 8. Performances of daily and hourly models for Istanbul and Antalya 

4.2. Discussion 

As a result of all these models, it can be revealed that the most important atmospheric 

determinant in calculating both daily and hourly SSR for Istanbul is temperature. Based 

on the RF model, temperature has a more than 29 percent impact on the daily SSR, 

whereas aerosols and eastward wind speed have a minimal impact on determining the 

daily SSR. The importance of temperature is detected as more than 30 percent in the 

GBRT model; and aerosols and eastward wind speed are found to be the least important 

factors, similar to the RF model.  

When it comes to the hourly model, in both the GBRT and RF models, the time of day 

(hour) comes to the forefront, constituting more than 68 percent and 70 percent of the 

total importance in determining the hourly SSR, respectively. Moreover, temperature and 

ozone level are the most important atmospheric factors, similar as in the daily model. 

Although the impacts of the zenith angle and precipitation on hourly SSR are limited, the 

importance of aerosols, wind speed components, and pressure are almost nugatory.  

In light of this information, to forecast daily and hourly SSR levels of Istanbul, the tuned-

GBRT model, whose optimized hypergrid structures are given in Table 6 and 7, is the 

best tree-based machine learning method with lower error rates. The RMSE score of this 

study is less than 40 W/m2 for daily resolution, implying the established algorithm had a 

relatively trustworthy estimation performance (Tang et al. 2016). 

Based on the results of this study, it can be said that tree-based machine learning 

techniques are powerful tools to determine and analyse downward surface solar radiation. 

With the transition towards cleaner and greener energy production, the importance of 

renewable energy technologies, such as solar systems, has been increasing gradually. 

However, the output power of solar systems is closely related to the shortwave solar 

radiation at the surface. To benefit from photovoltaic systems (PV) at the maximum level, 



analysing the determinants of SSR is crucial. Since SSR is extremely variable because of 

the meteorological patterns and particles in the air, power production from PV systems is 

not stable, dissimilar to dispatchable energy sources like thermal power plants. Hence, 

determining the most important variables for the SSR and presenting how and how much 

these variables impact the SSR, which are the main purposes of this study, can provide a 

basis to maintain an efficient and profitable operation for PV systems.  

5. Conclusion 

This paper aims to estimate Surface Solar Radiation in Istanbul using tree-based machine 

learning methods, including Decision Tree, Random Forest and Gradient Boosted 

Regression Tree, while determining the importance of variables on SSR. In this context, 

the accuracies of models are evaluated with out-of-bag errors by calculating MSE, RMSE, 

MBE, and R-squared. Based on the error rates, the Gradient Boosted Regression Tree 

model provides the best performance with the lowest RMSE for both daily and hourly 

models. Considering the MBE, the biases of the best models in W/m2 are calculated as 

5.78 W/m2 for daily and 7.47 W/m2 for hourly data. Furthermore, to validate the 

established models, the best models are run for another location. The results indicate that 

both daily and hourly GBRT models perform well with the datasets gathered from 

different locations. 

In addition to model accuracies, tree-based machine learning methods are powerful tools 

to present the variable importance. Although all models provide different values for the 

variable importance; temperature, ozone level, cloud coverage, and zenith angle are found 

to be the most important variables in estimating daily SSR. For the hourly estimation, the 

time of day (hour) becomes the most important factor in addition to temperature, ozone 

level, and cloud coverage. On the other hand, the impacts of the wind speed components 

and aerosols are almost neglectable. Finally, this study shows that the tree-based machine 

learning methods used with these variables to estimate hourly and daily SSR results are 

very accurate when it is not possible to measure the SSR values directly. 
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