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Quantum-inspired meta-heuristic approaches

for a constrained portfolio optimization problem

Abhishek Gunjan and Siddhartha Bhattacharyya

Abstract Portfolio optimization has always been a challenging proposition and

a highly studied problem in finance and management. Portfolio optimization fa-

cilitates the selection of the right assets and their distribution according to the set

objectives. Often, it has been found that this nonlinear constraint problem cannot

be efficiently solved using a traditional approach. In this paper, quantum-inspired

incarnations of three evolutionary techniques, viz., (i) genetic algorithm (GA), (ii)

differential evolution (DE), and (iii) particle swarm optimization (PSO) are used for

the portfolio optimization problem. Experiments have been conducted with more

than 10 years of stock price data from NASDAQ, BSE, and Dow Jones. Several en-

hancements of the evolutionary algorithms have been proposed in this article, viz.,

(i) enhanced crossover techniques for the portfolio optimization problem, (ii) regu-

larization function to allocate funds efficiently, and (iii) dynamic parameter tuning

using sensitivity analysis.

Key words: Portfolio Optimization, Genetic Algorithms (GA), Particle Swarm Op-

timization (PSO), Differential Evolution (DE), Quantum-inspired meta-heuristics

1 Introduction

A portfolio is a range of investments held by an individual or an organization in

the form of stocks, bonds, mutual funds, commodities, cash, and cash equivalents,
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including closed-end funds [1] and exchange-traded funds [2]. The sole purpose of

maintaining a portfolio is to achieve a balance between risk and return based on the

investor’s financial goals. A well-diversified portfolio can help portfolio managers

achieve the financial goals set, but excessive diversification should be avoided to

reduce transaction cost [3][4].

Managing a portfolio involves complex decision-making and is a frequently studied

topic in finance. Due to the non-linear nature of constraints, it requires complex

computation and hence cannot be easily solved by traditional techniques. Near-

accurate and timely calculation of weights is the key in any decision-making process

and hence requires fast and more accurate techniques to be incorporated as a port-

folio optimization process. Additionally, with the dawn of quantum computing and

quantum-inspired techniques, metaheuristic-based techniques have been observed

to outperform traditional machine learning-based techniques and have been found

to be suitable for portfolio optimization problems.

In this study, an effort has been made to study different evolutionary techniques and

compare them with their quantum-inspired versions. Some of the key highlights of

this study include the following.

• Benchmarked datasets: Three benchmark datasets, viz. (i) NASDAQ (from

2012-06-23 to 2022-06-27) [5], (ii) BSE (from 2011-05-13 to 2023-02-07) [6],

and (iii) Dow Jones (from 2009-08-06 to 2023-05-05) [7], are selected for this

experiment, and the results are presented and discussed as part of this study.

• Genetic algorithm (GA): The genetic algorithm (GA) [8] is one of the first

population-based metaheuristic algorithms inspired by the Darwinian theory of

evolution [9][10]. As a part of this study, GA is studied in detail, and two popu-

lar crossover techniques, viz. (i) arithmetic crossover and (ii) heuristic crossover

techniques, are implemented, and the results of application on the mentioned

datasets are reported.

• Differential evolution (DE): Differential evolution (DE) [11][12] is another

population-based metaheuristic algorithm, similar to GA, and is generally found

to be faster and more accurate than GA. As a part of this study, DE is studied in

detail with two popular crossover techniques, viz., (i) arithmetic crossover and

(ii) heuristic crossover techniques, are implemented, and the results of applica-

tion on the mentioned datasets are reported.

• Particle swarm optimization (PSO): Particle swarm optimization (PSO) [13][14]

is the third evolutionary technique considered for this study. PSO has been

found to be efficient in dealing with complex optimization space and volatile

market conditions. As a part of this study, PSO is implemented, and the corre-

sponding results are reported.

• Quantum-inspired versions of GA, DE, and PSO: An effort, first of its kind, has

been made to design and implement GA, DE, and PSO in the quantum-inspired

domain, and the results are compared with the mentioned datasets.

Portfolio managers must ensure that all funds are allocated efficiently and in the

right proportion to achieve maximum gain. Additionally, it has been observed that

the random selection of weights, as proposed in the evolutionary-based optimization
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techniques, does not guarantee that all available funds are allocated. Sometimes, the

sum of all the weights could be higher or less than 100%. In order to overcome this

problem, a regularization function is proposed as a part of this experiment, which is

further represented as

wregi
=

wi

∑
n
i=1 wi

(1)

where, wregi
is the regularized weight of ith stock, wi is the random weight selected,

and ∑
n
i=1 wi is the total weight that has been randomly selected.

Furthermore, it has been observed that the choice of parameters in the portfolio op-

timization process could be an iterative and time-consuming process. To overcome

this challenge, a sensitivity analysis is performed, and the values of the parameters

are chosen accordingly. The performance of the mentioned techniques is measured

using the mean error, execution time, and fitness function (minimum risk).

The remainder of the paper is organized as follows. Section 2 briefly lists the mo-

tivation and contribution of this work. Section 3 provides an overview of portfolio

management and optimization. A brief review of the related works on portfolio opti-

mization is provided in Section 4. Section 5 briefly lists the evolutionary techniques

employed in this study. Section 6 elucidates on the relevant quantum computing

and quantum-inspired techniques. Section 7 presents the experimental results, and

finally, the paper is concluded in Section 8.

The list of commonly used abbreviations in this study can be found in Table 1.

Table 1: Abbreviations used in this study

Abbreviation Description Abbreviation Description

GA Genetic algorithm QiGA Quantum-inspired genetic al-

gorithm

DE Differential evolution QiDE Quantum-inspired differen-

tial evolution

PSO Particle swarm optimization QiPSO Quantum-inspired particle

swarm optimization

SBPSO Set-based particle swarm op-

timization

FA Firefly algorithm

NSGA2 Non-dominated sorting ge-

netic algorithm 2

SPEA2 Strength pareto evolutionary

algorithm 2

HPNSGA2 Harmonic progression

NSGA2

RINSGA2 Random immigration

NSGA2

GWASFGA Global weighting achieve-

ment scalarizing function ge-

netic algorithm

PESA2 Pareto envelope-based selec-

tion algorithm 2

MINLP Mixed-integer non-linear

programming

ABC Artificial bee colony

ANNs Artificial neural networks SVM Support vector machine

RF Random forest SVR Support vector regression

LSTM Long-short-term memory CQR Chicago quantum ratio

CQNS Chicago quantum net score SRI Social responsibility invest-

ment
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2 Motivation and Contributions

Portfolio optimization requires a sound understanding of the market dynamics. It has

always been considered a challenging problem and therefore holds a special place

in the research arena [15]. Investing in the right stock at the right time is the key to

any portfolio optimization problem. There are multiple techniques and guidelines

proposed in this domain, but it remains a challenging problem to solve. With the

recent advancements in evolutionary techniques and a leap in the computational in-

frastructure, it is now possible to handle large combinatorial optimization problems.

Some of the other key factors which make it even more interesting [16] include

(i) dynamically changing market parameters (ii) dynamically changing constraints

like transaction cost, management fees, legal constraints, regulatory constraints, and

similar other constraints (iii) limitation of historical data and their quality (iv) limi-

tations of model assumptions (v) diversification challenges and constraints (vi) be-

havioural biases (vii) computational challenges and model complexities (viii) lack

of knowledge to choose better optimization techniques based on market conditions

and imposed constraints.

Additionally, portfolio optimization is highly affected by external factors, making it

more challenging for portfolio managers to make decisions. Some of the key exter-

nal factors [17][18] include (i) macroeconomic indicators like inflation rates, inter-

est rates, GDP growth, and other economic behaviours (ii) geopolitical events like

political instability, election results, power changes, war or war-like conditions, and

other types of trade disputes (iii) central bank policies like repo rates, cash reserve

ratio, and other interest rate policies (iv) market sentiments like investors’ behaviour

and psychology (v) natural disasters and other calamities, and (vi) global economic

behaviours and trends.

This study involves the examination and evaluation of various evolutionary methods

in three benchmark datasets. An effort, the first of its kind, is made to implement

the same techniques in both the classical and quantum-inspired domains. Based on

careful observation of the execution of GA [8][19] with arithmetic and heuristic

crossovers, an enhancement is proposed in this paper, and the experimental results

are presented. The highlights of the contribution include the following.

• Dynamic selection of crossover parameter values α and β . The selection of

the parameters for a genetic algorithm or a differential evolution algorithm is

an iterative process that can have a significant effect on the convergence of

the overall solution. The performance and efficiency of the algorithms can be

improved by dynamically selecting the crossover parameters, allowing them to

better adapt to the complexity of the problem and achieve a balance between

exploration and exploitation of the feature space. Additionally, this dynamic

selection can help to tune and speed up the convergence process automatically.

• Normalization function to avoid negative allocation caused due to incorrect

crossover parameter selection. The choice of incorrect crossover parameters,

such as α and β , can result in negative weights, which are not desirable. To
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ensure a more realistic allocation of stocks, this study proposes a normalization

function that takes into account the absolute value of the weights.

• Regularization function for better utilization of allocated funds. The total allo-

cation of a portfolio can often exceed 100% when the sum of the dynamically

selected weights is taken into account. This is not desirable. The proposed reg-

ularization function ensures that the total investment does not exceed 100%.

• Dynamic selection of optimization parameters based on sensitivity analysis. A

thorough sensitivity analysis can be used to assess the influence and connection

between the parameters used in the methods discussed. This can then be used

to reduce the number of iterations and speed up the convergence of the chosen

techniques.

3 Overview of Portfolio Management

Building a successful investment in the ever-changing dynamic market requires a

fundamental change in how one thinks about investment. As a portfolio manager,

the sole objective is to get high returns based on the objectives set. Additionally,

new advances in investments and offers have conditioned us to think beyond the

strategies we grew up with. It is also a time that requires us to apply a more ad-

vanced mode of investment decisions and to have better control over our strategies.

Fortunately, with the improvement of technology, we can now employ new ways of

optimization and help portfolio managers in a better decision-making process.

A portfolio, in literal terms, can be described as a collection of financial investments

in the form of stocks, bonds, cash, assets, and any other form of commodities that

tends to give some form of return in the future. Building an ever-growing portfo-

lio is the key objective of an individual or an organization and can be managed by

the individual or organization. It has been observed that companies sometimes open

multiple business models at the same time, despite their ability to execute them suc-

cessfully [20]. These factors can lead to severe losses and must be considered during

investment. Furthermore, a portfolio can be mathematically represented as

P(t) =
n

∑
j=1

w j(t)s j (2)

where, at any given time, t, s1,s2, ...,sn are the securities and w1,w2, ...,wn are the

weights, percentages or quantities associated with the securities. The weight at time

t is represented as

wt j =
Amount invested in securities s j

Total amount invested in portfolio Pt

(3)

Let us assume a list of securities as GOOGL, AMZN, AAPL with optimum percent-

ages as 0.3, 0.2, and 0.5, then the corresponding portfolio at time t is represented

as
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Pt = 0.3×GOOGL+0.2×AMZN +0.5×AAPL (4)

Due to the dynamic nature of the market, portfolio managers need to make the

right decision at the right time to either invest more or withdraw from the stock.

In addition to that, there is also a transaction cost associated with the allocation and

deallocation decisions, making this problem even more challenging and interesting.

Hence, as a portfolio manager, one must consider key characteristics like (i) fu-

ture events and targets been set, (ii) fast and accurate decision-making, (iii) stage in

which the investments are made, and (iv) resource limitations. Typically, the job of a

portfolio manager includes (i) return maximization, (ii) diversification, (iii) balanc-

ing, (iv) setting up the right strategy, and (v) investing in the right number of assets.

A brief study of portfolios, portfolio types, and portfolio optimization is presented

in [21].

4 Related Works

The analysis of multiple nonlinear constraints has always been a challenging propo-

sition and portfolio optimization is no exception.

Several works have been reported in the literature to address the portfolio optimiza-

tion problem. Meghwani et al. [22] proposed a portfolio optimization approach un-

der practical constraints using multi-objective evolutionary algorithms (MOEAs).

This study proposed a candidate generation procedure and a repair mechanism to

optimize a large portfolio. It was found that the methods proposed in [22] could han-

dle a wide range of constraints, such as cardinality, pre-assignment, budget, quantity,

and round-lot constraints. Furthermore, techniques such as the non-dominated Sort-

ing Genetic Algorithm 2 (NSGA2) [23], the Strength Pareto Evolutionary Algorithm

2 (SPEA2) [24], the Global Weighting Achievement Scalarizing Function Genetic

Algorithm (GWASFGA) [25], and the Pareto envelope-based Selection Algorithm

2 (PESA2) [26] have been found to be effective in optimizing large portfolios.

Generally, portfolio optimization requires addressing complex search spaces that

contain both continuous and discrete variables. Utilizing a complex coding scheme

(CCS) [27], which formulates the problem as mixed-integer non-linear program-

ming (MINLP), has been demonstrated to be effective when the continuous vari-

ables are contingent on discrete variables. CCS has been shown to be efficient and

reliable in dealing with multiple objectives and constraints in large portfolio opti-

mization problems. Furthermore, NSGS2 [23], SPEA2 [24], and PESA2 [26] can

be used when dealing with a limited number of restrictions [28]. In addition to the

capacity to manage multiple constraints, it is also essential to take into account the

generation distance when using evolutionary techniques. According to the genera-

tion distance, SPEA2 has been found to be superior to PESA2 [29].

Different versions of evolutionary techniques, such as artificial bee colony (ABC)

[30], firefly algorithm (FA) [31], genetic algorithm (GA) [32], and particle swarm

optimization (PSO) [13], have been found to be effective in managing portfo-
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lio optimization problems [33][34]. Furthermore, a set-based particle swarm opti-

mization (SBPSO)[34] redefines the domain of the portfolio optimization problem.

Few evolutionary techniques, such as GA, suffer from the problem of balance be-

tween exploration and exploitation. To overcome this problem, two balancing meth-

ods, viz. (i) harmonic progression NSGA2 (HPNSGA2) and (ii) random immigra-

tion NSGA2 (RINSGA2), have been proposed in [35]. The results show that the

RINSGA2 algorithm generates a better spread compared to NSGA2 [36].

It has also been observed that a learning component can be beneficial in tackling

multiple objectives and constraints in a large portfolio optimization problem. A

study on multi-objective evolutionary techniques based on guided learning has been

conducted in [37][38][39][40]. In portfolio optimization, it is important to reduce

the number of stocks to minimize transaction costs. Studies on this topic can be

found in [41]. Furthermore, various versions of evolutionary techniques with multi-

ple objectives and constraints have been explored in [42][43][44].

Recently, it has also been observed that the potential of evolutionary techniques

can be improved by combining classical machine learning and deep learning ap-

proaches. A comprehensive comparison of various incarnations of particle swarm

optimization (PSO) was conducted in [45], which also included the analysis of arti-

ficial neural networks (ANNs) [46] based on swarm intelligence. In addition, stock

market data was studied using a variety of methods, such as support vector ma-

chine (SVM) [47], deep learning [48][49], and clustering [50]. In [51], a strategy

was proposed that combines two machine learning models, random forest (RF) [52]

and support vector regression (SVR) [53], with three deep learning models [54],

long-short-term memory (LSTM) networks [55][56], deep multilayer perceptron,

and convolutional neural networks [57]. Furthermore, Zheng et al. [58] suggested

a hybrid model that combines XGBoost [59][60] with an improved version of the

firefly algorithm.

Recent efforts have been made to use evolutionary techniques in classical and

quantum-inspired domains to address non-linear portfolio optimization problems,

resulting in a surge of research in this area [61][62][63]. Quantum computing has

become a popular topic in fields ranging from portfolio optimization to blockchain

and security [64]. A portfolio optimization technique using a DWave quantum an-

nealer was proposed in [65]. The study employed four different measures, includ-

ing mean-variance, Sharpe ratio, simplified Chicago quantum ratio (CQR), and a

new Chicago quantum net score (CQNS) to identify the optimal risk. The results

show DWave outperforms the Monte Carlo method and is best suited for largely

constrained multi-objective functions. Furthermore, simulated quantum annealing

has been shown to be more robust and computationally faster when using the D-

Wave 2000QTM quantum annealer in a variety of portfolio optimization problems

[66][67]. Additionally, it has been observed that quantum-inspired simulated bifur-

cation is an effective way to tackle NP-hard combinatorial optimization problems,

as demonstrated in [68].

Investors and researchers have recently been drawn to social responsibility invest-

ment (SRI) [69]. A three-step framework based on environmental, social, and gover-

nance criteria (ESG) has been proposed in [70]. Combining ESG scores with finan-
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cial indicators demonstrates that it is possible to invest in a way that is consistent

with social values. As [70] suggests, long-term financial returns can be achieved

by reducing potential risks such as litigation, tax, compliance, and honor risks [71].

Additionally, the ESG score can be taken into account when selecting stocks to min-

imize potential losses. A bi-level approach based on ESG [72] has been found to be

effective in reducing the overall impact on the company.

5 Evolutionary Optimization

Evolutionary computing [73] is a branch of artificial intelligence that is often used to

solve complex optimization problems. It is based on the concept of biological evo-

lution and is suitable for tackling problems that involve a large number of variables.

Just like natural selection, the fitness of an individual in a population is determined

by how well it is able to adapt and reach its objectives. In the context of portfolio

selection, a candidate is chosen based on their potential to be a successful candidate

in the evolutionary process.

The development of the first evolutionary algorithm (EA) [74][75] is attributed to

a few pioneers who independently proposed different approaches, viz., (i) Evolu-

tionary programming (EP) [76] as proposed by Fogel et al. [77] aiming at evolving

finite automata, later at solving numerical optimization problems, (ii) Genetic al-

gorithm (GA) [78] using binary string aiming to solve combinatorial optimization

problems [79], (iii) Evolutionary strategies (ES) as proposed in [80] motivated by

engineering problems and aiming to solve selection problems, and (iv) Genetic pro-

gramming (GP) as proposed in [81] aiming to optimize computer programs. The

above-mentioned techniques form the core of evolutionary computing.

Typically, any EA involves four steps, viz., (i) initialization, (ii) selection, (iii) ge-

netic operators, and (iv) termination as mentioned in Fig. 1. A step-by-step under-

standing of the evolutionary computing algorithm [74] is provided in Algorithm 1.

Generally, evolutionary computing (EC) [73] algorithms include genetic algorithm

(GA) [78][8], evolutionary strategies (ES) [82][83], learning classifier systems

(LCS) [84], differential evolution (DE) [11][12], and estimation of distribution al-

gorithm (EDA) [85]. Recently, swarm intelligence (SI) [86] algorithms such as ant

colony optimization (ACO) [87] and particle swarm optimization (PSO) [14] have

gained popularity and are categorized as EC [73] family algorithms.

In this article, three of the evolutionary computing techniques, viz. (i) genetic al-

gorithm (GA) [8], (ii) differential evolution (DE) [11], and (iii) particle swarm op-

timization (PSO) [14], are implemented for addressing the portfolio optimization

problem. For both the genetic algorithm (GA) and differential evolution (DE), ad-

vanced crossover techniques are used, viz. (i) arithmetic crossover and (ii) heuris-

tic crossover with proposed enhancements are implemented. An effort has been

made to come up with two hybrid approaches on top of the arithmetic and heuris-



Title Suppressed Due to Excessive Length 9

tic crossovers. An effort, first of its kind, is also made to implement the mentioned

techniques in the quantum-inspired domain.

Algorithm 1 Evolutionary Computing Algorithm

P = initializePopulation (pop size, no o f stocks)

P = evaluatePopulation(P)

Pbest = getBestSolution(P)

while testForTermination == false do

parents = getRandomParents(no o f parents)

o f f spring = 0

for parenti ∈ parents do

o f f springi = mutate(parenti)

o f f spring = o f f spring
⋃

o f f springi

end for

evaluatePopulation (o f f spring)

bestSolution = getBestSolution (o f f spring, bestSolution)

P = P
⋃

o f f spring

P = environmentalSelection (P)

end while

return bestSolution

Fig. 1: Evolutionary Computing Steps

5.1 Genetic Algorithm

Genetic algorithms (GAs) [8] are population-based metaheuristic algorithms that

are inspired by the Darwinian theory of evolution [9][10]. Like other evolution-

ary algorithms, GAs use selection, crossover, and mutation as their main operators.

When dealing with portfolio optimization problems, it is important to select the

right crossover technique and measure. A study of different GA techniques and

measures used in portfolio optimization problems can be found in [21]. GAs evalu-

ate randomly selected populations using a fitness function. The pseudocode for GA
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is provided in Algorithm 2, and the flowchart of the algorithm’s operation is shown

in Fig. 2.

Algorithm 2 Genetic Algorithm

P = InitializePopulation (popsize, noo fstocks)

P = Sort(P)

Pbest = getBestSolution (P)

while testForTermination == false do

Selection(population)

Crossover(population)

Mutate(population)

Pbest i
= getBestSolution (P)

Pbest i
= UpdateGlobalBest(Pbest i

, Pbest )

end while

return Pbest

Fig. 2: Genetic Algorithm Flowchart

5.2 Differential Evolution

Differential Evolution (DE) [11][12] is a member of the Evolutionary Algorithm

(EA) family, which is known to be more accurate, faster, and more reliable for opti-
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mization problems. It is easy to comprehend, similar to the Genetic Algorithm (GA)

[8], and can be used for portfolio optimization. DE [88] has a non-uniform popula-

tion generation process that increases diversity and often produces more optimized

results. The crossover used in GA is also used in DE, allowing for a better compari-

son. This is why DE [88] is chosen to test the modified crossover techniques in this

article. Additionally, DE has been observed to perform better with floating-point

weights, which is a desired outcome in portfolio optimization.

The algorithm for differential evolution is analogous to that of a genetic algorithm,

as shown in Algorithm 2, with an improved population generation process. The

equation used for population generation is expressed as

Newwti = Xmin +wti ∗ (Xmax +Xmin) (5)

where, Newwti is the new weight generated through the DE process, Xmin is the min-

imum weight of the allocation, wti is the current weight, and xmax is the maximum

allocation possible for a portfolio.

5.3 Crossover Techniques Used

The effectiveness of genetic algorithm (GA) [8] and differential evolution (DE)

[89][90] depends on three factors, viz. (i) population, (ii) mutation rate, and (iii)

crossover parameters chosen. This article proposes improvements to the popular

crossover techniques, viz., arithmetic crossover [91] and heuristic crossover [92],

for portfolio optimization problems. A comparative study of these crossover op-

erators is made on different datasets to establish the significance of the proposed

enhancements.

5.3.1 Arithmetic Crossover

The arithmetic crossover operator [93] combines two parents linearly to generate

children. The mathematical technique used is given by

ch1 = α ∗ p1 +(1−α)∗ p2

ch2 = (1−α)∗ p1 +α ∗ p2

(6)

where, ch1 is the first child, ch2 is the second child, α is the crossover rate, p1 is the

first parent, and p2 is the second parent selected for the crossover operation.
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5.3.2 Heuristic Crossover

The heuristic crossover operator [94] combines two parents to generate children that

are between the best and worst selected parents using the following expression.

ch1 = p best +β ∗ (p best − p worst)

ch2 = p worst −β ∗ (p best − p worst)
(7)

where, ch1 is the first child, ch2 is the second child, β is the crossover rate, p best is

the best parent, and p worst is the worst parent selected for the crossover operation.

5.3.3 Challenges in the Crossover Methods for Portfolio Optimization

When it comes to portfolio optimization, the mentioned crossover operations exhibit

four problems, viz., (i) these are highly dependent on the selection of the appropriate

value of α based on the problem statement (ii) the mentioned crossover techniques

cannot be generalized for different problems (iii) the child weights generated could

be negative, which denotes negative investment and (iv) the total of allocation could

be less than or more than 100% of the available funds. The objective of crossover

in any portfolio optimization problem is to ensure that it generates non-negative

weights and that the total allocation should not be greater than 100%. Furthermore,

for the best return, the optimizer should allocate all the available funds.

An effort has been made in this work to overcome the above-mentioned challenges

in the arithmetic and heuristic crossovers by introducing two improvements, viz. (i)

a circular regularization function to ensure 100% allocation and (ii) by considering

absolute weights to avoid non-zero values.

5.4 Particle Swarm Optimization

Particle swarm optimization (PSO) [13][14] is one of the evolutionary techniques

that is based on swarm intelligence [14]. PSO intends to simulate social behavior as

a representation of the movement of organisms in a flock of birds or a fish school

and can also be used in a volatile market condition. PSO considers each member of

the population as a particle. PSO [14][95] uses the technique of ”gbest neighbor-

hood topology” as proposed by Kennedy et al. [96]. In multiple research studies, it

has been proven that PSO outperforms other evolutionary techniques such as GA

[8] and DE [11][12] and therefore has been used in this work. PSO has several ad-

vantages over other evolutionary techniques and has been applied in areas involving

function optimization, artificial neural network training, fuzzy control systems, and

fields related to finance and accounting. The evolution process in PSO can be given

by [97]
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V k
i = wV k

i + c1r1(pbestk
i − xk

i )+ c2r2(gbestk − xk
i )

xk+1
i = xk

i + vk+1
i

(8)

where, vk
i is the velocity of the ith particle at the kth iteration, and xk

i is the current

solution (or position) of the ith particle at the kth iteration. c1, c2 are positive con-

stants, and r1, r2 are two random variables between (0, 1). In Equation 8, w is the

inertia weight of the stock. The pseudo-code of PSO is given in Algorithm 3.

A survey on PSO-based financial application [98] in portfolio optimization is pre-

sented in [45]. The proposed paper [45] studied various computational intelligence-

based approaches and financial trading frameworks employed for forecasting us-

ing ANNs [99], SVMs [100], PSO [14], GA [8], ABC [101] and their impacts. It

is found that the swarm intelligent techniques outperform the classical techniques

in dynamic optimization problems, which are discrete, continuous, constrained, or

multi-objective [102] in nature. The survey as proposed in [45], was performed on

multiple stocks from different datasets such as BSE, NASDAQ, S&P 500, and the

Shanghai stock market. Furthermore, a careful study of the stock market shows that

a group of stocks has a certain common property in terms of the ways they move

up and down. These kinds of stocks can be handled by applying an improved set-

based PSO (SBPSO) as proposed in [103]. The set-based approach uses quadratic

programming as a weight optimizer for determining the contribution of the individ-

ual assets. The proposed techniques were tested on multiple datasets, such as Hang

Seng, DAX 100, FTSE 100, S&P 100, and Nekkei. The experiments conducted in

[103] show that although the SBPSO result is comparable to GA, it outperforms GA

in terms of speed.

Of late, it has been observed that the traditional PSO may lead to a local optimum

solution. The article proposed in [104] used a hybrid approach where PSO is com-

bined with SA [105][106], and ANN [107] to reduce the chances of local optimum

solution and can be employed to portfolio optimization problems. PSO can also be

extended to multi-objective function optimization as proposed in [108][109].

6 Quantum-inspired Metaheuristics for Portoflio Optimization

In recent years, a lot of effort has been devoted to the use of hybrid approaches to

make portfolio optimization more realistic. It has been discovered that quantum and

quantum-inspired computing techniques can be beneficial in solving complex opti-

mization problems [62]. Quantum computing [110] uses the principles of quantum

mechanics to process information. Unlike classical computing, which represents

information as bits, quantum computing uses quantum bits or qubits to represent

information. Qubits exist in a superposition of states, which means that the informa-

tion can be both |0⟩ and |1⟩ simultaneously.

Quantum computing [110] is found to perform better than classical computers, es-

pecially in problems that involve searching and finding the optimum solution on
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Algorithm 3 Particle Swarm Optimization Algorithm

Input: N, xl , Xu, C1, C2, imax, f

Output: A swarm S of size N (N position vectors)

Initialize S, randomly generate the position x of each particle w.r.t. the bounds xl , xu of the

objective function

Initialize all velocities u to zero

Initialize best positions x∗ (and respective values) for individual particles and find g∗
Choose randomly two values in [0,1] for r1 and r2

Iteration i = 0

Initialize θmin, θmax

while i ¡ imax do

Calculate inertia: θ = θmax - θmax−θmin
imax

∗ i

for pi ∈ S do

1. Update velocity: ui = θ ∗ui−1 + c1r1 [x∗− xi−1] + c2r2 [g∗− x(i−1)];
2. Update position: x = xi1 + ui;

3. Compute the value of the new position according to f ;

4. Check/Update: x∗, g∗

end for

(Optional) Check for convergence

Upgrade iteration: i = i + 1

end while

return S;

large datasets. The representation of quantum states is done through a wave func-

tion in the Hilbert space H [111]. This space can be thought of as an extension of a

two-dimensional or three-dimensional space to one with a finite or infinite number

of dimensions.

Quantum gates [112] are the building blocks of quantum circuits [113][114]. There

are several gates used in quantum computing, including Hadamard gates, Pauli

gates, phase gates, and CNOT gates, among others. The choice of gates plays a

vital role in the performance of quantum circuits. In this article, the Hadamard gate

[115], as mentioned in Equation, 9, has been used due to its simplicity and robust-

ness.

Hadamard (H) =
1√
2

[

1 1

1 −1

]

(9)

6.1 Qubit

Quantum bit or qubit is the smallest unit of quantum information in quantum com-

puting [110] and is represented as |0⟩ and |1⟩. The qubit vectors are also represented

using Dirac notation [116] as
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|0⟩=
[

1

0

]

|1⟩=
[

0

1

] (10)

where, |0⟩ implies that the qubit is in the ground state and |1⟩ implies that the qubit

is in the excited state.

Qubits possess a remarkable property known as entanglement, which allows the

state of one qubit to be linked to the state of another qubit, even when they are sepa-

rated by a large distance. This property enables parallel computing, making quantum

computers much faster than traditional computers.

6.2 Quantum Superposition

The quantum superposition principle is the linear combination of quantum vectors

represented in two states as [110]

|ψ⟩= α|0⟩+β |1⟩ (11)

where, α and β are complex numbers which must satisfy the condition

| α |2 + | β |2= 1 (12)

where, α2 and β 2 are the probabilities of measuring the basis states |0⟩ and |1⟩,
respectively. A qubit can be expressed as a combination of two basis states, |0⟩ and

|1⟩, which are created using quantum gates (Q-gates). This combination of the states

is maintained until a quantum measurement destroys the superposition. Therefore,

for n qubits, the number of states in a quantum machine is 2n [117][118].

6.3 Quantum-inspired techniques for portfolio optimization

Computer scientists often face a challenge in creating advanced, reliable, and faster

algorithms for dynamic and complex optimization problems. Evolutionary tech-

niques have been found to be effective in any given problem space. About two

decades ago, new optimization techniques based on quantum computing were pro-

posed [118][119] to address search optimization issues. Quantum-inspired meta-

heuristic algorithms imitate the principles of quantum mechanics and have been

demonstrated to outperform classical techniques in solving combinatorial opti-

mization problems [120][121]. Due to their capacity to solve complex and large
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computational problems, these quantum-inspired metaheuristics are widely used in

constrained and unconstrained problems [122][62]. A survey of quantum-inspired

metaheuristics-based techniques is presented in [123].

In recent times, various versions of quantum-inspired metaheuristics have been

developed to create quantum-inspired versions of classical metaheuristics, such

as the genetic algorithm [124], tabu search [125], differential evolution [11][12],

particle swarm optimization [14], and ant colony optimization [126] to be used

in quantum space. Examples of these include the quantum-inspired genetic algo-

rithm [127][128][129], quantum-inspired tabu search [130][131][132], quantum-

inspired differential evolution [133], quantum-inspired particle swarm optimization

[134][135], and quantum-inspired ant colony optimization [136][137]. A compre-

hensive examination of the progress made in support vector machines, neural net-

works, and evolutionary computing can be found in [138][139].

6.4 Quantum-inspired techniques used in this study

Quantum-inspired methods have been found to be more effective than their classical

equivalents when tackling issues of large search space and high dimensionality. This

approach takes advantage of quantum parallelism and superposition to explore the

search space more thoroughly, leading to a more optimal solution. The main features

of the implementation include the following.

• Designing a quantum-inspired population: Quantum-inspired techniques use

qubits to represent an individual in the population. Each population consists

of two weights for each stock taken into account to form the portfolio. The

individual weights have been encoded using qubits |0⟩ and |1⟩. Additionally,

quantum-inspired crossover and mutation take advantage of quantum mechani-

cal principles to generate entanglement and introduce randomness.

• Implementation of Hadamard gates: The selection of weights in the population,

crossover, and mutation has been performed using the Hadamard gate, as men-

tioned in Equation 9.

• Implementation of the fitness function: Finally, the fitness function sorts the

population considering both states, viz., (i) α , and (ii) β .

7 Experimental Results and Analysis

This study uses the genetic algorithm, differential evolution, particle swarm opti-

mization, and their quantum-inspired counterparts for comparison. The mentioned

techniques have been implemented (coded) in Python on a MacBook Pro with an

Apple M2 chip with 8 GB of RAM and a macOS Ventura 13.4.1. Experiments have

been conducted on three benchmark datasets, viz. (i) NASDAQ [5] with 2515 data
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points from 2012-06-28 to 2022-06-27, (ii) Bombay Stock Exchange (BSE) [6] with

2285 data points from 2013-11-05 to 2023-02-13, and (iii) Dow Jones [7] with 3461

data points from 2009-08-06 to 2023-05-05. An effort has been made to consider a

better mix of stocks that had positive and negative growths in the selected period.

The average and highest percentage changes of stock are calculated using the fol-

lowing equations:

APCi =
Sn

i −S1
i

S1
i

∗100 (13)

HPCi =
max(Si)−min(Si)

min(Si

∗100 (14)

where, APCi and HPCi are the average and highest percentage changes of stock Si,

respectively. Sn
i and S1

i are the nth, and the 1st observations of the stock, respectively,

and max(Si) and min(Si) are the corresponding maximum and minimum observa-

tions of the stock in the given period.

Table 2 presents the NASDAQ sample data used in this study. The graphical repre-

sentation of the data, as shown in Fig. 3, shows a mix of stocks that have changed in

different proportions over the last 10 years. Table 3 presents the average and highest

percentage changes of individual stocks according to Equations 13 and 14, respec-

tively. The Average Percentage Change (APC) and the Highest Price Change (HPC)

of the chosen stocks vary from 80.86% to 4546.66% and 180.05% to 11585.16%,

respectively, indicating a good diversification of the portfolio.

Table 4 presents the BSE sample data used in this study. The graphical represen-

tation of the data, as shown in Fig. 4, shows a mix of stocks that have changed in

different proportions over the last 10 years. Table 5 presents the average and high-

est percentage changes of individual stocks according to Equations 13 and 14, re-

spectively. The average percentage change (APC) of the chosen stocks ranges from

-66.88% to 361.31%, while the highest price change (HPC) varies from 447.28% to

1496.01%.

Table 6 presents the sample data from Dow Jones used in this study. The graphi-

cal representation of the data, as shown in Fig. 5, shows a mix of stocks that have

changed in different proportions over the last 10 years. Table 7 presents the av-

erage and highest percentage changes of individual stocks according to Equations

13 and 14, respectively. The average percentage change (APC) of the chosen stocks

ranges from 66.24% to 1182.61%, while the highest price change (HPC) varies from

345.47% to 5933%.

An attempt is therefore made to pick those stocks that have experienced significant

price fluctuations, with a high and a low in the chosen time frame.
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Table 2: Sample NASDAQ [5] Dataset

Date AAPL MSFT CSCO SBUX NVDA JPM PFE

6/28/2012 20.35 29.735 16.425 25.96 3.27875 35.39 21.97355

6/29/2012 20.68 30.415 16.9475 26.56 3.42375 36.025 22.3401

7/2/2012 21.02 30.415 17.06 26.3975 3.405 35.975 22.4525

7/3/2012 21.32 30.465 17.12 26.08 3.40875 35.8375 22.3645

7/5/2012 21.68 30.5775 16.955 26.1925 3.4025 34.94 22.2179

... ... ... ... ... ... ... ...

... ... ... ... ... ... ... ...

... ... ... ... ... ... ... ...

6/21/2022 135.19 252.13 43.99 72.6 167.075 116.035 47.697

6/22/2022 135.84 253.77 43.6425 73.02 164.21 115.29495 48.6749

6/23/2022 137.11 256.5 43.0875 74.435 162.19 113.33 49.575

6/24/2022 140.84 264.85 43.7275 76.85 167.25 115.325 50.97

6/27/2022 142.23 265.79 43.9575 77.8525 169.7775 117.07085 51.7425

* AAPL = Apple Inc, MSFT = Microsoft Corp, CSCO = Cisco Systems, SBUX = Starbucks Corp

* NVDA = NVIDIA Corp, JPM = JP Morgan Chase, PFE = Pfizer Inc

Table 3: Average and Highest Percentage Change of NASDAQ [5] Dataset

Parameters AAPL MSFT CSCO SBUX NVDA JPM PFE

Min Price 14.01 26.485 15.26 21.805 2.8475 33.8 21.6999

Max Price 181.03 344.61 63.9175 125.485 332.735 171.72 60.77

HPC(%) 1192.15 1201.15 318.86 475.49 11585.16 408.05 180.05

APC(%) 778.51 658.64 80.86 144.94 4546.66 112.05 90.76

* AAPL = Apple Inc, MSFT = Microsoft Corp, CSCO = Cisco Systems, SBUX = Starbucks Corp

* NVDA = NVIDIA Corp, JPM = JP Morgan Chase, PFE = Pfizer Inc

Table 4: Sample BSE [6] Dataset

Date ADANIPORTS DLF PRESTIGE TATASTEEL UPL

11/5/13 151.85 160.8 143.5 338.95 166.95

11/6/13 150.9 155.9 144.95 333.3 171.95

11/7/13 148.3 148.85 147.5 345.8 167.75

11/8/13 148.4 152.6 138.45 355.75 167.9

11/11/13 149.9 148.2 130.75 360.8 165.55

... ... ... ... ... ...

... ... ... ... ... ...

... ... ... ... ... ...

2/13/23 553.7 357.9 400.95 108.75 733.8

2/14/23 565.1 353.95 395.9 109.25 761.6

2/15/23 569.05 361.0 405.8 110.3 769.35

2/16/23 577.2 371.7 419.95 112.0 770.35

2/17/23 578.65 364.55 433.25 112.25 770.15

* ADANIPORTS = Adani Ports, DLF = Delhi Land & Finance, PRESTIGE = Prestige Group

* TATASTEEL = Tata Steel Ltd, UPL = United Phosphorus Limited
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Fig. 3: NASDAQ [5] Historical Data

Table 5: Average and Highest Percentage Change of BSE [6] Dataset

Parameters ADANIPORTS DLF PRESTIGE TATASTEEL UPL

Min Price 141.65 80.8 124.65 95.2 158.05

Max Price 970.25 442.2 526.65 1519.4 1034.5

HPC(%) 584.97 447.28 322.50 1496.01 554.54

APC(%) 281.07 126.71 201.92 -66.88 361.31

* ADANIPORTS = Adani Ports, DLF = Delhi Land & Finance, PRESTIGE = Prestige Group

* TATASTEEL = Tata Steel Ltd, UPL = United Phosphorus Limited

7.1 Enhancement Analysis

This study proposes three enhancements, viz., (i) a model to select positive weights,

(ii) a regularization function to ensure full utilization of the available funds, as pre-

sented in Equation 1, and (iii) random selection of the parameters of the metaheuris-

tics under consideration. A comparative analysis with and without the mentioned

enhancements is presented in Tables 8 - 11. The results demonstrate that the cal-
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Fig. 4: BSE [6] Historical Data

Table 6: Sample Dow Jones [7] Dataset

Date AVGO BA GOOGL JPM UNH XOM

06/08/09 12.0039 35.1112 11.2939 28.7499 21.3532 41.4645

07/08/09 12.1893 36.0137 11.4629 29.8858 21.7888 41.3099

10/08/09 11.8481 35.304 11.4506 30.1186 22.2491 41.1374

11/08/09 11.6255 35.0109 11.3835 29.0956 22.8655 40.7628

12/08/09 11.8703 35.7437 11.5 29.78 22.8408 41.3492

... ... ... ... ... ... ...

... ... ... ... ... ... ...

... ... ... ... ... ... ...

01/05/23 637.95 203.87 107.2 141.2 495.7 114.67

02/05/23 612.34 203.25 105.32 138.92 493.39 110.1

03/05/23 613.2 200.93 105.41 135.98 489.44 107.93

04/05/23 610.16 197.05 104.69 134.12 487.28 106.04

05/05/23 630.12 198.34 105.57 136.74 494.28 108.68

* AVGO = Broadcom Inc, BA = Boeing Co, GOOGL = Alphabet Inc

* JPM = JPMorgan Chase & Co, UNH = UnitedHealth Group Inc, XOM = Exxon Mobil Corp
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Table 7: Average and Highest Percentage Change of Dow Jones [7] Dataset

Parameters AVGO BA GOOGL JPM UNH XOM

Min Price 10.75 33.57 10.94 20.57 19.76 26.57

Max Price 648.55 430.35 149.84 163.96 551.47 118.34

HPC(%) 5933.00 1182.00 1270.20 697.17 2691.02 345.47

APC(%) 1182.61 81.98 272.35 196.92 596.70 66.24

* AVGO = Broadcom Inc, BA = Boeing Co, GOOGL = Alphabet Inc

* JPM = JPMorgan Chase & Co, UNH = UnitedHealth Group Inc, XOM = Exxon Mobil Corp

Fig. 5: Dow Jones [7] Historical Data

culated risk and return without the mentioned enhancements are not ideal, and the

total allocation exceeds the available funds.
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Table 8: Arithmetic crossover results without proposed enhancements

Risk Return Total Allocation Allocation Distribution

0.43725948 0.49238143 2.49799162 [0.91392113, 0.75009807, 0.50433553, 0.32963688]

0.42476089 0.49083262 2.36742172 [0.87472188, 0.88431377, 0.10388881, 0.50449726]

0.32943594 0.38400195 1.8772583 [0.51240134, 0.84583051, 0.40922836, 0.10979809]

0.39335253 0.44944748 2.23307304 [0.78943504, 0.75417708, 0.24070072, 0.4487602]

0.53382178 0.58226318 3.12733067 [0.86295175, 0.8789972, 0.85539376, 0.52998795]

0.49046968 0.53759106 2.86778851 [0.82048647, 0.81216284, 0.7524143, 0.4827249]

0.42946743 0.4861936 2.40896752 [0.97191603, 0.72469758, 0.25047287, 0.46188103]

0.4022885 0.46315369 2.2572317 [0.62911085, 0.96077614, 0.04096606, 0.62637865]

0.51614329 0.56336109 3.00832468 [0.825731, 0.89577398, 0.94290855, 0.34391116]

0.54348558 0.60302327 3.17919337 [0.8731615, 0.98017644, 0.69998464, 0.62587079]

0.54334289 0.60284858 3.17846592 [0.87229227, 0.98015662, 0.69977728, 0.62623975]

0.44158135 0.50057985 2.56729824 [0.67861343, 0.92388471, 0.42016579, 0.54463432]

0.38787203 0.44786412 2.24110515 [0.58530536, 0.92776234, 0.45919353, 0.26884392]

0.50496791 0.55090699 2.95312069 [0.83487292, 0.80118576, 0.63636414, 0.68069788]

0.48737856 0.52344968 2.80362232 [0.88260513, 0.66265358, 0.3980223, 0.86034131]

0.48298803 0.51582622 2.79231058 [0.85166369, 0.63895669, 0.46072106, 0.84096914]

0.43614161 0.44664829 2.56609622 [0.18641471, 0.88725884, 0.89863014, 0.59379252]

0.39925686 0.42571745 2.25683827 [0.86791265, 0.4389099, 0.28688973, 0.66312599]

0.27709581 0.3015809 1.61839942 [0.44922116, 0.46147304, 0.49121167, 0.21649355]

Table 9: Arithmetic crossover results with proposed enhancements

Risk Return Total Allocation Allocation Distribution

0.18816554 0.2274488 1.0 [0.3773142, 0.55804829, 0.04523255, 0.01940496]

0.18816974 0.22738958 1.0 [0.37896231, 0.55619314, 0.04586476, 0.01897978]

0.18863448 0.225746 1.0 [0.42470353, 0.5047058, 0.06341113, 0.00717954]

0.18866373 0.22568678 1.0 [0.42635164, 0.50285065, 0.06404334, 0.00675437]

0.18508445 0.22075708 1.0 [0.40043325, 0.48155361, 0.09335309, 0.02466004]

0.18050009 0.21662506 1.0 [0.29910234, 0.52402136, 0.07090727, 0.10596902]

0.17733953 0.20972876 1.0 [0.19702565, 0.55786266, 0.17837042, 0.06674126]

0.17796369 0.2111444 1.0 [0.31235524, 0.46608254, 0.11007477, 0.11148744]

0.18343888 0.21824601 1.0 [0.39350049, 0.45850616, 0.05497639, 0.09301696]

0.17945013 0.21392784 1.0 [0.32285206, 0.4835512, 0.10875281, 0.08484394]

0.18401832 0.21719516 1.0 [0.39883742, 0.43768039, 0.00598494, 0.15749725]

0.19262115 0.22393166 1.0 [0.52841532, 0.40113899, 0.06518147, 0.00526422]

0.17493263 0.20287877 1.0 [0.28283704, 0.42698923, 0.22238122, 0.0677925]

0.18882082 0.21838108 1.0 [0.01642904, 0.78548234, 0.13829853, 0.0597901]

0.18054424 0.21166618 1.0 [0.39513283, 0.3995517, 0.09192361, 0.11339186]

0.1702984 0.19086392 1.0 [0.17479474, 0.40371664, 0.22623568, 0.19525293]

0.17073331 0.19078806 1.0 [0.17316756, 0.39874034, 0.18326016, 0.24483194]

0.17160148 0.19128208 1.0 [0.29125646, 0.30769298, 0.20511686, 0.1959337]

0.17220267 0.18922145 1.0 [0.32176341, 0.26625287, 0.23249608, 0.17948765]

0.17087154 0.19057586 1.0 [0.24175251, 0.35116623, 0.27279687, 0.13428439]

7.2 Sensitivity Analysis

The implementation of evolutionary techniques requires the selection of multiple

parameters, which can be a difficult task. Sensitivity analysis [140] can be used to

assess the influence of the input parameters on the result. In recent years, sensitiv-

ity analysis has been used in several fields, such as finance, engineering, operations

research, and risk management, to name a few, to evaluate the reliability and robust-

ness of the selected model. In this study, SALib [141][142] in Python has been used

to study the impact of the input parameters, such as population size, α and β val-
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Table 10: Heuristic crossover results without proposed enhancements

Risk Return Total Allocation Allocation Distribution

12.78774304 15.52159253 68.14638814 [15.63910484, 46.76028321, 3.95945057, 1.78754952]

80.50210392 95.96807896 410.61290795 [65.55466873, 332.25330684, 49.7201455, -36.91521311]

0.45690216 0.51731405 2.37234613 [1.27899754, 0.76578453, -0.09409481, 0.42165887]

0.45690216 0.51731405 2.37234613 [1.27899754, 0.76578453, -0.09409481, 0.42165887]

80.50210392 95.96807896 410.61290795 [65.55466873, 332.25330684, 49.7201455, -36.91521311]

184.94947197 220.1189818 938.82372655 [145.83274446, 769.81540759, 114.82411594, -91.64854144]

125.1402649 148.5916856 625.73068819 [94.72720247, 532.35335504, 71.61588591, -72.96575523]

125.1402649 148.5916856 625.73068819 [94.72720247, 532.35335504, 71.61588591, -72.96575523]

29.52603975 35.0836751 148.84219306 [23.0731789, 123.86913584, 18.35763402, -16.45775571]

29.52603975 35.0836751 148.84219306 [23.0731789, 123.86913584, 18.35763402, -16.45775571]

3.21806463 3.63307101 12.63174527 [1.87356301, 16.40048854, -1.51976405, -4.12254223]

3.21806463 3.63307101 12.63174527 [1.87356301, 16.40048854, -1.51976405, -4.12254223]

193.54928735 230.01028598 984.78757617 [149.67536653, 802.98899807, 129.10691337, -96.98370181]

193.54928735 230.01028598 984.78757617 [149.67536653, 802.98899807, 129.10691337, -96.98370181]

32.23241822 37.90186445 149.96188587 [22.66311619, 148.09539659, 7.59941849, -28.3960454]

32.23241822 37.90186445 149.96188587 [22.66311619, 148.09539659, 7.59941849, -28.3960454]

0.54453191 0.61388072 2.97756193 [1.17561256, 0.99326772, -0.04706333, 0.85574498]

0.54453191 0.61388072 2.97756193 [1.17561256, 0.99326772, -0.04706333, 0.85574498]

215.76963744 255.92805254 1144.87305041 [174.87786301, 830.22726443, 198.04197708, -58.27405412]

215.76963744 255.92805254 1144.87305041 [174.87786301, 830.22726443, 198.04197708, -58.27405412]

Table 11: Heuristic crossover results with proposed enhancements

Risk Return Total Allocation Allocation Distribution

0.1932686 0.23587147 1.0 [0.27512947, 0.71742572, 0.00057264, 0.00687217]

0.19497197 0.23733354 1.0 [0.23236919, 0.76697335, 0.00040629, 0.00025117]

0.19317858 0.23576149 1.0 [0.2800743, 0.71283359, 0.00500797, 0.00208414]

0.19282985 0.23507993 1.0 [0.3445041, 0.6522532, 0.00252911, 0.00071359]

0.19195767 0.23429285 1.0 [0.30104034, 0.68109812, 0.00271741, 0.01514412]

0.19200532 0.23436324 1.0 [0.29534295, 0.68631949, 0.00116388, 0.01717368]

0.19573441 0.23747934 1.0 [0.20122682, 0.79461686, 0.002399, 0.00175732]

0.19448238 0.23640207 1.0 [0.21795384, 0.77127206, 0.00882512, 0.00194898]

0.19448238 0.23640207 1.0 [0.21795384, 0.77127206, 0.00882512, 0.00194898]

0.19199174 0.23434572 1.0 [0.29544642, 0.68607097, 0.00119508, 0.01728753]

0.19444843 0.23589372 1.0 [0.19878253, 0.78241116, 0.00848771, 0.01031861]

0.19097213 0.23283073 1.0 [0.32729071, 0.64511006, 0.00117222, 0.02642701]

0.19019824 0.23176323 1.0 [0.27892182, 0.67982912, 0.03533553, 0.00591353]

0.19019824 0.23176323 1.0 [0.27892182, 0.67982912, 0.03533553, 0.00591353]

0.19536023 0.23642932 1.0 [0.18248008, 0.80162552, 0.01248911, 0.00340529]

0.19452411 0.23564206 1.0 [0.18604442, 0.79002642, 0.00364933, 0.02027982]

0.19030738 0.23189694 1.0 [0.26633194, 0.69090992, 0.02998883, 0.01276931]

0.19037710 0.23194001 1.0 [0.26631337, 0.6918704, 0.03409392, 0.00772231]

0.19184019 0.23291573 1.0 [0.21327059, 0.74570628, 0.03635607, 0.00466707]

0.19184019 0.23291573 1.0 [0.21327059, 0.74570628, 0.03635607, 0.00466707]

ues, and cognitive parameters on the objective function in the selected evolutionary

techniques. The input parameters are systematically varied, and the impact on the

objective function is studied. Some of the popular methods proposed for conducting

sensitivity analysis include:

• One at a time [143]: This is one of the simplest forms of sensitivity analysis in

which one variable is modified while keeping others constant. The change in

the output variable is observed against each change in the input parameter, and

the impact of individual parameters is studied.
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• Tornado diagram [144]: Also referred to as a tornado chart, it graphically repre-

sents the sensitivity of the output parameter to the change in the input parame-

ters. Typically, it ranks the parameters according to their influence on the output

parameter.

• Monte Carlo simulation [145]: This technique involves a two-step process viz.,

(i) generation of random values for each input parameter in the defined ranges

and (ii) running multiple simulations of the generated input parameter. It pro-

vides a probabilistic-based understanding of the impact of the input parameters

on the output parameter.

• Design of experiment (DOE) [140]: This technique involves varying the input

parameters based on a predefined experiment. The impact on the output param-

eter is studied with the change in the input parameters.

For this study, Monte Carlo simulation [145] and DOE [140] have been used. The

impact of individual parameters and second-order correlation is studied and has

been presented for the selected evolutionary techniques in both the classical and

quantum-inspired domains. A sensitivity analysis has been performed for each of

the selected methods, and the best parameter values have been identified for each

technique. Figs. 6 - 15 present the best results of the sensitivity analysis of the

techniques chosen from multiple executions.

(a) Independent variable impact (b) Second order variable relationship

Fig. 6: Sensitivity analysis and variable impact in GA with arithmetic crossover

7.3 Analysis of Experimental Results

The results of the experiments carried out with GA, DE, and PSO in both the clas-

sical and quantum-inspired domains are presented in Tables 13 - 18. The optimizers

have been executed multiple times with different iteration values of K, where K is
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(a) Independent variable impact (b) Second order variable relationship

Fig. 7: Sensitivity analysis and variable impact in GA with heuristic crossover

(a) Independent variable impact (b) Second order variable relationship

Fig. 8: Sensitivity analysis and variable impact in QiGA with arithmetic crossover

the number of times the optimizers were executed. The performance of the evolu-

tionary techniques is evaluated using statistical measures such as mean square error

(MSE), mean absolute error (MAE), root mean square error (RMSE), and mean

absolute percentage error (MAPE) [146] given by

Mean Square Error (MSE) =
1

N
∗

n

∑
i=1

(Xi − X̄)2 (15)

Mean Absolute Error (MAE) =
1

N
∗

n

∑
i=1

| Xi − X̄ | (16)

Root Mean Square Error (RMSE) =

√

1

N
∗

n

∑
i=1

(Xi − X̄)2 (17)
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(a) Independent variable impact (b) Second order variable relationship

Fig. 9: Sensitivity analysis and variable impact in QiGA with heuristic crossover

(a) Independent variable impact (b) Second order variable relationship

Fig. 10: Sensitivity analysis and variable impact in DE with heuristic crossover

Mean Absolute Percentage Error (MAPE) =
1

N
∗

n

∑
i=1

| Xi − X̄ |
Xi

∗100 (18)

where, Xi is the ith observation, X̄ is the mean observation, and N is the number of

executions.

The experiments carried out reveal that quantum-inspired particle swarm optimiza-

tion (QiPSO) is more effective and faster than the other techniques chosen in both

the classical and quantum-inspired domains. Furthermore, sensitivity analysis has

been conducted to select the appropriate parameter values, which enabled the tech-

niques to converge faster in fewer iterations.

A comprehensive observation based on the experiments conducted is presented in

Table 12. It has been observed that QiPSO is a more effective technique than others

when it comes to portfolio optimization. Additionally, the quantum-inspired version
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(a) Independent variable impact (b) Second order variable relationship

Fig. 11: Sensitivity analysis and variable impact in DE with heuristic crossover

(a) Independent variable impact (b) Second order variable relationship

Fig. 12: Sensitivity analysis and variable impact in QiDE with arithmetic crossover

is dependable and can reach an optimal solution quicker than its classical counter-

part without compromising the desired result (minimizing risk).

7.4 Statistical Tests

The Friedman chi-square test has been used to compare the mean risk of the

evolutionary techniques chosen using the ”friedmanchisquare” module from the

”scipy.stats” package in Python. The test reveals that the significant level, p-value,

is less than 0.0001, allowing us to reject the null hypothesis. Consequently, it can be
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(a) Independent variable impact (b) Second order variable relationship

Fig. 13: Sensitivity analysis and variable impact in QiDE with heuristic crossover

(a) Independent variable impact (b) Second order variable relationship

Fig. 14: Sensitivity analysis and variable impact in PSO

Table 12: Analysis of Results

Parameter Observation

Risk A quantum-inspired approach produces a more optimal risk than its classical

counterpart.

Risk QiPSO has the potential to generate the most optimal risk compared to other

selected methods.

Error Particle Swarm Optimization (PSO) is found to have the lowest mean square

error (MSE), root mean square error (RMSE), mean absolute error (MAE), and

mean absolute percentage error (MAPE). Therefore, it can be used for portfolio

optimization problems.

Execution

Time

Quantum-inspired versions can reach convergence faster than their classical

counterparts, often with better results.

Convergence Sensitivity analysis can be employed to reduce the amount of time it takes for

convergence.
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Table 13: Experimental Results with NASDAQ [5] data

Parameters
PSO QiPSO GA QiGA DEGA QiDEGA

arithmetic heuristic arithmetic heuristic arithmetic heuristic arithmetic heuristic

K = 2

Risk 0.16993661 0.16969060 0.17705350 0.17237750 0.17532711 0.16992065 0.17594422 0.17139626 0.18342174 0.17652409

Return 0.18192847 0.18479456 0.20808422 0.16631283 0.19904282 0.17855352 0.20448473 0.16653309 0.21181152 0.15534185

MSE 0.00000939 0.00005573 0.00013482 0.00012547 0.00010463 0.00003413 0.00001398 0.00009188 0.00010546 0.00000938

MAE 0.00306447 0.00746518 0.01161108 0.01120147 0.01022910 0.00584200 0.00373904 0.00958541 0.01026938 0.00306314

RMSE 0.00433382 0.01055735 0.01642054 0.01584127 0.01446613 0.00826184 0.00528780 0.01355582 0.01452309 0.00433194

MAPE 0.01656991 0.04217254 0.05299886 0.07259424 0.04899653 0.03386394 0.01796263 0.06130259 0.04634070 0.02012350

MET (s) 31.933 4.999 30.795 15.278 30.135 9.950 30.156 15.323 30.354 15.263

TET (s) 63.866 9.997 61.59 30.555 60.270 19.901 60.312 30.647 60.707 30.527

K = 3

Risk 0.16992334 0.16995519 0.17119414 0.17087693 0.18403938 0.17032572 0.18425073 0.17011897 0.17252434 0.17556135

Return 0.18100438 0.17995760 0.18746639 0.17414382 0.22161790 0.16399788 0.21933735 0.17566186 0.18510521 0.16621698

MSE 0.00004206 0.00000382 0.00039795 0.00002207 0.00004110 0.00008761 0.00003098 0.00000949 0.00043632 0.00013154

MAE 0.00611154 0.00180278 0.01875541 0.00441499 0.00603321 0.00879823 0.00469045 0.00281044 0.01969292 0.00968760

RMSE 0.01123309 0.00338495 0.03455212 0.00813706 0.01110364 0.01621211 0.00964080 0.00533702 0.03617960 0.01986499

MAPE 0.03253085 0.00993949 0.09081590 0.02618631 0.02643523 0.05764703 0.02074091 0.01631934 0.09611325 0.06436268

MET (s) 30.137 9.998 30.774 15.240 30.392 15.342 333.049 16.327 200.484 15.231

TET (s) 90.410 29.995 92.322 45.720 91.175 46.027 999.148 48.981 601.451 45.693

K = 4

Risk 0.16995836 0.16982314 0.17627839 0.17114969 0.18359181 0.17009134 0.18667375 0.17117551 0.17950037 0.17134613

Return 0.18096377 0.18050074 0.20633540 0.17434984 0.21955100 0.17869638 0.22587454 0.17109051 0.21423827 0.16913689

MSE 0.00000958 0.00000394 0.00007213 0.00003121 0.00002574 0.00047627 0.00000775 0.00001802 0.00004911 0.00047317

MAE 0.00254276 0.00162109 0.00711309 0.00456201 0.00467241 0.02138047 0.00223214 0.00356867 0.00604265 0.01803456

RMSE 0.00618871 0.00397049 0.01698618 0.0111729 0.01014753 0.04364712 0.00556695 0.00849067 0.01401622 0.04350498

MAPE 0.01373867 0.00890953 0.03293238 0.02747092 0.0206670 0.13338176 0.00971364 0.02141996 0.02721078 0.10102173

MET (s) 30.175 10.989 30.196 12.651 24.051 12.192 30.009 15.219 265.688 15.679

TET (s) 120.702 43.957 120.783 50.604 96.204 48.768 120.038 60.878 1062.751 62.715

K = 5

Risk 0.16976253 0.16914772 0.18410736 0.17049340 0.17452429 0.16922859 0.17435691 0.17021266 0.18927980 0.17417318

Return 0.18333495 0.17700309 0.22268964 0.18268224 0.19277681 0.17949698 0.17376899 0.17292770 0.23061484 0.19205464

MSE 0.00000827 0.00008718 0.00001237 0.00015114 0.00103984 0.00016033 0.00042309 0.00001409 0.00002304 0.00045396

MAE 0.00232903 0.00733088 0.00300757 0.01074279 0.02648564 0.00994461 0.01717683 0.00311604 0.00444242 0.01845545

RMSE 0.0064295 0.02087766 0.00786390 0.02749021 0.07210550 0.02831309 0.04599381 0.00839224 0.01073223 0.04764254

MAPE 0.01250981 0.04429320 0.01323483 0.06554203 0.15089645 0.06155401 0.08560473 0.01863193 0.01957884 0.10559275

MET (s) 598.165 8.786 30.845 13.279 32.517 16.292 32.424 16.45 32.981 16.879

TET (s) 2990.825 43.930 154.224 66.394 162.587 81.458 162.12 82.248 164.907 84.394
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Table 14: Experimental Results with NASDAQ [5] data

Parameters
PSO QiPSO GA QiGA DEGA QiDEGA

arithmetic heuristic arithmetic heuristic arithmetic heuristic arithmetic heuristic

K = 6

Risk 0.16991471 0.16948417 0.18330889 0.17057467 0.18873052 0.17235245 0.17392753 0.16939330 0.18629067 0.17308318

Return 0.18283825 0.17834630 0.22122277 0.16683851 0.22835212 0.15736639 0.18312229 0.17187760 0.22638376 0.15406684

MSE 0.00000718 0.00004037 0.00000974 0.00003332 0.00000321 0.00120167 0.00032398 0.00000804 0.00001422 0.00015219

MAE 0.00213137 0.00562028 0.0027089 0.00508367 0.00149663 0.03222602 0.01333486 0.00242933 0.00329960 0.01091220

RMSE 0.00656494 0.01556435 0.00764348 0.01413942 0.00438723 0.08491185 0.04408943 0.00694342 0.00923675 0.03021779

MAPE 0.01151816 0.03247763 0.01209981 0.03041851 0.00648008 0.17438457 0.06518694 0.01444670 0.01433773 0.06723716

MET (s) 63.670 9.743 32.178 12.553 31.712 15.889 31.826 14.991 31.951 16.81

TET (s) 382.017 58.459 193.071 75.317 190.271 95.333 190.958 89.945 191.703 100.857

K = 7

Risk 0.16996138 0.16964126 0.17360405 0.17003687 0.17718959 0.16950878 0.17439554 0.16931103 0.18021038 0.1712571

Return 0.18139689 0.18017094 0.19628734 0.17584127 0.20640099 0.17533103 0.20233942 0.17084308 0.18451309 0.17230551

MSE 0.00002342 0.00001087 0.00019007 0.00004653 0.00008397 0.00003899 0.00029444 0.00016997 0.00027190 0.00033367

MAE 0.00361044 0.00288312 0.01254938 0.00638662 0.00652425 0.00502626 0.01409131 0.00917104 0.01206228 0.01370321

RMSE 0.01280417 0.00872233 0.03647584 0.01804664 0.02424445 0.01652129 0.04539879 0.03449316 0.04362694 0.04832918

MAPE 0.01918727 0.01596876 0.05903936 0.03831897 0.02970901 0.03047852 0.06764414 0.06133234 0.05814921 0.08439615

MET (s) 64.520 10.795 32.391 14.773 28.400 14.841 32.318 16.194 33.259 16.194

TET (s) 451.637 75.568 226.738 103.410 198.803 103.889 226.228 113.355 232.812 113.36

K = 8

Risk 0.16975521 0.16908122 0.17126649 0.16925918 0.17362484 0.17140028 0.17768848 0.17055679 0.16958768 0.16966068

Return 0.18214731 0.17655875 0.19143338 0.17550782 0.15296998 0.17564184 0.19000911 0.17737303 0.18132045 0.17431752

MSE 0.00006124 0.00003176 0.00015085 0.00004933 0.00071351 0.00067460 0.00018003 0.00003884 0.00031053 0.00019024

MAE 0.0049918 0.00459684 0.00812461 0.00618130 0.01750553 0.02125720 0.01045553 0.00520109 0.01340355 0.01043391

RMSE 0.02213358 0.01594109 0.03473907 0.01986517 0.0755518 0.07346286 0.03795068 0.01762655 0.04984254 0.03901182

MAPE 0.02559813 0.02660622 0.03874855 0.03685256 0.09444352 0.12104584 0.04961305 0.03119509 0.06450095 0.06688881

MET (s) 64.572 8.940 31.767 14.598 31.865 16.055 29.145 16.045 32.581 14.704

TET (s) 516.573 71.520 254.140 116.781 254.918 128.442 233.159 128.363 260.648 117.634

K = 9

Risk 0.16990022 0.16903544 0.17595410 0.16983567 0.18491184 0.17027057 0.17525003 0.16922948 0.16957274 0.17091427

Return 0.18250675 0.17380322 0.20816186 0.17853944 0.22380783 0.18950829 0.20159583 0.17409425 0.18673983 0.17068453

MSE 0.00007142 0.00000846 0.00012677 0.00009104 0.00001294 0.00048902 0.00007630 0.00007817 0.00047023 0.00009336

MAE 0.00517215 0.00260224 0.00920149 0.00701500 0.00298684 0.01913371 0.00558147 0.00723927 0.01959283 0.00765507

RMSE 0.02535376 0.00872745 0.03377771 0.02862388 0.01079290 0.06634157 0.02620436 0.02652415 0.06505450 0.02898613

MAPE 0.02639878 0.01474015 0.04291744 0.0436875 0.01301785 0.11549976 0.02582574 0.04494142 0.09644354 0.05020096

MET (s) 65.299 8.051 32.017 11.130 32.421 15.834 31.949 13.693 32.665 15.970

TET (s) 587.688 72.462 288.151 100.174 291.792 142.505 287.541 123.236 293.983 143.731
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Table 15: Experimental Result with BSE [6] data

Parameters
PSO QiPSO GA QiGA DEGA QiDEGA

arithmetic heuristic arithmetic heuristic arithmetic heuristic arithmetic heuristic

K = 2

Risk 0.28437094 0.28214914 0.28502824 0.28007045 0.28031957 0.28175554 0.27652596 0.28455587 0.28337837 0.28341821

Return 0.21842813 0.20962188 0.22669033 0.21338897 0.22601575 0.22833074 0.21605035 0.22813861 0.22638731 0.22857929

MSE 0.00008068 0.00002227 0.0000001 0.00005144 0.0000091 0.00000095 0.00003833 0.00000341 0.00000097 0.00000122

MAE 0.00898212 0.00471895 0.00032034 0.00717249 0.00301653 0.00097679 0.00619107 0.00184566 0.00098742 0.00110482

RMSE 0.01270263 0.00667361 0.00045303 0.01014343 0.00426602 0.00138139 0.0087555 0.00261015 0.00139642 0.00156246

MAPE 0.04296413 0.02304242 0.00141513 0.03255366 0.01317305 0.00429643 0.02787906 0.00815659 0.00434278 0.0048103

MET(s) 34.367 9.959 22.166 15.988 31.757 16.157 20.514 10.500 22.195 16.040

TET(s) 68.734 19.917 44.331 31.975 63.515 32.313 41.027 20.999 44.390 32.080

K = 3

Risk 0.28294459 0.28856965 0.28031129 0.27950949 0.28031764 0.2815683 0.28300703 0.27978056 0.28515237 0.28178408

Return 0.20641171 0.20058753 0.22558222 0.2205529 0.22369842 0.22820138 0.22483935 0.22446383 0.22607401 0.22771045

MSE 0.0000081 0.00000017 0.00000194 0.00001133 0.00000871 0.00000072 0.00007754 0.00013349 0.00000028 0.00001752

MAE 0.00267817 0.00034037 0.00131182 0.00294205 0.00261448 0.00078261 0.00815847 0.01089099 0.00044767 0.00351825

RMSE 0.00493055 0.00071931 0.00241128 0.00583026 0.00511217 0.00146879 0.01525158 0.02001176 0.00092143 0.00724983

MAPE 0.01317084 0.00170117 0.0057763 0.0131145 0.01151857 0.003439 0.03749967 0.051559 0.00197436 0.01549997

MET(s) 31.670 16.783 31.855 16.155 24.411 16.266 26.921 15.554 27.754 15.613

TET(s) 95.010 50.350 95.566 48.464 73.233 48.798 80.764 46.661 83.262 46.839

K = 4

Risk 0.2863223 0.2843913 0.27754847 0.27890665 0.28235542 0.28231772 0.2830106 0.27950385 0.28026566 0.28161895

Return 0.20375011 0.20736651 0.22045822 0.22393577 0.22784993 0.22977416 0.22675308 0.22360924 0.22669827 0.2238272

MSE 0.0000021 0.00001006 0.00003307 0.00010542 0.00037633 0.00000037 0.00001387 0.00000605 0.00002698 0.00001445

MAE 0.00125441 0.00311505 0.00537919 0.00877245 0.0191956 0.00052203 0.00315154 0.00243964 0.00446862 0.00363467

RMSE 0.00289753 0.00634369 0.01150197 0.02053486 0.03879838 0.00121098 0.00744757 0.00492041 0.01038754 0.00760175

MAPE 0.00620802 0.01530975 0.02419373 0.041126 0.09310855 0.00227848 0.01421814 0.01077447 0.02019375 0.01609477

MET(s) 30.686 12.030 30.512 15.233 30.633 15.562 26.065 11.998 23.112 13.512

TET(s) 122.743 48.121 122.046 60.931 122.533 62.247 104.260 47.993 92.448 54.047

K = 5

Risk 0.28726834 0.28500637 0.27842196 0.28214208 0.28395524 0.28076799 0.28189607 0.27727102 0.28113982 0.28130639

Return 0.20121946 0.20476489 0.22348196 0.22114626 0.22865163 0.226003 0.2269111 0.21859512 0.22524474 0.22799192

MSE 0.0000011 0.0000023 0.00003643 0.00023328 0.00026869 0.00000396 0.00027392 0.00007394 0.0000072 0.00001776

MAE 0.00082143 0.00115672 0.00423554 0.01203782 0.01440459 0.00139788 0.01295917 0.0069089 0.00204974 0.00344998

RMSE 0.00234425 0.00339179 0.01349705 0.03415289 0.0366534 0.00444977 0.03700786 0.01922795 0.0059986 0.00942295

MAPE 0.00407438 0.00570775 0.0191558 0.05905266 0.06830938 0.00617019 0.06348708 0.03168621 0.00893239 0.01546503

MET(s) 30.738 11.026 30.542 15.694 29.097 220.874 30.878 15.488 28.247 12.198

TET(s) 153.691 55.131 152.71 78.471 145.484 1104.371 154.391 77.439 141.235 60.991
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Table 16: Experimental Result with BSE [6] data

Parameters
PSO QiPSO GA QiGA DEGA QiDEGA

arithmetic heuristic arithmetic heuristic arithmetic heuristic arithmetic heuristic

K = 6

Risk 0.28858718 0.28687543 0.27820896 0.27867707 0.28133062 0.28278287 0.28254121 0.28153882 0.27990647 0.28195452

Return 0.20031739 0.19895496 0.22187481 0.22411144 0.22771339 0.22945470 0.22776984 0.22197536 0.20318911 0.22439380

MSE 0.00000067 0.00000750 0.00000841 0.00000358 0.00000358 0.00000119 0.00005878 0.00006453 0.00010104 0.00016046

MAE 0.00073857 0.00228548 0.00236132 0.00177540 0.00172173 0.00094885 0.00593202 0.00599245 0.00888858 0.01182036

RMSE 0.00200392 0.00670673 0.00710148 0.00463368 0.00463680 0.00267637 0.01878012 0.01967763 0.02462251 0.03102850

MAPE 0.00366590 0.01125287 0.01042308 0.00783898 0.00749611 0.00412217 0.02700775 0.02761415 0.04097222 0.05532416

MET(s) 66.482 10.394 28.819 14.514 23.946 15.79 32.796 14.196 32.969 16.125

TET(s) 398.89 62.365 172.917 87.084 143.678 94.739 196.774 85.175 197.816 96.751

K = 7

Risk 0.28858221 0.28412028 0.27762965 0.28034130 0.28003706 0.28288114 0.28018045 0.27745717 0.28216079 0.28051595

Return 0.20047752 0.19847003 0.22126969 0.22529056 0.22341762 0.22956759 0.21427785 0.22146709 0.22573199 0.22468565

MSE 0.00000405 0.00000525 0.00019632 0.00006983 0.00020046 0.00013191 0.00010532 0.00008572 0.00003483 0.00005798

MAE 0.00139795 0.00163364 0.01028021 0.00677093 0.00962692 0.00988118 0.00859009 0.00677250 0.00422604 0.00586555

RMSE 0.00532307 0.00606337 0.03707120 0.02210885 0.03745985 0.03038696 0.02715221 0.02449590 0.01561539 0.02014609

MAPE 0.00687927 0.00821589 0.05020690 0.03116995 0.04668386 0.04606596 0.04007327 0.03190185 0.01907450 0.02691879

MET(s) 65.85 7.895 30.131 15.118 30.824 16.301 31.281 14.192 29.853 14.413

TET(s) 460.95 55.265 210.919 105.828 215.767 114.109 218.97 99.345 208.968 100.891

K = 8

Risk 0.28880686 0.28593086 0.27987376 0.28072145 0.27732614 0.28265701 0.27665700 0.28115766 0.27813660 0.28337148

Return 0.20046338 0.19859496 0.22306477 0.22618225 0.20903531 0.22995301 0.21065786 0.22801528 0.21957902 0.22996660

MSE 0.00002962 0.00000060 0.00001371 0.00002838 0.00014306 0.00001421 0.00017934 0.00002880 0.00010157 0.00012104

MAE 0.00416720 0.00064223 0.00278399 0.00340542 0.00948469 0.00295694 0.01018498 0.00350710 0.00778856 0.00715444

RMSE 0.01539310 0.00219716 0.01047466 0.0150682 0.03383026 0.01066314 0.03787818 0.01517774 0.02850579 0.03111728

MAPE 0.02005783 0.00321272 0.01249494 0.01547315 0.04507733 0.01307327 0.04976932 0.01600913 0.03625387 0.03399871

MET(s) 65.874 12.654 29.756 15.017 28.538 15.647 30.728 15.007 31.971 16.055

TET(s) 526.988 101.229 238.049 120.137 228.304 125.175 245.827 120.052 255.767 128.441

K = 9

Risk 0.28831141 0.28642296 0.27834260 0.27720490 0.28090881 0.27766933 0.27880045 0.28082889 0.28041073 0.28111413

Return 0.20022604 0.20360647 0.22331308 0.21278182 0.22663396 0.22155397 0.22359693 0.22673572 0.22661164 0.22750071

MSE 0.00000347 0.00000283 0.00001180 0.00004199 0.00001095 0.00002063 0.00018131 0.00003290 0.00009006 0.00018945

MAE 0.00165371 0.00145753 0.00247509 0.00560189 0.00220016 0.00340838 0.00993773 0.00407589 0.00668846 0.01136856

RMSE 0.00558551 0.00504769 0.01030353 0.01943878 0.00992723 0.01362572 0.04039521 0.01720786 0.02847027 0.04129226

MAPE 0.00816825 0.00725027 0.01106082 0.02544708 0.00969532 0.0151024 0.04838399 0.01858024 0.03116014 0.05369207

MET(s) 64.275 11.633 23.926 13.734 29.133 15.424 25.03 14.186 31.682 14.982

TET(s) 578.477 104.693 215.333 123.608 262.196 138.814 225.27 127.677 285.142 134.839
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Table 17: Experimental Result with Dow Jones [7] data

Parameters
PSO QiPSO GA QiGA DEGA QiDEGA

arithmetic heuristic arithmetic heuristic arithmetic heuristic arithmetic heuristic

K = 2

Risk 0.21580509 0.21414730 0.21731237 0.21154595 0.21470904 0.22433182 0.20656942 0.21653964 0.24366822 0.21467436

Return 0.21067360 0.17490340 0.24675284 0.22640051 0.19608109 0.26248624 0.22974629 0.18104858 0.25240986 0.19043817

MSE 0.00005582 0.00042652 0.00013663 0.00017045 0.00138087 0.00179190 0.00000031 0.00001836 0.00069396 0.00005637

MAE 0.00747106 0.02065233 0.01168871 0.01305548 0.03716012 0.04233082 0.00056047 0.00428445 0.02634307 0.00750816

RMSE 0.01056567 0.02920680 0.01653033 0.01846324 0.05255234 0.05986482 0.00079263 0.00605913 0.03725473 0.01061814

MAPE 0.03428840 0.10679956 0.04532037 0.06142424 0.16346991 0.19965844 0.00244551 0.02425249 0.0953549 0.04111314

MET(s) 34.338 4.31 32.871 16.657 32.803 16.636 32.815 16.572 32.92 13.331

TET(s) 68.677 8.62 65.742 33.315 65.605 33.272 65.63 33.145 65.84 26.661

K = 3

Risk 0.21584443 0.21446527 0.22436098 0.22122898 0.21924966 0.21101059 0.22127129 0.21751045 0.21345436 0.21843109

Return 0.21021667 0.21329588 0.26776076 0.25505281 0.25623291 0.23783886 0.26025268 0.20125380 0.23982554 0.23674723

MSE 0.00000349 0.00000348 0.00054342 0.00169714 0.00017848 0.00104977 0.00020546 0.00007802 0.00099907 0.00015861

MAE 0.00161561 0.00158926 0.02197548 0.03883484 0.01153428 0.02699837 0.01342831 0.00831418 0.02976754 0.01187002

RMSE 0.00323650 0.00322905 0.04037635 0.07135424 0.02313969 0.05611861 0.02482693 0.01529920 0.05474671 0.02181375

MAPE 0.00760804 0.00746625 0.09119471 0.19277143 0.04259392 0.11840726 0.05450664 0.04343664 0.11137801 0.04752320

MET(s) 32.842 10.896 32.646 16.595 33.257 12.725 32.845 16.685 32.838 16.837

TET(s) 98.526 32.688 97.939 49.786 99.771 38.175 98.534 50.054 98.514 50.51

K = 4

Risk 0.21516017 0.21475539 0.21082758 0.21576844 0.23147512 0.22103216 0.21962149 0.21495296 0.23330602 0.21626876

Return 0.21109928 0.21264762 0.19912595 0.23274579 0.24333074 0.18406972 0.24883344 0.18391218 0.26976960 0.19027302

MSE 0.00000035 0.00010200 0.00061828 0.00120562 0.00025140 0.00220862 0.00003814 0.00008618 0.00007842 0.00188712

MAE 0.00048191 0.00873370 0.01956604 0.03346106 0.01360662 0.04681217 0.00500881 0.00781047 0.00780286 0.03734141

RMSE 0.00118536 0.02019879 0.04973030 0.06944403 0.03171129 0.09399186 0.01235148 0.01856618 0.01771058 0.08688208

MAPE 0.00228102 0.03920638 0.08553277 0.16190318 0.05223350 0.21660520 0.01952909 0.04054741 0.02774528 0.16973217

MET(s) 32.879 8.606 32.803 16.625 32.911 16.617 72.551 16.877 33.339 17.02

TET(s) 131.515 34.425 131.213 66.499 131.643 66.466 290.204 67.509 133.354 68.08

K = 5

Risk 0.21334289 0.21427521 0.21902340 0.21683257 0.21365846 0.21691667 0.22182740 0.21256873 0.22095311 0.21619809

Return 0.21294028 0.20064236 0.23218183 0.19860714 0.25110920 0.24410681 0.26172948 0.22045975 0.23028033 0.17892020

MSE 0.00000284 0.00009188 0.00109713 0.00001091 0.00062965 0.00182453 0.00028249 0.00024397 0.00079182 0.00262586

MAE 0.00120587 0.00718080 0.02836220 0.00240921 0.02201402 0.03595928 0.01246015 0.01221302 0.02719447 0.04995252

RMSE 0.00377063 0.02143369 0.07406501 0.00738413 0.05610941 0.09551269 0.03758226 0.03492654 0.06292121 0.11458321

MAPE 0.00564146 0.03325830 0.12620089 0.01244983 0.08364845 0.16838211 0.0498459 0.06153381 0.10853418 0.23680290

MET(s) 33.467 8.347 33.615 15.062 29.323 16.844 33.204 16.849 32.935 16.676

TET(s) 167.336 41.736 168.074 75.309 146.617 84.222 166.018 84.244 164.673 83.38
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Table 18: Experimental Result with Dow Jones [7] data

Parameters
PSO QiPSO GA QiGA DEGA QiDEGA

arithmetic heuristic arithmetic heuristic arithmetic heuristic arithmetic heuristic

K = 6

Risk 0.21553352 0.20676807 0.21337842 0.20522564 0.21853725 0.21472337 0.21961358 0.21460723 0.20701537 0.20359223

Return 0.21195819 0.18475193 0.24149855 0.19707729 0.25791628 0.16092131 0.25647989 0.23312889 0.20155022 0.18956903

MSE 0.00000047 0.00011790 0.00008856 0.00090566 0.00013113 0.00208214 0.00062051 0.00071866 0.00111208 0.00220567

MAE 0.00060160 0.00743801 0.00852630 0.02689840 0.01023778 0.04328281 0.01792030 0.02416442 0.02374258 0.04351820

RMSE 0.00168197 0.02659688 0.02305158 0.07371539 0.02804928 0.11177147 0.06101678 0.06566572 0.08168540 0.11503917

MAPE 0.00285122 0.0373212 0.033594 0.12244377 0.03855296 0.21127028 0.07782068 0.11515180 0.09914482 0.20689379

MET(s) 69.273 11.861 35.041 17.129 34.652 17.201 35.398 17.238 34.569 16.303

TET(s) 415.637 71.167 210.245 102.772 207.913 103.207 212.385 103.428 207.414 97.818

K = 7

Risk 0.21483613 0.20937639 0.21989691 0.20882962 0.21600184 0.20621107 0.21855169 0.21161935 0.21656244 0.21347471

Return 0.21398046 0.20685696 0.25986377 0.22272233 0.21806962 0.21965715 0.25246505 0.19085884 0.25383838 0.21850531

MSE 0.00000243 0.00002930 0.00026684 0.00137714 0.00086205 0.00119673 0.00025677 0.00064112 0.00101550 0.00140685

MAE 0.00137774 0.00372467 0.01453451 0.03483443 0.02765230 0.03084700 0.01153887 0.02420530 0.02785099 0.03338679

RMSE 0.00412373 0.01432221 0.04321893 0.09818356 0.07768121 0.09152649 0.04239593 0.06699119 0.08431200 0.09923693

MAPE 0.00646964 0.01723462 0.05766779 0.16930816 0.11075308 0.14911858 0.04793963 0.11539668 0.10851429 0.16011522

MET(s) 68.861 13.322 35.169 17.405 34.74 17.285 34.782 17.153 34.76 17.25

TET(s) 482.025 93.253 246.186 121.836 243.177 120.997 243.477 120.071 243.317 120.751

K = 8

Risk 0.21563058 0.21445588 0.21830920 0.20873599 0.21452374 0.20861943 0.21767365 0.21606888 0.20921626 0.21615418

Return 0.21097903 0.20691119 0.21472663 0.19247558 0.20159066 0.21375502 0.23918568 0.20006919 0.23707271 0.17214498

MSE 0.00000199 0.00000704 0.00045107 0.00034778 0.00113008 0.00154352 0.00053527 0.00009416 0.00044521 0.00101309

MAE 0.00103760 0.00198954 0.01972889 0.01231037 0.02353037 0.03645390 0.01910961 0.00814117 0.01911326 0.02056911

RMSE 0.00399430 0.00750705 0.06007153 0.05274674 0.09508211 0.11112227 0.06543844 0.02744647 0.05967948 0.09002625

MAPE 0.00491222 0.00952996 0.08342115 0.06134460 0.09374677 0.16345183 0.07182127 0.04350093 0.07188841 0.09731884

MET(s) 70.452 12.097 34.022 16.767 35.734 15.272 35.855 17.902 35.243 17.464

TET(s) 563.617 96.778 272.175 134.135 285.87 122.176 286.842 143.216 281.946 139.714

K = 9

Risk 0.21593190 0.21341804 0.20955251 0.21034961 0.21934443 0.20660075 0.21409116 0.21161358 0.21736852 0.20891785

Return 0.21146489 0.22008195 0.18474028 0.18319306 0.25941766 0.17733199 0.23027939 0.24461605 0.24529067 0.20281033

MSE 0.00000542 0.00002736 0.00095265 0.00094119 0.00016439 0.00070151 0.00051979 0.00083597 0.00031684 0.00169038

MAE 0.00186734 0.00354855 0.02706253 0.02776421 0.01101301 0.01974947 0.02063436 0.02685351 0.01406657 0.03638248

RMSE 0.00698623 0.01569273 0.09259499 0.09203635 0.03846417 0.07945822 0.06839682 0.08673936 0.05340024 0.12334267

MAPE 0.0087419 0.01690759 0.12503001 0.13099201 0.03968041 0.09435329 0.08336806 0.12890845 0.05496648 0.16431488

MET(s) 70.133 12.608 32.284 17.872 33.17 15.982 33.947 16.276 33.155 16.332

TET(s) 631.197 113.474 290.555 160.846 298.534 143.842 305.522 146.486 298.393 146.989
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(a) Independent variable impact (b) Second order variable relationship

Fig. 15: Sensitivity analysis and variable impact in QiPSO

concluded that there are significant differences between the groups.

7.5 Time Complexity

The time complexity of the genetic algorithm (GA) and differential evolution (DE)

depends on factors such as population size (N), number of stocks (S), number of

generations (G), and the cost of the fitness function. The overall execution can be

broken down into steps, viz.,

• Initialization: The amount of time needed for initialization depends on the size

of the population (N) and the number of stocks (S) taken into account. Thus, the

time complexity of initialization can be given as O(N ×S).
• Fitness Function: This experiment uses a fitness function that sorts the popu-

lation according to the Sharpe ratio. Thus, the time complexity of the fitness

function can be given as O(N × logN).
• Selection: The selection process in this experiment performs two operations,

viz., (i) sorting the population, and (ii) generating a sample population. The time

complexity of the sorting function and the generation of the sample population

are given as O(N × logN) and O(Ns × S), respectively, where Ns is the size of

the sample population to be generated and S is the number of stocks considered.

• Crossover: The time required to complete this process depends on the size of the

subset of the population (Ns) and the number of stocks (S) taken into account.

Therefore, the time complexity of the crossover can be expressed as O(Ns ×S).
• Mutation: The mutation perturbs the generation of new children based on the

mutation rate. This is done to introduce more diversity into the population.

Therefore, the time complexity of mutation can be expressed as O(Nm × S),
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where Nm is the size of the sample to be generated and S is the number of stocks

considered. Generally, the mutation rates chosen are very small and so is the

time complexity. In a practical sense, the time complexity of mutation can be

ignored.

The time complexity of a particle swarm optimization (PSO) depends on factors

such as population size (N), number of stocks (S), and number of generations (G).

The overall execution can be broken down into steps, viz.,

• Initialization: The initialization process in PSO is the same as that of GA and

DE. Therefore, the time complexity of initialization is given as O(N ×S).
• Fitness function: The fitness function used in PSO is the same as that of GA and

DE. Therefore, the time complexity of the fitness function is given as O(N ×
logN).

• Particle movements: In PSO, two types of updates are performed, viz. (i) po-

sition update and (ii) velocity update. The time complexity to update both the

population and velocity is O(N × S), where N is the number of individuals in

the population and S is the number of stocks taken into account.

Based on the time complexity analysis, it is evident that PSO is superior in terms of

execution time compared to both GA and DE. PSO is also found to converge faster

than both GA and DE. Between GA and DE, it has been observed that DE is more

likely to converge faster than GA due to its superior exploration capabilities.

8 Discussions and Conclusion

This work presents GA, DE, and PSO-based techniques for portfolio optimization

problems. The article presents four different enhancements to these techniques, such

as (i) dynamic selection of crossover parameters α and β (ii) normalization function

to avoid negative allocation caused due to incorrect crossover parameter selection

(iii) regularization function for better utilization of allocated funds and (iv) dynamic

selection of optimization parameters based on sensitivity analysis and regularization

function. Efforts have been made to improve the classical techniques by introduc-

ing quantum-inspired versions. Experiments have demonstrated that these quantum-

inspired versions are faster, and the results are comparable or even better than their

classical counterparts. In particular, quantum-inspired PSO outperforms all the tech-

niques chosen. Generally, quantum-inspired techniques have been observed to be

faster and often converge to an optimal result. The experiments have been carried

out multiple times on three datasets, viz. (i) NASDAQ, (ii) BSE, and (iii) Dow Jones.

To further optimize the selected techniques, the population size and other optimiza-

tion parameters were chosen based on sensitivity analysis.

In the future, the mentioned techniques can be extended to the multiple objective

domains to optimize both risk and return on the selected benchmarked datasets. The

current experiment has considered the Sharpe ratio as the optimization measure, and
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it would be interesting to see the impact of other measures on the portfolio optimiza-

tion problem. The authors are currently exploring the use of group-based evolution-

ary techniques to identify the most cost-effective number of stocks to purchase and

sell in situations that demand the management of a large number of stocks. This

could potentially reduce the transaction costs associated with stock trading.

9 Declarations

9.1 Funding and/or Competing interests

The authors have no competing interests to declare that are relevant to the content

of this article.

9.2 Research involving Human Participants and/or Animals

No human participants and/or animals were involved in this study.

9.3 Informed consent

All authors consent to submit the article for consideration.

References

1. Martin Cherkes. Closed-end funds: A survey. Annu. Rev. Financ. Econ., 4(1):431–445, 2012.

2. Itzhak Ben-David, Francesco Franzoni, and Rabih Moussawi. Exchange-traded funds. An-

nual Review of Financial Economics, 9:169–189, 2017.

3. Colin Atkinson, Stanley R Pliska, and Paul Wilmott. Portfolio management with transaction

costs. Proceedings of the Royal Society of London. Series A: Mathematical, Physical and

Engineering Sciences, 453(1958):551–562, 1997.

4. Renata Mansini, Włodzimierz Ogryczak, and M Grazia Speranza. Portfolio optimization

with transaction costs. In Linear and Mixed Integer Programming for Portfolio Optimization,

pages 47–62. Springer, 2015.

5. NASDAQ. Historical data from nasdaq, 2012.

6. BSE. Historical data from bombay stock exchange, 2013.

7. Dow Jones. Historical data from dow jones, 2009.

8. Melanie Mitchell. An introduction to genetic algorithms. MIT press, 1998.

9. DE Goldberg and JH Holland. Genetic algorithms and machine learning. 3 (2): 95-99, 1988.

10. John H Holland. Genetic algorithms. Scientific american, 267(1):66–73, 1992.



38 Abhishek Gunjan and Siddhartha Bhattacharyya

11. Kit Po Wong and Zhao Yang Dong. Differential evolution, an alternative approach to evo-

lutionary algorithm. In Proceedings of the 13th International Conference on, Intelligent

Systems Application to Power Systems, pages 73–83. IEEE, 2005.

12. Karol R Opara and Jarosław Arabas. Differential evolution: A survey of theoretical analyses.

Swarm and evolutionary computation, 44:546–558, 2019.

13. James Kennedy and Russell Eberhart. Particle swarm optimization in: Neural networks. In

Proceedings IEEE International Conference on 1995, pages 1942–1948, 1942.

14. James Kennedy and Russell Eberhart. Particle swarm optimization. In Proceedings of

ICNN’95-international conference on neural networks, volume 4, pages 1942–1948. IEEE,

1995.

15. Martin B Haugh and Andrew W Lo. Computational challenges in portfolio management.

Computing in Science & Engineering, 3(3):54–59, 2001.

16. Margaret Peteraf and Randal Reed. Managerial discretion and internal alignment under reg-

ulatory constraints and change. Strategic Management Journal, 28(11):1089–112, 2007.

17. Ilya RP Cuypers, Jean-François Hennart, Brian S Silverman, and Gokhan Ertug. Transaction

cost theory: Past progress, current challenges, and suggestions for the future. Academy of

Management Annals, 15(1):111–150, 2021.

18. J-P Onnela, Anirban Chakraborti, Kimmo Kaski, Janos Kertesz, and Antti Kanto. Dynamics

of market correlations: Taxonomy and portfolio analysis. Physical Review E, 68(5):056110,

2003.

19. SN Sivanandam, SN Deepa, SN Sivanandam, and SN Deepa. Genetic algorithms. Springer,

2008.

20. Paolo Aversa, Stefan Haefliger, and Danielle Giuliana Reza. Building a winning business

model portfolio. MIT Sloan Management Review, 58(4):49–54, 2017.

21. Abhishek Gunjan and Siddhartha Bhattacharyya. A brief review of portfolio optimization

techniques. Artificial Intelligence Review, pages 1–40, 2022.

22. Suraj S Meghwani and Manoj Thakur. Multi-criteria algorithms for portfolio optimization

under practical constraints. Swarm and evolutionary computation, 37:104–125, 2017.

23. Ankita Golchha and Shahana Gajala Qureshi. Non-dominated sorting genetic algorithm-ii–a

succinct survey. International Journal of Computer Science and Information Technologies,

6(1):252–255, 2015.

24. Eckart Zitzler and Lothar Thiele. An evolutionary algorithm for multiobjective optimization:

The strength pareto approach. TIK report, 43, 1998.

25. Rubén Saborido, Ana B Ruiz, and Mariano Luque. Global wasf-ga: An evolutionary algo-

rithm in multiobjective optimization to approximate the whole pareto optimal front. Evolu-

tionary computation, 25(2):309–349, 2017.

26. David W Corne, Joshua D Knowles, and Martin J Oates. The pareto envelope-based selection

algorithm for multiobjective optimization. In International conference on parallel problem

solving from nature, pages 839–848. Springer, 2000.

27. Yi Chen, Aimin Zhou, and Swagatam Das. Utilizing dependence among variables in evo-

lutionary algorithms for mixed-integer programming: A case study on multi-objective con-

strained portfolio optimization. Swarm and Evolutionary Computation, 66:100928, 2021.

28. Laura Diosan. A multi-objective evolutionary approach to the portfolio optimization prob-

lem. In International Conference on Computational Intelligence for Modelling, Control and

Automation and International Conference on Intelligent Agents, Web Technologies and In-

ternet Commerce (CIMCA-IAWTIC’06), volume 2, pages 183–187. IEEE, 2005.

29. Prisadarng Skolpadungket, Keshav Dahal, and Napat Harnpornchai. Portfolio optimization

using multi-obj ective genetic algorithms. In 2007 IEEE Congress on Evolutionary Compu-

tation, pages 516–523. IEEE, 2007.

30. Dervis Karaboga. An idea based on honey bee swarm for numerical optimization. Technical

report, Citeseer, 2005.

31. Xin-She Yang. Firefly algorithms for multimodal optimization. In International symposium

on stochastic algorithms, pages 169–178. Springer, 2009.

32. Darrell Whitley. A genetic algorithm tutorial. Statistics and computing, 4(2):65–85, 1994.



Title Suppressed Due to Excessive Length 39

33. Kyle Erwin and Andries Engelbrecht. Meta–heuristics for portfolio optimization: Part

i—review of meta–heuristics. In International Conference on Swarm Intelligence, pages

441–452. Springer, 2023.

34. Kyle Erwin and Andries Engelbrecht. Meta–heuristics for portfolio optimization: Part

i—review of meta–heuristics. In International Conference on Swarm Intelligence, pages

441–452. Springer, 2023.

35. Biplab Mahapatra. Investigation of portfolio optimization with realistic constraints in indian

equity market using random immigration genetic algorithm. 2023.

36. Massimiliano Kaucic, Mojtaba Moradi, and Mohmmad Mirzazadeh. Portfolio optimization

by improved nsga-ii and spea 2 based on different risk measures. Financial Innovation,

5:1–28, 2019.

37. Khin Lwin, Rong Qu, and Graham Kendall. A learning-guided multi-objective evolution-

ary algorithm for constrained portfolio optimization. Applied Soft Computing, 24:757–772,

2014.

38. Yan Chen, Shingo Mabu, and Kotaro Hirasawa. Genetic relation algorithm with guided muta-

tion for the large-scale portfolio optimization. Expert Systems with Applications, 38(4):3353–

3363, 2011.

39. Khin T Lwin, Rong Qu, and Bart L MacCarthy. Mean-var portfolio optimization: A non-

parametric approach. European Journal of operational research, 260(2):751–766, 2017.

40. Khin Thein Lwin. Evolutionary approaches for portfolio optimization. PhD thesis, Univer-

sity of Nottingham, 2015.

41. Konstantinos P Anagnostopoulos and Georgios Mamanis. A portfolio optimization model

with three objectives and discrete variables. Computers & Operations Research, 37(7):1285–

1297, 2010.

42. Swee Chiang Chiam, Kay Chen Tan, and A Al Mamum. Evolutionary multi-objective port-

folio optimization in practical context. International Journal of Automation and Computing,

5:67–80, 2008.

43. Iryna Yevseyeva, Andreia P Guerreiro, Michael TM Emmerich, and Carlos M Fonseca. A

portfolio optimization approach to selection in multiobjective evolutionary algorithms. In

Parallel Problem Solving from Nature–PPSN XIII: 13th International Conference, Ljubljana,

Slovenia, September 13-17, 2014. Proceedings 13, pages 672–681. Springer, 2014.

44. Konstantinos P Anagnostopoulos and Georgios Mamanis. The mean–variance cardinality

constrained portfolio optimization problem: An experimental evaluation of five multiobjec-

tive evolutionary algorithms. Expert Systems with Applications, 38(11):14208–14217, 2011.

45. Ankit Thakkar and Kinjal Chaudhari. A comprehensive survey on portfolio optimization,

stock price and trend prediction using particle swarm optimization. Archives of Computa-

tional Methods in Engineering, 28:2133–2164, 2021.

46. Pankaj K Bharne and Sameer S Prabhune. Survey on combined swarm intelligence and ann

for optimized daily stock market price. In 2017 International Conference on Soft Computing

and its Engineering Applications (icSoftComp), pages 1–6. IEEE, 2017.

47. Jaime G Carbonell, Ryszard S Michalski, and Tom M Mitchell. An overview of machine

learning. Machine learning, pages 3–23, 1983.

48. Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. MIT press, 2016.

49. Zihao Zhang, Stefan Zohren, and Stephen Roberts. Deep learning for portfolio optimization.

The Journal of Financial Data Science, 2020.

50. Peter Harrington. Machine learning in action. Simon and Schuster, 2012.

51. Yilin Ma, Ruizhu Han, and Weizhong Wang. Portfolio optimization with return prediction

using deep learning and machine learning. Expert Systems with Applications, 165:113973,

2021.

52. Gérard Biau and Erwan Scornet. A random forest guided tour. Test, 25:197–227, 2016.

53. Shindi Shella May Wara, Dedy Dwi Prastyo, and Heri Kuswanto. Value at risk estimation

with hybrid-svr-garch-kde model for lq45 portfolio optimization. In AIP Conference Pro-

ceedings, volume 2540. AIP Publishing, 2023.



40 Abhishek Gunjan and Siddhartha Bhattacharyya

54. Hieu K Cao, Han K Cao, and Binh T Nguyen. Delafo: An efficient portfolio optimization

using deep neural networks. In Advances in Knowledge Discovery and Data Mining: 24th

Pacific-Asia Conference, PAKDD 2020, Singapore, May 11–14, 2020, Proceedings, Part I

24, pages 623–635. Springer, 2020.

55. Jaydip Sen, Abhishek Dutta, and Sidra Mehtab. Stock portfolio optimization using a deep

learning lstm model. In 2021 IEEE Mysore Sub Section International Conference (Mysuru-

Con), pages 263–271. IEEE, 2021.

56. Van-Dai Ta, CHUAN-MING Liu, and Direselign Addis Tadesse. Portfolio optimization-

based stock prediction using long-short term memory network in quantitative trading. Ap-

plied Sciences, 10(2):437, 2020.

57. Yilin Ma, Ruizhu Han, and Weizhong Wang. Prediction-based portfolio optimization models

using deep neural networks. Ieee Access, 8:115393–115405, 2020.

58. Zeng Wei Zheng, Yuan Yi Chen, Xiao Wei Zhou, Mei Mei Huo, Bo Zhao, and Min Yi

Guo. Short-term prediction model for a grid-connected photovoltaic system using emd and

gabpnn. Applied Mechanics and Materials, 291:74–82, 2013.

59. KIM Hongjoong. Mean-variance portfolio optimization with stock return prediction using

xgboost. Economic Computation & Economic Cybernetics Studies & Research, 55(4), 2021.

60. Liangyu Min, Jiawei Dong, Jiangwei Liu, and Xiaomin Gong. Robust mean-risk portfolio

optimization using machine learning-based trade-off parameter. Applied Soft Computing,

113:107948, 2021.

61. NR Rohith, MD Yashaswini, VK Rohini, and HG Sinchana. Quantum computing: Redefining

the future of finance in portfolio optimization. Eur. Chem. Bull., 12(6):1125–1129, 2023.

62. Roman Orus, Samuel Mugel, and Enrique Lizaso. Quantum computing for finance:

Overview and prospects. Reviews in Physics, 4:100028, 2019.

63. Dylan Herman, Cody Googin, Xiaoyuan Liu, Alexey Galda, Ilya Safro, Yue Sun, Marco

Pistoia, and Yuri Alexeev. A survey of quantum computing for finance. arXiv preprint

arXiv:2201.02773, 2022.

64. Abha Naik, Esra Yeniaras, Gerhard Hellstern, Grishma Prasad, and Sanjay Kumar

Lalta Prasad Vishwakarma. From portfolio optimization to quantum blockchain and security:

A systematic review of quantum computing in finance. arXiv preprint arXiv:2307.01155,

2023.

65. Jeffrey Cohen, Alex Khan, and Clark Alexander. Portfolio optimization of 40 stocks using

the dwave quantum annealer. arXiv preprint arXiv:2007.01430, 2020.

66. Erica Grant, Travis S Humble, and Benjamin Stump. Benchmarking quantum annealing

controls with portfolio optimization. Physical Review Applied, 15(1):014012, 2021.

67. Davide Venturelli and Alexei Kondratyev. Reverse quantum annealing approach to portfolio

optimization problems. Quantum Machine Intelligence, 1(1-2):17–30, 2019.

68. Kosuke Tatsumura, Ryo Hidaka, Jun Nakayama, Tomoya Kashimata, and Masaya Yamasaki.

Real-time trading system based on selections of potentially profitable, uncorrelated, and bal-

anced stocks by np-hard combinatorial optimization. arXiv preprint arXiv:2307.06339, 2023.

69. Lammertjan Dam and Bert Scholtens. Toward a theory of responsible investing: On the

economic foundations of corporate social responsibility. Resource and Energy Economics,

41:103–121, 2015.

70. Li Chen, Lipei Zhang, Jun Huang, Helu Xiao, and Zhongbao Zhou. Social responsibility

portfolio optimization incorporating esg criteria. Journal of Management Science and Engi-

neering, 6(1):75–85, 2021.

71. Russell Sparkes. Socially responsible investment: A global revolution. John Wiley & Sons,

2003.

72. Francesco Cesarone, Lorenzo Lampariello, Davide Merolla, Jacopo Maria Ricci, Simone

Sagratella, and Valerio Giuseppe Sasso. A bilevel approach to esg multi-portfolio selection.

Computational Management Science, 20(1):24, 2023.

73. Agoston E Eiben, James E Smith, et al. Introduction to evolutionary computing, volume 53.

Springer, 2003.



Title Suppressed Due to Excessive Length 41

74. Thomas Bartz-Beielstein, Jürgen Branke, Jörn Mehnen, and Olaf Mersmann. Evolution-

ary algorithms. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery,

4(3):178–195, 2014.
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