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 An RNA foundation model enables discovery of 
 disease mechanisms and candidate therapeutics 

 Albi Celaj, Alice Jiexin Gao, Tammy T.Y. Lau, Erle M. Holgersen, Alston Lo, Varun Lodaya, 
 Christopher B. Cole, Robert E. Denroche, Carl Spickett, Omar Wagih, Pedro O. Pinheiro, 
 Parth Vora, Pedrum Mohammadi-Shemirani, Steve Chan, Zach Nussbaum, Xi Zhang, 
 Helen Zhu, Easwaran Ramamurthy, Bhargav Kanuparthi, Michael Iacocca, Diane Ly, Ken 
 Kron, Marta Verby, Kahlin Cheung-Ong, Zvi Shalev, Brandon Vaz, Sakshi Bhargava, 
 Farhan Yusuf, Sharon Samuel, Sabriyeh Alibai, Zahra Baghestani, Xinwen He, Kirsten 
 Krastel, Oladipo Oladapo, Amrudha Mohan, Arathi Shanavas, Magdalena Bugno, 
 Jovanka Bogojeski, Frank Schmitges, Carolyn Kim, Solomon Grant, Rachana Jayaraman, 
 Tehmina Masud*, Amit Deshwar*, Shreshth Gandhi*, Brendan J. Frey* 

 Abstract 
 Accurately modeling and predicting RNA biology has been a long-standing challenge, 
 bearing significant clinical ramifications for variant interpretation and the formulation of 
 tailored therapeutics.  We describe a foundation model for RNA biology, “BigRNA”, which 
 was trained on thousands of genome-matched datasets to predict tissue-specific RNA 
 expression, splicing, microRNA sites, and RNA binding protein specificity from DNA 
 sequence.  Unlike approaches that are restricted to missense variants, BigRNA can 
 identify pathogenic non-coding variant effects across diverse mechanisms, including 
 polyadenylation, exon skipping and intron retention. BigRNA accurately predicted the 
 effects of steric blocking oligonucleotides (SBOs) on increasing the expression of 4 out 
 of 4 genes, and on splicing for 18 out of 18 exons across 14 genes, including those 
 involved in Wilson disease and spinal muscular atrophy.  We anticipate that BigRNA and 
 foundation models like it will have widespread applications in the field of personalized 
 RNA therapeutics. 

 Main 
 Building machine learning models that can predict gene expression from DNA sequence 
 has been a long-standing research goal  1  , and one that has seen significant strides 
 owing to recent advancements in deep learning  2  .  These models could revolutionize 
 drug discovery by pinpointing how pathogenic genetic variants alter gene expression 
 and gene processing, and by designing customized drug candidates to counteract these 
 effects  3  .  Currently, most efforts have focused on predicting data that measures overall 
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 gene expression levels  2,4  , which are not suited to predicting regulatory interventions, for 
 example, specific transcriptional perturbations on splicing or polyadenylation. 

 RNA sequencing (RNA-seq) data provides a widely-available resource for measuring 
 RNA expression at high resolution and capturing complex transcriptional regulation 
 events across diverse genotypes.  This includes both exome variation inherently coded 
 within RNA-seq data itself, and through extensive resources like the Genotype-Tissue 
 Expression  5  (GTEx) project that pairs RNA-seq with Whole Genome Sequencing (WGS). 
 While building deep neural networks that directly learn from RNA-seq offers the 
 opportunity to understand how changes in DNA sequence lead to changes in complex 
 transcriptional phenotypes, this goal has remained elusive. 

 We introduce “BigRNA”, a deep learning model that is directly trained on RNA-seq 
 datasets.  BigRNA learns from paired genotype and 128bp resolution RNA expression 
 data from many individuals, and can also be applied in a range of downstream tasks 
 such as predicting RNA-binding protein (RBP) specificity and microRNA binding sites. 
 Because BigRNA directly models RNA-seq data, it can discover a diverse set of 
 pathogenic non-coding mechanisms that would each require a specialized model, and 
 can pinpoint their effects on a transcript.  We show that BigRNA can discover the 
 effects of non-coding variants on expression and splicing, and matches or exceeds the 
 performance of specialized models in recovering known pathogenic variants. 

 BigRNA can also help design different types of RNA based therapeutics, including steric 
 blocking oligonucleotides (SBOs).  Without any additional training, BigRNA accurately 
 identifies compounds that induce a targeted splicing change, and recovers known 
 approved SBO therapies with high specificity. The ability of BigRNA to understand 
 regulatory mechanisms also allows it to design SBOs that block predicted inhibitory 
 regions to increase the expression of a disease gene.  BigRNA represents a new 
 generation of massive deep learning models that can be applied to a range of different 
 personalized RNA therapeutic discovery tasks. 

 Results 
 BigRNA accurately predicts tissue-specific RNA expression and the binding sites of 
 proteins and microRNAs 

 To train BigRNA to predict RNA-seq data from the corresponding DNA sequence, we 
 employed a transformer-based architecture  2  and utilized the GTEx  5  resource (  Methods  ). 
 Given an individual's genotype, we input two potential haplotypes independently into 
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 identical instances of the model, and train it to predict the observed RNA-seq data as 
 the combined output from these haplotypes (  Fig. 1a  ,  Supplementary Figs. S1 and S2  ). 
 Each output "head" of the model predicts the expression of a single GTEx sample, so 
 that it learns to predict the outputs of 2,956 RNA-seq samples from 70 individuals, 
 covering 51 tissues in total.  After training on these RNA-seq datasets, the model is 
 fine-tuned to predict the specificity of RBP and microRNA binding sites (  Fig. 1a  ). 

 We first evaluated the ability of BigRNA to predict the expression of unseen genomic 
 sequences.  We measured the model's ability to predict tissue-specific expression levels 
 for all genes outside of genomic regions in the training set.  BigRNA exhibited strong 
 performance for predicting expression levels of unseen genes, achieving a correlation 
 coefficient (r) between 0.47 and 0.77 across all tissues (mean=0.70,  Fig. 1b  ). We 
 observed slightly stronger performance in brain tissues than non-brain tissues (mean 
 r=0.74 versus 0.69, p=5e-03), and highlight that the model is able to accurately predict 
 expression levels in the hypothalamus (r=0.74,  Fig. 1c  ). The ability to predict overall 
 expression levels and capability to accurately delineate intron/exon junctions is 
 illustrated by BigRNA’s predictions for  SLC7A8  , an amino acid transporter within the test 
 set (  Fig. 1d  ). To evaluate BigRNA on the much harder task of predicting differences 
 between pairs of tissues, we used BigRNA predictions to compute the fold-change in 
 total exonic coverage between tissue pairs and compared that to observed 
 fold-changes.  Across all inter-tissue comparisons, we observed a mean correlation of 
 r=0.4, owing to the increased difficulty of this task (  Fig. 1e  ).  We highlight a comparison 
 between liver and the hypothalamus (r=0.58, p=7e-64,  Fig. 1f  ) to illustrate this capability. 

 Since drug discovery tasks benefit from clarity of mechanisms, we next examined how 
 well the fine-tuned BigRNA model could predict RBP binding specificity and microRNA 
 binding sites. For the RBP task, we used a large-scale resource of transcriptome-wide 
 binding profiles for 223 datasets covering 150 unique human RBPs in K562 and HepG2 
 cells  6  . We found that BigRNA achieved high average precision for many RBPs and 
 performed better than the previously-published DeepRiPe  7  system for all 142 datasets 
 that they had in common (  Fig. 1g  ). On predicting microRNA binding sites, BigRNA 
 achieved a median AUC of 0.84 and for all 12 cell lines that we tested, performed better 
 than a previously published method, TargetScan  8  (  Fig. 1h  ). These predictions are useful 
 for identifying regulatory factors that are altered by variants and SBOs (see below). 

 Predicting the effects of variants on gene expression 

 A key challenge in human genetics is to predict the impact of sequence variants that 
 may be found within the human population.  Many deep learning models that do well on 
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 unseen genes using certain metrics, such as AlphaFold  9  , struggle to predict variant 
 effects  10  .  While some accurate methods exist for predicting the pathogenic impact of 
 rare missense variants  11,12  , non-coding variants, such as those located within the 3' and 
 5' untranslated regions (UTRs) of genes, remain difficult to interpret. 

 To address this gap, we evaluate BigRNA’s ability to predict the impact of a curated set 
 of pathogenic or likely pathogenic (P/LP) UTR variants from ClinVar  13  . We found that 
 BigRNA exhibited strong performance as a general pathogenicity model for variants in 
 both the 3’ UTR and 5’ UTR  (AUC=0.95 and 0.8,  Fig. 2a  ) by predicting their effects on 
 the expression of their associated disease genes.  The weaker performance in the 5’ 
 UTR may be due to a smaller proportion of P/LP variants that modulate RNA expression 
 (18/47 compared to 16/17 for the 3’ UTR amongst variants with known mechanisms, 
 p=0.046), and a substantial proportion of mechanisms that affect translation (29/47). 
 We further investigated a known pathogenic expression-decreasing variant in the 3’ UTR 
 of  NAA10  14  (NM_003491.4:c.*43A>G).  This variant is known to cause syndromic 
 X-linked microphthalmia, and reduces expression by disrupting the polyadenylation site 
 (PAS) of the  NAA10  transcript.  The BigRNA predictions highlight the 
 expression-decreasing effects of this variant (false positive rate, FPR <0.5%), and also 
 predicted the expected lengthening of the 3’ UTR that was observed in RNA-seq 
 samples of affected patients  14  (  Fig. 2b  ).  An  in-silico  saturation mutagenesis near this 
 variant highlighted the importance of the PAS, and confirmed the effects of two other 
 nearby P/LP variants (c.*39A>G, c.*40A>G)  14  (  Fig. 2c  ). 

 We compared BigRNA to Framepool  15  , a ribosomal load model, Saluki  16  , an RNA stability 
 model, and Enformer  2  , an expression model that learns from CAGE-seq.  We observed 
 improved performance compared to Enformer for pathogenic variants in both the 5’ and 
 3’ UTR (p=0.04 and p=0.02, respectively,  Supplementary Fig. S3  ).  Framepool, a model 
 that predicts ribosomal load  15  , performed similarly to BigRNA for pathogenic variant 
 classification in the 5’ UTR (AUC=0.67 versus 0.78 for BigRNA, p=0.07,  Supplementary 
 Fig. S3  ), but BigRNA performed better at classifying the subset of pathogenic 5’ UTR 
 variants that are known to modulate RNA expression (AUC=0.61 versus 0.86 for 
 BigRNA, p=0.002,  Supplementary Fig. S4  ). Saluki, an RNA half-life model, had similar 
 performance on the 3’ UTR task (AUC=0.87 vs 0.94 for BigRNA, p=0.27). 

 Within these genes, we noted many variants of uncertain significance (VUS) in their 
 untranslated regions.  Applying BigRNA to these variants at a 5% FPR yielded 12 
 potential expression-modulating variants in the 3’ UTR (out a total of 139) and 23 in the 
 5’ UTR (out a total of 222) (  Fig. 2d  ).  For example, the 3’ UTR of  HBB  had the highest 
 number of VUSs surpassing this threshold (n=6).  The highest scoring VUS 
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 (NM_000518.5(HBB):c.*112A>T) is in the PAS of this gene, and shares the same 
 position as a known pathogenic variant (c.*112A>G)  .  The PAS region of  HBB  also 
 contains the majority of known P/LP variants (6 of 8).  The second-highest scoring VUS 
 (c.*47C>G) was outside of the PAS, and less is known about its function.  Looking 
 further, we found that despite being classified as a VUS, this variant is reported to cause 
 decreased expression of  HBB  , supporting the BigRNA prediction  17  .  We also noted that 
 three additional P/LP variants in the  HBB  PAS, which were not included in our 
 benchmark due to a lack of evidence in the ClinVar submission  13  , scored above this 
 threshold (  Fig. 2e  ), providing computational support for their P/LP classification. 

 In more genetically complex diseases, it can be challenging to discover causal 
 expression-modulating variant(s) due to linkage disequilibrium (LD).  For example, 
 rs705379 and rs854572 are both annotated as expression quantitative trait loci (eQTLs) 
 for Paraoxonase 1 (  PON1  ) in GTEx, but a luciferase reporter assay and statistical 
 fine-mapping of the locus show that only rs705379 has an effect on expression  18,19  , 
 which is consistent with BigRNA’s prediction of a much stronger effect and its direction, 
 despite the strong LD. BigRNA also assigned a stronger effect, and correct direction, for 
 two other known expression modulation variants,  rs854571 and rs3735590  20  (  Fig. 2f  ). 
 To benchmark BigRNA more broadly, we evaluated its ability to identify fine-mapped 
 eQTLs from negative controls matched on effector gene (eGene), distance to 
 transcription start site (TSS), and minor allele frequency.  We saw considerable 
 performance for this task (AUC = 0.74,  Fig. 2g  ),  improving over Enformer (AUC = 0.70, 
 p=4.8e-04 for difference,  Supplementary Fig. S5  ).  We note that a series of 
 improvements in eQTL scoring, including matching the predictions to the eQTL tissue of 
 interest, and evaluating over the entire contiguous coding sequence rather than the 
 transcription start site made significant improvements to our performance for both 
 models  (  Supplemental Note 1  ).  BigRNA’s classification performance was similarly 
 strong for variants more than 10 kilobases from their eGene’s TSS (AUC 0.73, versus 
 0.66 for Enformer, p=8.0e-05 for difference,  Supplementary Fig. S6  ). Together, these 
 results indicate that BigRNA is able to help prioritize causal variants that mediate more 
 common diseases, which has been challenging for sequence-based deep neural 
 networks  18,19  . 

 Predicting the effects of variants on splicing and intron retention 

 An important subset of pathogenic variants affect splicing, such as those which cause 
 skipping of an exon.  These variants often occur in coding regions, and may be 
 incorrectly classified as benign mutations based on their amino acid substitutions, 
 despite their pathogenic splicing effects  21  .  We evaluated BigRNA’s ability to classify the 
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 splicing impact of exonic variants that cause substantial (>50%) exon skipping, versus 
 those that do not cause any splicing changes, using results from a massively parallel 
 splicing assay  (MaPSy)  21  .  By predicting a change in junction coverage caused by these 
 variants, BigRNA was able to accurately predict these skipping variants (AUC = 0.89  Fig. 
 3a  ), and showed better performance compared to a previously published method, 
 SpliceAI  22  on this task (AUC=0.80, p<1e-05 for difference,  Supplementary Fig. S7  ).  We 
 further investigated a pathogenic variant that causes skipping of exon 6 in the  ACADM 
 gene, leading to a potentially fatal medium-chain acyl-CoA dehydrogenase 
 deficiency  23,24  .  BigRNA predicted the exon skipping effects of this variant (FPR = 0.002, 
 Fig. 3b  ), and that it causes this skipping by creating a binding site for the TDP-43 
 protein  23  , yielding insight into the mechanism-of-action.  We further investigated a VUS 
 in  ATP7B  (c.3243+5G>A), a gene which clears copper from liver cells and causes Wilson 
 disease when it is defective  25  .  This variant was predicted by BigRNA to cause in-frame 
 skipping of  ATP7B  exon 14 (FPR=0.004,  Fig. 3c  ), which contains the ATP site and other 
 critical elements  26  , thus causing a pathogenic loss-of-function.  We generated a 
 homozygous HepG2 line and used RT-PCR to assay the effects of this variant and 
 confirm the exon skipping predicted by BigRNA (  Fig. 3c  ). 

 Another class of pathogenic splicing variants are cryptic splicing mutations that cause 
 full intron retention.  We evaluated BigRNA on its ability to predict a set of reported 
 intron retention variants  27  , using nearby common variants as the negative set.  We 
 observed strong performance on classifying these mutations (AUC=0.9,  Fig. 3d  and 
 Supplementary Fig. S8  ), so we next investigated whether BigRNA could predict more 
 complex splicing aberrations.  We focused our attention on a pathogenic non-canonical 
 splice site variant in the  ABCA4  gene (c.5714+5G>A), which had been found to induce 
 Stargardt disease by causing skipping of  ABCA4  exon 40  28  .  This variant was strongly 
 predicted to cause both the skipping of exon 40, and retention of intron 40 (FPR=0.008 
 and <0.04, respectively,  Fig. 3e  ), but the latter had not been reported, likely due to 
 technical limitations in the assay  28  .  To test this prediction, we edited a retinoblastoma 
 cell line (WERI-Rb-1) to be homozygous for c.5714+5G>A, and performed RNA 
 sequencing to capture the full suite of splicing events.  This confirmed BigRNA’s 
 predictions that this variant causes a complex set of aberrations that includes partial 
 skipping of exon 40, as well as retention of intron 40. 

 Designing splice-switching and expression-increase molecules 
 The ability of BigRNA to understand regulatory mechanisms affecting splicing and gene 
 expression may allow it to design therapeutic interventions that rescue pathogenic 
 variant effects. For this application, we evaluated whether BigRNA could reverse 
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 splicing defects by designing steric blocking oligonucleotides (SBOs) – short, 
 chemically-modified synthetic nucleic acid strands purposed to bind specific RNA 
 targets to modulate splicing and gene expression.  For example, Nusinersen, an FDA 
 approved SBO, treats spinal muscular atrophy by reversing the skipping of exon 7 in 
 SMN2  29  ,  thus restoring SMN protein levels and mitigating motor neuron loss and 
 muscular atrophy. One way to predict the effect of an SBO is to hide the complementary 
 binding site from the model’s input (  Methods)  .  This approach is an instance of 
 ‘zero-shot learning’, because no additional task-specific SBO data is used when making 
 the prediction. 

 To evaluate the utility of zero-shot learning for virtual screening, we first evaluated the 
 ability of BigRNA to re-discover Nusinersen amongst the set of all possible SBOs within 
 200 base-pairs of  SMN2  exon 7.  Strikingly, BigRNA ranked Nusinersen within the top 3 
 of 437 compounds (  Fig. 4a  ). To more systematically evaluate the effectiveness of this 
 approach, we treated 15 exons in 12 genes with a total of 620 SBOs, and observed a 
 strong and statistically significant correlation with the predicted and 
 experimentally-measured exon inclusion levels in all cases (r=0.41-0.77, p=7e-12 to 2e-2, 
 Fig. 4b  ). For comparison, SpliceAI correlated with experiments in 11/15 exons and the 
 correlation was lower than BigRNA for 13/15 exons. 

 We then used BigRNA to design a novel splice-switching SBO that rescues a pathogenic 
 splicing defect.  Previously, we had reported that a missense variant in the  ATP7B  gene 
 (c.1934T>G, Met645Arg) leads to Wilson disease by promoting skipping of exon 6, thus 
 resulting in lowered levels of functional protein and subsequent copper accumulation in 
 liver cells  25  .  We created a disease model of the Met645Arg variant in HepG2 cells, and 
 used this system to test a set of SBOs targeting the skipped exon (  Methods  ).  We 
 observed a strong relationship between the predicted and measured splicing changes 
 (r=0.91, p=4.7e-22,  Fig. 4c  ).  The top compound from this assay was predicted to be in 
 the top 7 of 458 possible compounds by BigRNA. To summarize, BigRNA predicted both 
 the exon skipping caused by Met645Arg (FPR=0.007) and the restorative effect of the 
 top experimentally-validated compound (  Fig. 4d  ). 

 BigRNA’s ability to score SBOs has utility in developing therapeutic candidates targeting 
 extremely rare variants within a constrained budget.  First, we evaluated BigRNA’s ability 
 to score SBOs that target a pseudo-exon in the  ATM  gene caused by the rare 
 c.5763-1050A>G mutation, leading to ataxia-telangiectasia  30  .  We observed significant 
 correlation between the predictions and experimentally observed splicing efficiencies 
 (r=0.64, p=3.3e-04,  Supplementary Fig. S9  ), and ranked the lead therapeutic candidate 
 in the top 7 of 516 possible compounds.  We sought to explore whether similar 
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 therapeutic candidates could be developed for other rare splicing diseases.  After 
 curating a set of extremely rare, so-called “N=1”, pathogenic variants from ClinVar 
 (  Methods  ), we used BigRNA to predict which ones are likely to act through exon 
 skipping while not affecting the core splice donor or acceptor site (  Fig. 4e  ), thus 
 potentially being eligible for SBO remediation.  This included synonymous variants, 
 non-synonymous variants predicted to be tolerated  31  , and variants near splice sites. 
 One such variant was in intron 22 of  MYO1E,  which is associated with 
 glomerulosclerosis  32  .  While no published mechanism exists for this variant, it was 
 predicted to cause skipping of exon 23, and the top SBO was predicted to completely 
 rescue this skipping defect, suggesting that this variant is amenable to personalized 
 SBO treatment (  Fig. 4f  ). 

 Owing to BigRNA’s striking ability to help design splice-switching SBOs, we turned to the 
 more challenging problem of designing SBOs that amplify gene expression.  This 
 requires the model to rank all possible compounds targeting any part of the transcript, 
 again without any additional training and additionally with no prior knowledge of 
 inhibitory regions.  Due to the greatly increased search space, we first developed a 
 method to score a large number of compounds in a computationally efficient manner. 
 For this, we applied a combination of established saliency mapping techniques  33,34  to 
 evaluate the contribution of each base pair in a transcript on its expression in a given 
 tissue, and took the minimum contribution score at the SBO binding region as the 
 ‘inhibitory score’ of each compound (  Methods  ).  We again benchmarked this scoring on 
 Nusinersen, reasoning that the skipping of exon 7 and subsequent nonsense-mediated 
 mRNA decay is a major expression bottleneck. Considering all 26,901 SBOs of length 
 18  ,  Nusinersen ranked in the top 2.28% (  Supplementary Fig. S10  ), suggesting that 
 BigRNA’s inhibitory scores can be used to identify inhibitory regions, and that this 
 strategy could have recovered Nusinersen within a tractable screening budget. 

 We then sought to systematically assess how well BigRNA could be used to discover 
 novel therapeutically beneficial expression-increasing SBOs. An example is 
 Paraoxonase 1 (  PON1  ), where variants that decrease expression of the gene or catalytic 
 activity of the protein have been associated with an increased risk of atherosclerotic 
 cardiovascular disease  35,36  (ASCVD).  In murine models, modulation of  PON1  expression 
 has been shown to directionally influence the risk of ASCVD and related phenotypes  37–40  , 
 thus presenting a compelling opportunity for expression-increasing therapeutics. We 
 used BigRNA to perform large-scale SBO design, experimentally tested the predicted 
 SBOs in primary human hepatocytes, and identified 10 compounds that showed activity 
 for increasing  PON1  expression (  Methods  ).  By using a liver-specific score to rank all 
 positive compounds, BigRNA showed a strong ability to prioritize expression increase 
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 compounds (AUC=0.818,  Fig. 4h  ). To expand this study, we screened 
 expression-increasing compounds for  ATP7B  (to benefit a broader population beyond 
 Met645Arg)  ,  as well as  PRRT2  and  SERPING1  , which may confer therapeutic benefits for 
 benign familial infantile epilepsy  41  and  hereditary angioedema  42  .  For all three genes, 
 BigRNA’s predictions successfully prioritized expression-increasing SBOs without 
 requiring any additional training  (AUC=0.72-0.85,  Fig. 4h  ). 

 Discussion 
 The rapid evolution of computational models in genomics has enabled the use of 
 methods that can learn from large-scale genomics data to predict RNA expression from 
 DNA sequence. Using deep learning to model RNA-seq data and take into account 
 individual genomic sequence variation, we can enable novel and accelerated discovery 
 on several drug discovery tasks. 

 When we adapted previously published deep learning systems to the drug discovery 
 tasks that we evaluated, we found that BigRNA performed substantially better overall. It 
 improved significantly over specialized models like TargetScan  8  and DeepRiPe  7  for 
 predicting microRNA and RBP binding sites, and was more accurate than SpliceAI  22  at 
 identifying exon skipping variants as well as designing splice-switching SBOs.  BigRNA 
 could accurately predict pathogenic variants in untranslated regions, matching 
 specialized models for the 5’ and 3’ UTRs  15,16  , and improved upon the general-purpose 
 Enformer model  2  .  In cases where BigRNA’s performance matched an existing model, 
 direct modeling of RNA-seq data had distinct advantages.  For example, unlike a 
 previously described ribosomal loading model  15  , BigRNA could predict all classes of 
 pathogenic mutations in the 5’ UTR, and unlike a model of RNA half life  16  , it could predict 
 that a pathogenic variant acts by changing the polyadenylation site, which reduces the 
 half-life.  Existing methods for predicting splice donor and acceptor strength  22  are 
 unable to identify correlated splicing events, such as intron retention, but we found that 
 BigRNA is able to do so.  For complex traits, in contrast to traditional fine-mapping 
 methods that do not provide insight into the mechanistic impact of causal mutations  43  , 
 BigRNA can make predictions for complex trait heritability contributions from many 
 different mechanisms that do not exert their effect through a change in protein 
 structure. 

 The ability of BigRNA to learn mechanisms of RNA regulation is reflected by the fact 
 that it was able to accurately design SBOs that counteract the effects of pathogenic 
 variants or that increase gene expression, without being provided with a single training 
 case of an SBO and its effect. Nonetheless, a further avenue of work would include 
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 fine-tuning BigRNA by learning from SBO treatment data, such as from the rich 
 information encoded by SBO-treated RNA-seq samples  44  .  Similar approaches can be 
 used for other therapeutic modalities such as predicting the phenotypic effects of 
 induced ADAR (adenosine deaminase acting on RNA) editing so that they confer a 
 similar compensatory effect on splicing or expression  45  , or designing mRNAs that have 
 increased half-life and translation efficiency. 

 Several avenues exist to improve the predictive abilities of BigRNA.  The 128bp 
 resolution of the model can be improved with additional training resources  2  . 
 Improvements in the speed and scalability of the transformer architecture  46  , coupled 
 with the use of parameterized upsampling  47  may allow the model to retain a high 
 context size while producing predictions at single base-pair resolution.  Training on 
 more individuals could improve generalization across genotypes. While the training 
 procedure takes into account variation from 70 individuals, WGS-paired RNA-seq data is 
 available for many more GTEx samples, and can be supplemented with additional 
 datasets  48  .  To take into account such a large amount of data, methods have been 
 developed to prioritize the most informative training points  49  , allowing the training 
 procedure to scale and effectively learn from extremely large datasets.  To explore 
 improved prediction of differences between individuals, a contrastive training objective 
 can be used  50,51,52  and predictions can be made for the difference in expression between 
 two haplotypes  53  . 

 Our results show that different drug discovery tasks can be assisted by deep learning. 
 We believe that BigRNA and deep learning systems like it have the potential to 
 transform the field of RNA therapeutics. 
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 Methods 

 RNA-seq model training 
 We downloaded and aligned RNA-seq data from the GTEx consortium  5  V6 release, 
 processing all available data from the set of 70 individuals with the most tissue 
 availability (data from a total of 51 tissues are available, but data availability varies 
 between individuals).  Data was processed using an in-house pipeline (Supplementary 
 Information 1.2).  Each RNA-seq sample was processed into two data tracks: coverage 
 and junction, where the junction track contains a subset of read counts at splice 
 junctions.  To make the data compatible with the 128bp resolution of the model’s 
 architecture  2  , we applied 128bp-window average-pooling on coverage tracks, and 
 128bp-window sum-pooling on junction tracks.  To incorporate genomic variants from 
 each individual, we re-aligned the RNA-seq data to match the insertions and deletions 
 introduced by each individual’s haplotype (Supplementary Information 1.2). BigRNA was 
 trained with a separate output for each sample, so that each output can be 
 independently learned. We trained BigRNA by minimizing differences between 
 prediction from both haplotypes and the observed coverage and junction tracks from 
 RNA-seq (Supplementary Information 1.3, Supplementary Equation S2). In addition to 
 the individual-specific outputs, we also added individual-agnostic per-tissue outputs to 
 encourage the model to learn a mapping from genotype to expected expression (where 
 the expectation is taken across all individuals). Description of all output heads can be 
 found in Supplementary Data 1.  Fig. 1a shows the training pipeline. The same 
 procedure was used to train an ensemble of 7 models, varying learning rate, degree of 
 gradient clipping, and the pre-training strategy for each model in the ensemble 
 (Supplementary Information 1.3, Supplementary Table S1). At inference time, to predict 
 on a genomic interval, we used shifted intervals to increase the prediction resolution to 
 64 base pairs, and averaged predictions from both strands (Supplementary Information 
 1.4, Supplementary Fig. S1, Supplementary Fig. S2). 

 Fine-tuning on RBP and microRNA datƒasets 
 After training models on RNA-seq dataset, we further fine-tuned models on RBP and 
 microRNA datasets. The RBP dataset was constructed by downloading eCLIP data  6 

 from ENCODE  54  (Supplementary Information 1.2.2). The microRNA dataset was 
 generated by processing CLIP-Seq data from 12 cell lines (Supplementary Information 
 1.2.3). We fine-tuned the model by first updating weights of the last layer for 10 epochs, 
 then updating weights of the entire model for another 30 epochs (Supplementary 
 Information 1.3). Description of all output heads can be found in Supplementary Data 2. 
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 Held-out performance on gene expression and differential gene expression 
 We selected protein coding genes that are completely outside the training and validation 
 set, and which overlap at least one interval in the test set. Predictions and targets were 
 mean-aggregated over all exons for each gene to yield one value per gene 
 (Supplementary Information 2.1). For each tissue, we compute the correlation between 
 prediction and target across all genes.  To evaluate performance on differential gene 
 expression, we constructed all pairwise comparisons between tissues, and computed 
 the log  2  fold-change using the predicted and target coverage data (Supplementary 
 Information 2.2). For each tissue pair we computed the correlation between the 
 predicted and target log  2  fold-changes across all genes. 

 Visualizing prediction on SLC7A8 
 Sequence of SLC7A8 gene was obtained from hg38 genome build with Gencode v29 
 annotation. We averaged output heads that correspond to coverage in the “Brain - 
 Hypothalamus” tissue to obtain BigRNA prediction for visualization (Supplementary 
 Information 2.3). 

 Held-out performance on RBP 
 Processed RBP peaks were  obtained from ENCODE  54  , and processed into low 
 resolution binary labels by taking into account noise in the data [Supplementary 
 Information 1.2.2, Supplementary Equation S8]. We selected protein coding genes that 
 are completely outside the training and validation set, and made predictions using 
 BigRNA and DeepRiPe  7  . Both BigRNA and DeepRiPe predictions were averaged within 
 each 128-bp window (Supplementary Information 2.4). Fig. 1g shows the average 
 precision performance of BigRNA and DeepRiPe. 

 Held-out performance on microRNA 
 The microRNA dataset was generated by processing CLIP-Seq data from 12 cell lines 
 (Supplementary Information 1.2.3). The called peaks were further processed into low 
 resolution binary labels by taking into account noise in the data (Supplementary 
 Equation S9). We selected protein coding genes that are completely outside the training 
 and validation set, and made predictions using BigRNA and TargetScan  8  . Both BigRNA 
 and TargetScan predictions were averaged within each 128-bp window (Supplementary 
 Information 2.5). Fig 1h shows the au-ROC performance of BigRNA and TargetScan. 

 Benchmarking variant effect predictions on pathogenic variants 
 Pathogenic or likely pathogenic (P/LP) UTR SNVs were obtained from Bohn et al  13  . 
 Putative benign SNVs located in the same UTR were obtained from ClinVar, if they were 
 classified as benign or likely benign (B/LB), and gnomAD v3 if their global allele 
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 frequency was greater than 0.001  55  (Supplementary Information 3.1.1). For the 5’ UTR 
 benchmark, we predicted the effect of the variant using BigRNA, Enformer, and 
 FramePool and took the absolute value of the variant effect scores. For the 3’ UTR 
 benchmark, we evaluated BigRNA, Enformer, and Saluki and again, took the absolute 
 values of the variant effect scores (Supplementary Information 3.1.2, Supplementary 
 Equation S10-12). In addition to Fig. 2d, Supplementary Fig. S3 shows the ROC curve 
 and PRC of classification performance of all models. To compare models, we 
 performed permutation tests with 10000 permutations (Supplementary Information 
 3.1.3). Variants of uncertain significance (VUS) in the UTRs of the genes that were in the 
 benchmark were extracted as described in Supplementary Information 3.1.4. 

 Predicting the impact of disrupting polyadenylation sites 
 To evaluate BigRNA's ability to predict poly(A) sites, we conducted an in-silico 11 bp 
 N-mask tiling analysis across each poly(A) region. Poly(A) sites (PAS) from 200 genes 
 were obtained from PolyASite 2.0  56  (Supplementary Information 3.3). For each PAS, we 
 expanded the site by ±100 bp to cover proximal regulatory elements, resulting in 206 bp 
 regions. We subsequently N-masked 11 bp tiles across the region and compared 
 BigRNA predictions for the N-masked sequences (mutant) and the poly(A) signal 
 sequence (wildtype). The BigRNA predictions were based on the mean of the individual 
 sample RNA-seq coverage heads across all tissue types (Supplementary Information 
 3.3). For the  NAA10  PAS and its surrounding 100 bp context, we performed saturation 
 mutagenesis by point-mutating every reference nucleic acid base to every other nucleic 
 acid base. Similar to the poly(A) site analysis, we carried out predictions using the 
 BigRNA model to assess the impact of these mutations on gene expression. 

 Expression quantitative trait loci (eQTLs) and linkage disequilibrium (LD) estimation for 
 PON1  variants 
 The four variants with known expression effect were rs705379 (chr7:95324583:G:A), 
 rs854571 (chr7:95325307:T:C), rs854572 (chr7:95325384:C:G) and rs3735590 
 (chr7:95298183:G:A).  The eQTL and normalized effect size of these variants on  PON1 
 liver tissue expression were obtained from the GTEx eQTL Calculator .  The LD R  2  values 
 between variants was calculated using the NIH LDmatrix tool with the GBR population 
 selected. 

 Classifying expression quantitative trait loci (eQTLs) versus matched controls 
 To construct a benchmark dataset from confidently fine-mapped eQTLs, variants with a 
 posterior inclusion probability of 0.5 or greater (indicating that they are the most likely 
 causal variant in the credible set) were selected from eQTLGen statistical fine-mapping 
 of expression modulating variants in GTEx v8  19  . eQTLs within 50kbp of the transcription 
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 start site of the primary or most highly expressed transcript for the reported eGene were 
 selected to ensure that deep learning models would have sufficient genomic context to 
 accurately predict changes in expression. For each eQTL we selected a matched 
 negative control variant from the same effector gene (eGene) which was not associated 
 with its expression (P > 0.05) in any tissue and within 10% of the eQTL’s minor allele 
 frequency and 10kbp of the eQTL’s genomic position. This resulted in a dataset of 1374 
 eQTL variants and 1162 matched negative controls. 

 Classifying variants that cause intron retention 
 Variants that cause full intron retention were manually curated from splicing variants 
 downloaded from the SPCards database  27  . A matching set of variants that do not cause 
 intron retention were processed from  gnomAD  55  (Supplementary Information 4.1.1). For 
 each variant, we use BigRNA to predict the relative coverage between intron and the two 
 flanking exons, and compute the score as the ratio between wild-type and mutant-type, 
 aggregated across models in ensemble (Supplementary Information 4.1.2, 
 Supplementary Equation S14-16). 

 Classifying variants that cause exon skipping 
 For each mutation in the MaPSy dataset  21  , we computed the splicing odds ratio and 
 confidence interval using the reported readout from both in-vitro and in-vivo assays, to 
 create a high confidence binary label on skipping versus non-skipping at splicing levels 
 ranging from 50% to 10% (Supplementary Information 4.2.1, Supplementary Equation 
 S17-18). For each mutation, we used BigRNA to predict the difference in junction counts 
 between wild-type and mutant-type, normalized by exon, and aggregate across models 
 in ensemble (Supplementary Information 4.2.2, Supplementary Equation S19).  Fig 3a 
 shows ROC curve of classification performance on skipping versus non-skipping at 50% 
 splicing level. For model comparison (Supplementary Fig. S7), we performed 
 permutation tests with 100,000 permutations. 

 Predicting the effect of splice-switching SBOs 
 To obtain the relative ranking of Nusinersen, we ranked all possible SBOs of length 18 
 within 200 base pairs of exon 7 of SMN2 (Supplementary Information 5.1). We used 
 RT-PCR to measure the Percentage Spliced In (PSI) values for 15 exons in the HEK293T 
 cell line, and compared the measured PSI with the predicted SBO effect of SpliceAI and 
 BigRNA using the Spearman Correlation metric (Supplementary Information 5.2).  We 
 repeated the above evaluation for SBOs targeting Met645Arg; here we edited HepG2 
 cells to introduce the c.1934T>G Met645Arg variant, and screened a library of 55 SBOs 
 by qPCR. Spearman correlation was computed between BigRNA predictions and the 
 experimentally observed  ATP7B  expression levels (Supplementary Information 5.3). The 
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 same evaluation was carried out on published data of SBOs designed to skip a 
 pseudo-exon created by the c.5763-1050A>G variant in ATM  30  . 

 The set of “N=1” variants was created by selecting pathogenic or likely pathogenic 
 variants (ClinVar) from genes that are exclusively associated with autosomal recessive 
 disorders (OMIM).  BigRNA predictions were made for SNVs with very low estimated 
 worldwide prevalence (n=1582, GnomAD) and we curated synonymous, tolerated 
 missense (SIFT) and intronic variants (excluding the core dinucleotides) for their 
 mechanisms of pathogenicity (Supplementary Information 5.5).  All possible 20-mers 
 within 200 bp of  MYO1E  exon 23 were scored for their ability to remedy the effect of the 
 c.2481-12A>G variant, and we visualized the predictions for the highest ranked SBO. 

 Predicting the effect of expression increase SBOs 
 Expression increase can occur through a variety of mechanisms, and SBOs can be 
 designed anywhere in the gene. By applying a combination of established saliency 
 mapping techniques  33,34  , we evaluated the contribution of each base pair in a transcript 
 to the expression of the related gene in the relevant tissue, yielding a sensitivity score 
 for each base pair's impact on gene expression levels, called the Inhibitory Score 
 (Supplementary Information 1.5). This per-base-pair score was then used to rank SBOs 
 by taking the minimum score of any overlapping base-pair (Supplementary Information 
 5.6.2).  For the Nusinersen ranking evaluation, we used the BigRNA Inhibitory Score to 
 score all candidate SBOs of length 18 targeting the entirety of the gene body of SMN2. 
 The same process was applied to expression increase SBOs identified from screens of 
 PON1  ,  ATPB  ,  PRRT2  , and  SERPING1  . Scores between hit SBOs and the background of all 
 candidate SBOs were compared with a Mann-Whitney U-Test. 

 Data Availability 
 Data and code to be made available upon peer review. 
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 Figures 

 Figure 1. BigRNA accurately predicts tissue-specific RNA expression of unseen sequences. 
 a.  A schematic of BigRNA’s training.  BigRNA was trained on the genomes of 70 individuals, to 
 predict a total of 2,956 RNA-seq datasets over 51 tissues, plus 693 datasets corresponding to 
 RNA binding protein and microRNA sites.  b.  Distribution of correlations between predicted and 
 measured RNA-seq coverage in exonic regions for genes held-out during training (averaged 
 across individuals).  c.  Correlation between predicted and measured RNA-seq coverage for the 
 hypothalamus samples.  d.  Predicted versus measured coverage for  SLC7A8  , averaged across 
 hypothalamus samples for all individuals.  e.  Distribution of correlations between predicted and 
 measured fold-change (pearson r) for all pairwise comparisons across 51 tissues.  f. 
 Fold-change in gene coverage between liver and hypothalamus.  g.  Comparison of BigRNA and 
 a previously published method, DeepRiPe, for predicting the binding sites of 98 RNA binding 
 proteins across 2 cell lines (142 total experiments).  h.  Comparison of BigRNA and a previously 
 published method, TargetScan, for predicting microRNA binding sites for 12 cell lines. 

 22 

 711 

 712 

 713 

 714 

 715 

 716 

 717 

 718 

 719 

 720 

 721 

 722 

 723 

 724 

 725 



 Figure 2. BigRNA predicts the effects of pathogenic expression-modulating variants 
 a.  Performance of BigRNA on classifying P/LP variants from putative benign variants in the 3’ 
 UTR and 5’ UTR.  b.  RNA-seq coverage predictions for the effects of a pathogenic variant in the 3’ 
 UTR of NAA10 (  NM_003491.4),  averaged across all individuals and all tissue types.  c.  Top: 
 BigRNA predictions showing the change in expression for all possible point mutations around 
 the polyadenylation site (PAS) of  NAA10  . Three variants previously identified as impacting the 
 PAS are labeled.  Bottom: Relationship between the change in expression predicted by BigRNA 
 from ablating regions around the PAS relative to the distance from the PAS for 200 human 
 poly(A) signal sequences selected from PolyASite 2.0.  d.  The distribution of BigRNA scores for 
 P/LP variants, putative benign variants. and VUS variants from ClinVar for genes included in the 
 UTR benchmarks. The dashed line in both plots (left, y = 0.0341; right, y = 0.0494)  represents 
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 the threshold of classifying P/LP from putative benign variants at an FPR of 5% in each of the 
 benchmark datasets.  e.  BigRNA predictions for variants of varying clinical significance in  HBB  . 
 The dashed line represents the threshold of classifying P/LP from putative benign variants at a 
 5% FPR in the 3’ UTR (y = 0.0341). The two highest scoring VUS variants in this gene are 
 annotated.  f.  Top: Comparing BigRNA predicted effects to GTEx eQTL effect size and results of 
 a luciferase reporter assay for four variants suspected to impact PON1 expression.  Bottom: 
 Estimated linkage disequilibrium between variants.  g  . Performance of BigRNA at distinguishing 
 fine-mapped expression quantitative trait loci (eQTLs) from controls matched by effector gene 
 (eGene), distance to the transcription start site of the eGene, and minor allele frequency. 
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 Figure 3. BigRNA captures the effect of variants on splicing. 
 a.  BigRNA performance on classifying exonic variants that result in exon skipping by at least 
 50%, from exonic variants that do not cause skipping, both obtained from MaPSy.  b.  BigRNA 
 predicts that the c.468+7A>G variant will result in increased TDP-43 binding and skipping of 
 ACADM  exon 6.  c.  The  ATP7B  VUS c.3243+5G>A is predicted by BigRNA to cause in-frame 
 skipping of exon 14. This results in reduced levels of functional ATP7B protein, leading to 
 copper buildup in the cell. Right: An RT-PCR in HepG2 cells edited to be homozygous for 
 c.3243+5G>A confirms the expected fragment from exon skipping.  d.  BigRNA performance on 
 classifying variants that cause intron retention (n = 25) from a set of matched variants that do 
 not impact splicing (n = 63).  e.  Top: BigRNA coverage predictions of the c.5714+5G>A variant in 
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 ABCA4  . Bottom: RNA-seq of wildtype WERI cells and WERI cells edited to be homozygous for 
 the variant confirm both exon skipping and intron retention effects. 
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 Figure 4. BigRNA predicts the effects of steric blocking oligonucleotides. a.  Mechanism of 
 action of the splice-switching oligonucleotide Nusinersen, an approved treatment for spinal 
 muscular atrophy (SMA).  BigRNA predictions are shown for the exon-restoring effects of all 
 18-mer SBOs within 200 bp of  SMN2  exon 7. The blue bar shows the position of Nusinersen. 
 Predictions were truncated at zero for the plot.  b.  Spearman correlation between experimentally 
 observed exon-inclusion levels and predictions generated by BigRNA and SpliceAI  .  A negative 
 correlation for  NFIX  exon 7 versus SpliceAI (r=-0.13) was truncated to zero.  c.  BigRNA 
 predictions of SBO effects on  ATP7B  exon 6 inclusion. 55 SBOs were screened by qPCR to 
 measure total  ATP7B  expression relative to control (fold change), and the Spearman correlation 
 was computed between the BigRNA predictions and observed fold changes.  d.  BigRNA 
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 predictions for wildtype, Met645Arg (c.1934T>G) variant, and Met645Arg variant with treatment 
 (lead SBO targeting  ATP7B  exon 6). The junction count tracks pertaining to individual samples 
 of the liver tissue are averaged for plotting.  e.  Proportion of ultra-rare pathogenic variants 
 associated with AR disorders with BigRNA exon skipping predictions above the 1% and 5% FPR 
 thresholds.  Intronic (>8bp from splice site), splice region (<8bp from splice site excluding the 
 core dinucleotides), tolerated missense (SIFT score > 0.05) and synonymous variants are 
 shown.  f.  BigRNA predictions for wildtype, c.2481-12A>G variant and the variant with treatment 
 (lead SBO targeting  MYO1E  exon 23).  g.  BigRNA predicts expression increase SBOs in  PON1  . 
 BigRNA inhibitory scores are plotted by region of the gene. The transcript structure is shown 
 under the scores, and the locations of the 10 dose-response hits are shown with blue bars. The 
 distribution of BigRNA inhibitory scores for the 10 dose-response hits is significantly different 
 from the distribution for other length-matched SBOs targeting  PON1  h.  BigRNA scores of 
 screening hits compared to background of all possible SBOs of same length for  PON1,  ATP7B  , 
 PRRT2  , and  SERPING1  . 
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