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Abstract

Background: White matter atrophy has been shown to precede the massive loss of striatal GABAergic
neurons in Huntington'’s disease (HD). The HD-induced white matter atrophy is associated with motor
deficits. /n vivo reprogramming toward a plastic state has emerged as a new approach for treating
neurological diseases. Particularly, octamer-binding transcription factor 4 (OCT4) can induce myelin
repair and functional recovery. This study investigated the effects of in situ expression of reprogramming
factor OCT4 on behavioral performances, neural stem cell (NSC) niche activation in the subventricular
zone (SVZ) and induction of cell fate specific to the changed microenvironment of HD.

Methods: R6/2 mice, a transgenic mouse model of HD, randomly received adeno-associated virus
serotype 9 (AAV9)-OCT4, AAV9-Null, or phosphate-buffered saline in both lateral ventricles at 4 weeks of
age. To evaluate the behavioral improvement, rotarod test and grip strength test were performed at
regular intervals. To investigate the expression of oligodendrocyte progenitor cell (OPC)-related genes,
real-time quantitative reverse transcription PCR (qRT-PCR) and immunohistochemistry were performed.
Next, we assessed the amelioration of myelination deficits via transmission electron microscope (TEM)
and magnetic resonance imaging (MRI) at 13 weeks of age. Finally, we confimed striatal neuroprotecion
by qRT-PCR and confocal microscopy.

Results: The AAV9-OCT4 group displayed significantly improved rotarod performance and grip strength
compared to the control groups. Following AAV9-OCT4 treatment, the number of newly generated NSCs
and OPCs was significantly increased in the SVZ, and the expression of OPC-related genes such as NG2,
Olig2, PDGFRa, Wnt3 and myelin regulatory factor (MYRF), and glial cell-derived neuroprotective factor
(GDNF) was significantly increased. Further, the amelioration of myelination deficits in the corpus
callosum was observed through TEM and MR, and striatal DARPP32* GABAergic neurons significantly
increased in the AAV9-OCT4 group.

Background

Huntington's disease (HD) pathology is characterized by massive loss of neurons in striatum and deep
layers of the cortex as well as early and progressive thinning of white matter (WM) in the corpus callosum
[1]. Although the mechanism underlying abnormalities of WM has not been confirmed, neuroimaging
data supports the hypothesis that myelin breakdown leads to WM atrophy in human and mouse models
of HD [2, 3]. Recent studies have shown that WM atrophy precedes striatal atrophy [4, 5] and causes
motor and emotional defects in HD [6, 7].

Under demyelinating conditions, neural stem cells (NSCs) and neural progenitors proliferate, migrate, and
give rise to oligodendrocyte progenitor cells (OPCs), and then differentiate into myelinating
oligodendrocytes. However, chronic diseases with extensive myelin loss can limit remyelination [8, 9]. /n
vivo reprogramming toward a plastic state has emerged as a new approach for treating neurological
diseases [10, 11]. Previous studies revealed that the ectopic expression of OCT4, a key reprograming
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factor, is sufficient to directly reprogram NSCs into a pluripotent and plastic state [12—14]. Myelin repair
and functional recovery can be enhanced by the application of lentiviral OCT4 and OCT4-induced OPCs in
animal models of demyelinated optic chiasm [10] and spinal cord injury [10], respectively.

This study investigated the effects of in vivo expression of OCT4 on NSC niche activation in the
subventricular zone (SVZ) and induction of cell fate specific to the changed microenvironment of HD.
Finally, we found that the in situ expression of OCT4 in the SVZ induces OPC proliferation, thereby
attenuating myelination deficits. Additionally, myelin regulatory factor (MYRF) and glial cell-derived
neuroprotective factor (GDNF) released by OPCs induced striatal neuroprotection in HD, which can
explain the behavioral improvement in R6/2 mice overexpressing OCT4.

Materials And Methods
Mice

R6/2 strain, a transgenic mouse model of HD carrying approximately 160 + 5 CAG repeats, was obtained
from the Jackson Laboratory (B6CBA-Tg (HDexon1) 62Gpb/1J, Stock No: 002810). These transgenic
mice mimic human HD with many neurological phenotypes, including choreiform-like movements,
involuntary stereotypic movements, tremor, epileptic seizures, and non-movement disorder components
including unusual vocalization. The symptoms of R6/2 mice become apparent between 6 and 8 weeks of
age. All animals were housed in a facility accredited by the Association for Assessment and Accreditation
of Laboratory Animal Care (AAALAC). Experimental procedures were approved by the Institutional Animal
Care and Use Committee (IACUC 2016 - 0298).

Stereotaxic injection

At 4 weeks of age, mice were anesthetized with intraperitoneal (IP) injection of ketamine (100 mg/kg;
Huons, Gyeonggi-do, Korea) and xylazine (10 mg/kg; Bayer Korea, Seoul, Korea). A stereotaxic procedure
was performed at 4 weeks of age in which the mice received a lateral ventricular (LV) injection (1 x 102
vg/ml, 1 pl each) using the following stereotaxic coordinates: AP + 0.3 mm from bregma, ML + 0.7 mm
from bregma, and DV - 2.0 mm from dura mater (Fig. 1A). Adeno-associated virus serotype 9 (AAV9)
vector (ViroVek, Hayward, CA, USA) containing human OCT4 was expressed using the cytomegalovirus
(CMV) promotor (AAV9-OCT4). Mice were randomly assigned to one of the following groups: phosphate-
buffered saline (PBS), AAV9-Null, or AAV9-OCT4 treatment.

Behavioral analyses

Rotarod test

A rotarod test (N0.47600, Ugo Basile, Comerio, Italy) was used to assess motor coordination and
locomotor function at 4, 6, 8, 10, and 13 weeks of age. The rolling rod was set to an accelerating speed (4
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~ 40 rpm) and a constant speed (16 rpm), and the latency fall time was measured [15]. An individual test
was terminated at a maximum latency of 300 seconds if the mouse did not fall.

Grip strength test

A grip strength test was performed using the SDI Grip Strength System (San Diego Instruments, Inc., San
Diego, CA, USA), which includes a push-pull strain gauge at 4, 8 and 12 weeks of age. A 2-mm diameter
triangular piece of metal wire was used as the grip bar. Each animal was held near the base of its tail by a
researcher and allowed to approach the bar until it was able to grip it with its forepaw. Peak grip force
was automatically recorded in kilogram-force (kgf) by the apparatus. The average of peak forces from
the three trials was used for the final analysis [15]. Grip force data from the grip strength test were
normalized with respect to body weight [16].

Immunohistochemistry (IHC)

Mice were daily given an IP injection of BrdU (50 mg/kg, Sigma-Aldrich, St. Louis, MO) for 12 days,
beginning after stereotaxic surgery [11]. R6/2 mice at 6 weeks and 13 weeks of age were sacrificed by
transcardial perfusion with cold PBS, followed by 4% paraformaldehyde (PFA). Harvested brain tissues
were cryosectioned 16-mm thick slices, and immunohistochemical staining was performed on four
sections, representing a range of more than 128 pm. The tissue sections were stained with the following
antibodies: 5-bromo-2'-deoxyuridine (BrdU, 1:200, abcam, ab6326); neuron-specific class Ill beta-tubulin
(Blll-tubulin, 1:400, abcam, ab18207); glial fibrillary acidic protein (GFAP, 1:400, abcam, ab10062); Nestin
(1:400, abcam, ab6142); neural/glial antigen 2 (NG2, 1:200, Millipore, ab5320) and dopamine- and cAMP-
regulated neuronal phosphoprotein (DARPP-32, 1:400, cell signaling technology, 2306). The stained
sections were analyzed using confocal microscopy (LSM700, Zeiss, Gottingen, Germany).

Real-time quantitative reverse transcription PCR (qQRT-PCR)

At 13 weeks of age, R6/2 mice were sacrificed for biochemical study and perfused with cold PBS. Total
RNA was extracted from the cortex and the striatum using TRIzol (Invitrogen Life Technologies, Carlsbad,
CA, USA). Purified total RNA (1 pug) was used as a template to generate the cDNA using the ReverTra Ace
gPCR RT master mix with gDNA remover (TOYOBO). The standard protocol for the qRT-PCR with SYBR
Green was provided from roche applied science. A total volume of 20 pl master mix with 1 pl of cDNA
was used in the gRT-PCR reaction, which was performed in triplicate on a LightCycler 480 using the
LightCycler 480 SYBR Green master mix (Roche Applied Science, Mannheim, Germany). The mRNA
abundance of target genes was assayed by gRT-PCR. Glyceraldehyde 3-phosphate dehydrogenase was
used as an internal control. The expression of each gene of interest was obtained using the 2 2ACt
method.

Transmission electron microscopy (TEM)

For TEM study, mice were perfused and fixed for 12 hours in 0.1M phosphate buffer (PB) followed by 4%
PFA containing 2% glutaraldehyde (MERCK, ZC814139734) at 13 weeks of age. They were postfixed with
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1% osmium tetroxide dissolved in 0.1M PB for 2 hours and dehydrated inascending gradual series (50 ~
100%) of ethanol and infiltrated with propylene oxide. Specimens were embedded by Poly/Bed 812 kit
(Polysciences). After pure fresh resin embedding and polymerization at 65 °C electron microscope oven
(TD-700, DOSAKA, Japan) for 24 hours. Sections of about 200 ~ 250 nm thick section were initially cut
and stained with toluidine blue (sigma, T3260) for light microscope. Ultra-thin slices (70 nm) were double
stained with 6% uranyl acetate (EMS, 22400 for 20 min) and lead citrate (fisher, for 10 min) for contrast
staining. There sections were cut by LEICA EM UC-7 (Leica Microsystems, Austria) with a diamond knife
(Diatome) and transferred on copper and nickel grids. All of the thin sections were observed by
transmission electron microscopy (JEM-1011, JEOL, Japan) at the acceleration voltage of 80 kV. For
image analyses, axon and myelin fiber diameters were measured using Image J (NIH).

Magnetic resonance imaging (MRI)

At 13 weeks of age, R6/2 mice were anaesthetised with 1 ~ 3% isoflurane. MRI experiments were
performed with a 9.4 T Bruker Biospec scanner (Ettlingen, Germany) running Paravision 5.1, using a

40 mm transreceive coil. Following the acquisition of the anatomical images using the rapid acquisition
with the relaxation enhancement (RARE) protocol, diffusion experiments were conducted using the DTI
echo planar imaging (DTI-EPI) protocol. The imaging parameters were: slice thickness 0.32 mm, 20 slices,
matrix size of 128 x 128 with 0.156 mm x 0.156 mm resolution, /A =4/10 ms, 30 directions with b =

670 s/mm? and TE/TR = 23.5/5000 ms. Diffusion images were processed using DSI studio software
(http://dsi-studio.labsolver.org). The processed data were further analyzed with MATLAB (MathWorks,
Natick MA) to obtain fractional anisotropy (FA), radial diffusivity (RD) and axial diffusivity (AD).

Statistical analysis

The results are presented as mean + SEM were determined variables compared among groups by one-
way ANOVA with post-hoc multiple comparisons using SPSS statistics version 23.0 (IBM Corporation,
Armonk, NY, USA). Statistical significance was considered when P < 0.05.

Results

In vivo expression of OCT4 improves behavioral performance

An initial evaluation was performed before the stereotaxic injection using rotarod and grip strength tests.
Following the treatment, mice were evaluated using identical measures until terminal stage (12 ~ 13
weeks of age). The AAV9-OCT4 group showed a significant increase in latency compared to the control
groups in the accelerating speed rotarod test (4 ~ 40 rpm) at 13 weeks of age (PBS =10+ 2.2, AAV9-Null =
7.1+1.2, AAV9-OCT4 =40.6 + 13.4 s) (Fig. 1B) and in the constant speed rotarod test (16 rpm) at 10
weeks (PBS =16 + 2.9, AAV9-Null =30 + 7.6, AAV9-OCT4 = 138.1 + 65.8 s) and 13 weeks of age (PBS =
10.7 + 3.7, AAVO-Null = 8.3 + 2.7, AAV9-OCT4 = 34.7 + 20.5 s) (Fig. 1C). The AAV9-OCT4 group also
displayed significantly increased grip force compared to the control groups and in the grip strength test at
8 weeks (PBS =4.4+ 0.6, AAV9-Null =4.5+ 0.3, AAV9-0CT4 =6.1 £ 0.2 g) and 12 weeks of age (PBS = 4.3
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+0.2, AAVO-Null = 4.1 £ 0.3, AAV9-OCT4 = 5.9 + 0.4 g) (Fig. 1D). These results suggest that OCT4 plays a
primary role in improving behavioral performance in HD mice.

In situ expression of OCT4 increases NSCs and OPCs in the SVZ

BrdU can track newly proliferated cells via IHC analysis. Therefore, we evaluated the fate of NSCs or
neurons in the SVZ by counting the numbers of cells expressing Nestin*BrdU* or BlIl-tubulin*BrdU*. Newly
proliferated cells that could possibly differentiate into OPCs or astrocytes were evaluated by counting the
numbers of NG2*BrdU* or GFAP*BrdU" expressing cells. Two weeks after treatment, the fate of NSCs in
the SVZ at 6 weeks of age was evaluated through IHC. In the SVZ, the numbers of Nestin*BrdU* (PBS =
1.17 £+ 0.4, AAVO-Null = 1.4 + 0.4, AAV9-OCT4 = 5.7 + 1.7 (x10° cells/mm?)) and NG2*BrdU* (PBS =2.4 %
1.5, AAVO-Null =2.2 £ 0.3, AAV9-OCT4 = 4.6 + 1.1 (x10° cells/mm3)) cells were significantly higher in the
AAV9-0CT4 group than the controls (Fig. 2A, B). The numbers of Blll-tubulin*BrdU* (PBS = 2.3 + 1.0, AAV9-
Null =2.0 + 0.7, AAV9-OCT4 = 2.7 + 1.7 (x103 cells/mm?)) and GFAP*BrdU* (PBS = 1.7 + 0.8, AAV9-Null =
1.7 0.8, AAV9-OCT4 = 4.4 + 1.1 (x102 cells/mm?)) cells did not significantly differ among the three
groups (Fig. 2C, D). These findings demonstrated that in situ expression of OCT4 in the SVZ increases the
number of newly generated NSCs and OPCs but not the number of newly generated neurons and
astrocytes in HD mice. We hypothesize that the in situ expression of OCT4 can induce the NSC
proliferation in the SVZ, which in turn can converge into more number of OPCs within the
microenvironmental clues of HD.

Oct4-induced Opcs Ameliorate Myelination Deficits Of Hd
Mice

Next, we confirmed the effects of OCT4 on OPC-related gene expression specific to the microenvironment
in HD. Expression of OPC-related markers NG2, oligodendrocyte transcription factor 2 (Olig2), platelet-
derived growth factor receptor alpha (PDGFRa), Wnt family member 3 (Wnt3), myelin regulatory factor
(MYRF), and GDNF was confirmed by qRT-PCR at 13 weeks of age. The AAV9-OCT4 group displayed
significantly increased expression levels of OPC-related markers in the cortex (Fig. 3A) and striatum

(Fig. 3B).

TEM and MRI were used to visualize myelinated fibers in corpus callosum (CC) at 13 weeks of age. In the
CC, the g-ratio of the AAV9-OCT4 group was significantly lower than the controls (Fig. 4A). When MRI
results were analyzed for FA, RD and AD, myelination defects were significantly reduced in the AAV9-
OCT4 group (Fig. 4B). These results suggested that OCT4 overexpression induces myelin plasticity via
the activation of OPC-related genes and ameliorates myelination deficits of HD mice.

Subependymal Oct4 Expression Induces Striatal
Neuroprotection
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Expression of markers neuronal nuclei (NeuN), glutamic acid decarboxylase 65 (GAD65) and GFAP was
confirmed by gRT-PCR at 13 weeks of age. AAV9-OCT4 group displayed significantly increased expression
of NeuN, a mature neuronal marker in the cortex and GAD65, a GABAergic neuronal marker in the
striatum. However, the AAV9-OCT4 group did not change the expression of GFAP, an astrocytic marker in
both regions (Fig. 5A). In the striatum, the area of DARPP-32* GABAergic neurons significantly increased
in the AAV9-OCT4 group compared to control groups using confocal microscopy (Fig. 5B). OPCs have
been shown to express various growth factors and cytokines that play a significant role in cell functions
and survival [17, 18]. Previous studies reported that GDNF, mainly released by OPCs and
oligodendrocytes, can promote neuronal cell survival as well as axon regeneration and myelination in
demyelinating conditions [17, 19]. Taken together, these results raise the potential that OCT4
overexpression not only ameliorates myelination deficits but also induces striatal neuroprotection in HD.

Discussion

Recent studies have reported that WM is associated with motor and cognitive functions, which explains
why HD-induced WM atrophy causes the behavioral defects [6, 7]. The pre-symptomatic (pre-HD) stage of
R6/2 mice shows myelin deficits in the corpus callosum at 4 weeks of age before the remarkable
GABAergic neuronal loss, which is known to occur at late-symptomatic (late-HD) stage. In this study,
following in vivo expression of reprogramming factor OCT4 in pre-HD R6/2 mice, the rotarod and grip
strength tests revealed significant motor improvements in the late-HD stage of OCT4-overexpressing mice
compared to the control groups, suggesting that OCT4 may be the primary role in improving behavioral
performance in HD mice (Fig. 1B-D).

We then observed that OCT4 using AAV9 vector administrated into the LV have effect on the NSC niche
activation in the SVZ. The SVZ contains the largest niche areas for newly generated neural cells such as
neurons and glial cells in the adult brain [20-23]. In the damaged WM areas, therapeutic mechanism to
induce endogenous NSC activation in the SVZ can change the fate of NSCs into oligodendrocyte-lineage
cells in order to compensate for myelin deficits [23]. Namely, in situ expression of OCT4 in the SVZ
increased the number of newly generated NSCs (Nestin*BrdU* cells) and OPCs (NG2*BrdU™ cells) but not
the number of newly generated neurons (Blll-tubulin*BrdU* cells) and astrocytes (GFAP*BrdU* cells) in HD
mice (Fig. 2A-D). This result demonstrated that the microenvironmental clues of HD specifically induce
the cell fate from NSCs to OPCs in the SVZ.

Next, we confirmed the effects of OCT4 on OPC-related gene expression specific to the microenvironment
in HD. The OCT4-induced OPCs enhanced myelin plasticity via the activation of OPC-related genes
(Fig. 3A, B). NG2 and Olig2 are used to specifically identify OPCs [24]. Olig2, PDGFRa and Wnt3 induce
the differentiation of OPCs to oligodendrocytes [25—-27]. Particularly, our results displayed that OCT4-
induced OPCs upregulated MYRF expression. Since HD causes MYRF downregulation and leads to
oligodendrocyte death and demyelination [28], OCT4-mediated MYRF upregulation can ameliorate
myelination deficits in the WM of brains with HD. In addition, OPCs have been shown to express various
growth factors and cytokines that play a significant role in cell functions and survival [17, 18]. Previous
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studies reported that GDNF, mainly released by OPCs and oligodendrocytes, can promote neuronal cell
survival as well as axon regeneration and myelination in demyelinating conditions [17, 19]. The
neuroprotective functions of secreted GDNF also could benefit GABAergic neurons in the striatum and
mitigate the effects of HD, all of which have been reported to improve behavioral functions.

For the analysis of health axon with myelin in CC via analysis of TEM images, g-ratio was calculated in
each axon with myelin. The values of g-ratio of AAV9-OCT4 group were significantly lower than those in
control groups, indicating that OCT4 overexpression ameliorated myelination deficits of HD mice

(Fig. 4A). It is important to note that FA is positively correlated to the myelination and organization of WM
fibers [29], and early increase in RD and AD are followed by significant changes in neuronal volume loss
in HD [30—-32]. Our data showed that AAV9-OCT4 group had significantly higher FA and lower RD, AD
compared to control groups (Fig. 4B). Our biochemical results demonstrated that OCT4 overexpression
also protected mature neurons, not astrocytes, in the cortex and striatum (Fig. 5A). Particularly,
expression of striatal DARPP32*" GABAergic neurons significantly increased in the AAV9-OCT4 group
compared to control groups (Fig. 5B).

Conclusion

In situ expression of reprogramming factor OCT4 induces NSC niche activation in the SVZ and changes
cell fate specific to the microenvironment of HD from NSCs to OPCs. Particularly, MYRF and GDNF
released by OPCs seem to ameliorate myelination deficits and induce striatal neuroprotection in HD,
which explains the behavioral improvement such as motor coordination and grip strength in R6/2 mice
overexpressing OCT4 (Fig. 6). Taken together, these results raise the potential that OCT4-induced OPCs
not only ameliorates myelination deficits but also induces striatal neuroprotection in HD.
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Olig2:oligodendrocyte transcription factor, PDGFRa:platelet-derived growth factor receptor alpha;
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Figure 1

In vivo expression of OCT4 improves behavioral performance in Huntington's disease mice. (A)
Stereotaxic surgery and the schedule of behavioral tests in the timeline are presented. (B-D) AAV9-0CT4
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group displayed significant improvements compared to the control groups (AAV9-Null and PBS) at week
13 in the accelerating rotarod test (4—40 rpm) (B), at weeks 10 and 13 in the constant rotatrod test (16
rpm) (C) and at weeks 8 and 12 in the grip strength test (D). #,*p<0.05, ##,**p<0.01, Data in all panels
represent mean + SEM. *PBS vs AAV9-OCT4, #AAV9-Null vs AAV9-OCT4. OCT4: octamer-binding
transcription factor 4, AAV9: adeno-associated virus serotype 9, PBS: phosphate-buffered saline
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Figure 2

. In situ expression of OCT4 increases oligodendrocyte progenitor cells in the subventricular zone. (A-D)
To confirm that OPC-related genes proliferation in the SVZ among three groups 2 weeks after stereotaxic
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injection by using confocal microscopy. The numbers of Nestin+BrdU+ (A) and NG2+BrdU+ (B) cells were
significantly higher in the AAV9-OCT4 group than control groups. whereas the numbers of BlIl-
tubulin+BrdU+ (C) and GFAP+BrdU+ (D) cells did not significantly differ among the three groups. *p<0.05,
Data in all panels represent mean + SEM. OCT4: octamer-binding transcription factor 4, AAV9: adeno-
associated virus serotype 9, OPC: oligodendrocytes progenitor cell, SVZ: subventricular zone, NG2:

neural/glial antigen 2, BrdU: 5-bromo-2'-deoxyuridine, GFAP: glial fibrillary acidic protein
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Figure 3

In situ expression of OCT4 increases OPC-related genes. (A,B) To confirm that OPC-related genes
proliferation in the cortex (A) and striatum (B) among three groups at 13 weeks of age by using real-time
gRT-PCR. AAV9-OCT4 group significantly increased expression levels of NG2, Olig2, PDGFRa, Wnt3, MYRF
and GDNF in the cortex and striatum. *p<0.05, Data in all panels represent mean + SEM. OPC:
oligodendrocytes progenitor cell, qRT-PCR: quantitative reverse transcription polymerase chain reaction,
OCT4: octamer-binding transcription factor 4, AAV9: adeno-associated virus serotype 9, NG2: neural/glial
antigen 2, Olig2: oligodendrocyte transcription factor, PDGFRa: platelet-derived growth factor receptor
alpha, Wnt3: Wnt family member 3, MYRF: myelin regulatory factor, GDNF: glial cell-derived
neuroprotective factor
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Figure 4

OCT4-induced oligodendrocyte progenitor cells ameliorate myelination deficits (A) Transmission electron
microscope was used to visualize myelinated fibers in corpus callosum at 13 weeks of age, the value of
g-ratio in the AAV9-OCT4 group was significantly lower than control groups. (B) Magnetic resonance
imaging results were analyzed for FA, RD and AD, myelination defects in the AAV9-OCT4 group was
significantly ameliorated. *p<0.05, Data in all panels represent mean + SEM. OCT4: octamer-binding
transcription factor 4, AAV9: adeno-associated virus serotype 9, FA: fractional anisotropy, RD: radial
diffusivity, AD: axial diffusivity
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Figure 5

OCT4-induced oligodendrocyte progenitor cells induce neuroprotection. (A) To confirm neuropretection in
the cortex (A) and striatum (B) among three groups at 13 weeks of age by qRT-PCR. AAV9-OCT4 group
displayed significantly increased expression of NeuN, a mature neuronal marker in the cortex and GAD65,
a GABAergic neuronal marker in the striatum. However, the AAV9-OCT4 group did not change the
expression of GFAP, an astrocytic marker in both regions (B) In the striatum, AAV9-OCT4 group
significantly increased the area of DARPP32+ GABAergic neurons by using confocal microscopy at 13
weeks of age. *p<0.05, ***p<0.001, Data in all panels represent mean + SEM. OCT4: octamer-binding
transcription factor 4, gqRT-PCR: quantitative reverse transcription PCR, AAV9: adeno-associated virus
serotype 9, NeuN: neuronal nuclei, GAD65: glutamic acid decarboxylase 65, GFAP: glial fibrillary acidic
protein, DARPP32: dopamine- and cAMP-regulated neuronal phosphoprotein
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Figure 6

Scheme of in vivo expression of reprogramming factor OCT4 in R6/2 HD mice. Myelin deficits emerge in
the corpus callosum at 4 weeks of age, pre-symptomatic (pre-HD) stage before remarkable GABAergic
neuronal loss at late-symptomatic (late-HD) stage in R6/2 mice. In situ expression of reprogramming
factor OCT4 induces NSC niche activation in the SVZ and changes cell fate specific to the
microenvironment of HD from NSCs to OPCs. Particularly, MYRF and GDNF released by OCT4-induced
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OPCs seem to ameliorate myelination deficits and induce striatal neuroprotection, consequently
improving behavioral performances such as motor coordination and grip strength in HD. OCT4: octamer-
binding transcription factor 4, HD: Huntington's disease, SVZ: subventricular zone, NSC: neural stem cell,
OPC: oligodendrocytes progenitor cell, MYRF: myelin regulatory factor, GDNF: glial cell-derived
neuroprotective factor
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