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Abstract 1 

Under global warming, compound event arises increasing attract as it can lead to a 2 

growing impact on water resources management, human society, and ecosystem, 3 

especially for the compound heatwave and humidity extremes (CHHE), which can exert 4 

harmful influence on human health. However, the understanding of changes in CHHE 5 

both in the historical and future, and attribution of global population exposure to CHHE 6 

are far from enough. In this study, we selected the wet-bulb temperature (Tw) to define 7 

the CHHE, and used the Coupled Model Intercomparison Project Phase 6 (CMIP6) data 8 

to investigate future changes in global CHHE. Furthermore, we quantified the relative 9 

contributions of population, climate change and their interaction effect to the change in 10 

population exposure to CHHE. We found that all scenarios (SSP1-2.6, SSP2-4.5, SSP3-11 

7.0 and SSP5-8.5) show an increasing trend of CHHE. For SSP5-8.5, the global mean 12 

Tw will increase by 7°C, and the northern North America and central Africa experience 13 

warming approaching 10°C by the end of 21st century. Under SSP3-7.0 and SSP5-8.5, 14 

large equatorial regions will witness Tw exceeding 35°C resulting in an exposure of 105 15 

million person-days. All the scenarios presented an increase in population exposure to 16 

CHHE, which is mainly contributed by climate change (50%-90%) rather than 17 

population under different scenarios. We also found that the contribution of population-18 

climate interaction is significantly higher in Africa than in other regions, which mainly 19 

due to high population growth rates in the future. Our study provides scientific basis 20 



 

 

and useful information for the development of adaptation strategies to reduce disaster 21 

risks caused by CHHE. 22 

Highlights 23 

(1) Wet bulb temperature is projected to increase significantly under different 24 

scenarios. 25 

(2) Population exposure in equatorial area will rise under high emission scenarios. 26 

(3) Climate change dominants the increase in global population exposure. 27 

Keywords 28 

climate change; compound heatwave and humidity extremes; CMIP6  29 



 

 

1 Introduction 30 

Under climate change, the frequency and/or intensity of various extremes (such as 31 

heatwaves, droughts, and heavy precipitations) increases, causing huge loss of life and 32 

economic damage (IPCC, 2021; Kurz et al., 2008; Lesk et al., 2017). For instance, 2003 33 

European heatwave event killed tens of thousands of people and the 2010 Russian 34 

heatwave event led to higher global food prices than normal years (Haines et al., 2006; 35 

Wegren, 2013). In the future, global warming will continue due to human emissions of 36 

greenhouse gases, and the frequency and intensity of heatwave will continue to increase, 37 

projected to affect more people (Byrne and O’Gorman, 2018). Research on extreme 38 

events has received significant attention in recent years due to their severe impact on 39 

human societies and economies (Alexander et al., 2006; Cook et al., 2020; Q Zhang et 40 

al., 2022). Compound events can be defined as two or more extreme events occurring 41 

simultaneously or successively, such as compound flood and hot events (Gu et al., 42 

2022), combination of tropical cyclones and moist heat (Rajeev & Mishra, 2022), 43 

compound drought and heatwave events (Zhang et al., 2022) and compound heatwave 44 

and humidity (IPCC, 2021; Coffel et al., 2018). Compared with single extreme events, 45 

compound extremes may have more devastating effects on water resources 46 

management, human society and ecosystem (Ridder et al., 2020; Rogers et al., 2021; 47 

Zscheischler et al., 2018; Tripathy et al., 2023). Specially, the compound heat and 48 

humidity extremes (CHHE), which can be defined as the co-occurrence of heatwave 49 

and high humidity, have much more severe threat to human than single heatwave event 50 



 

 

(Coffel et al., 2018; Raymond et al., 2020). Some studies suggested that heat-humidity 51 

extremes have increased faster and effect more people than heat extremes (Li, 2020; 52 

Rogers et al., 2021). Recent researches found that both high temperature and humidity 53 

caused the high mortality in India and Pakistan during the 2015 heatwave event 54 

(Wehner, Stone, Krishnan, AchutaRao, & Castillo, 2016). With the acceleration of 55 

urbanization, anthropogenic heat emission will increase, which can aggravate urban 56 

heat island (Huang, Song, Wang, Chui, & Chan, 2021). The use of cooling and 57 

dehumidifying facilities leads to increase urban moisture island (Shi et al., 2019). The 58 

hot and humidity cities will regulate region climate and increase heat-related morbidity 59 

and mortality. Hence, it is essential to investigate the exposure of global population to 60 

compound heatwave and humidity extremes, which is beneficial to provide useful 61 

information for the development of adaptation strategies.  62 

CHHE affect human body through multiple factors, such as temperature, humidity, 63 

wind speed, radiation, human’s activities and clothing. The heat index (such as wet-64 

bulb temperature (Tw), wet bulb globe temperature (WBGT), discomfort index (DI), 65 

and etc.) is widely used to quantify CHHE (Epstein & Moran, 2006; Li, 2020; Sherwood 66 

& Huber, 2010). Most of heat indices focused on how to measure the high air 67 

temperature and high humidity conditions as both temperature and humidity affect the 68 

heat exchange between the human body and the environment (Petkova et al., 2013). At 69 

high air temperature, the human body can effectively dissipate heat through evaporation 70 

if the humidity is low, but the human body becomes less efficient at evaporating heat 71 



 

 

with high temperature and high humidity conditions, which can increase body 72 

temperature and eventually lead to heat stroke or even death (Raymond et al., 2020). 73 

The threat to human health from heatwave events cannot be accurately assessed if only 74 

air temperature is considered (Diffenbaugh et al., 2007; Dunne et al., 2013; Fischer and 75 

Schär, 2010). Some heat indexes (such as WBGT) consider many variables such as 76 

wind speed, radiation, air temperature, humidity, and these indices may characterize 77 

heat stress to human body theoretically. However, the data needed in these index are 78 

often limited in availability and quality (Rogers et al., 2021). Previous studies also 79 

suggested that the ambient heat stress reflected by WBGT is strongly influenced by 80 

clothing and human activity, while Tw establishes clear thermodynamic limits that 81 

eliminate these effects (Sherwood and Huber, 2010). Numerous studies have been 82 

conducted to analyze the heatwave event at different scales using Tw. Under current 83 

climate conditions, Tw rarely exceeds 35℃ (Pal and Eltahir, 2016; Raymond et al., 84 

2020; Schär, 2016). Some studies suggest that Tw will exceed 35°C in South Asia and 85 

the Middle East (Im et al., 2017; Pal and Eltahir, 2015), and the number of high-risk 86 

days will increase 10-30% in West, Central and Northeast Africa by the end of the 21st 87 

century (Fotso-Nguemo et al., 2023).  88 

Population exposure is a common metric to assess the impact of compound events 89 

on human society (Feng et al., 2022; Yu and Zhai, 2020). For example, Li et al. (2020) 90 

speculate that1.22 billion people will be exposed to extreme wet heat events if the globe 91 

warms by 3°C. Population exposure is affected by both climate change and population 92 



 

 

change (G. Zhang et al., 2022). Coffel et al. (2018) suggested that changes in global 93 

extreme humidity and heatwave events mainly caused by population change, climate 94 

change, and the population-climate interactions, and they concluded that the increase 95 

in global exposure was largely attributable to climate change. Similar work given by 96 

Chen et al. (2022) also concluded that the contribution of population change was almost 97 

zero in China. We can find that the conclusions from the previous studies on the 98 

contribution proportion of population-climate interactions are inconsistent under 99 

different regions and scenarios.  100 

Generally, previous studies mainly focused on the regional change of CHHE 101 

during the historical or future period. Although almost all the studies suggested CHHE 102 

is experiencing rapidly increasing trend during the historical period and will continue 103 

to increase in the future, there are serval studies evaluating the projection characteristics 104 

globally, and only limit future scenarios (representative concentration pathways, RCP 105 

4.5 and RCP 8.5) were selected (Ballester et al., 2023; Rogers et al., 2021; Wehner, 106 

Stone, Krishnan, AchutaRao, & Castillo, 2016). Such as Coffel et al. (2018) evaluated 107 

the change of CHHE and population exposure using CMIP5 data under RCP 4.5 and 108 

RCP 8.5. With the development of CMIP6 data, the higher resolution and improved 109 

physical processes data can be used to projected future change (Zhang et al., 2022). 110 

Chen et al. (2022) used CMIP6 data to evaluate the change of CHHE under four Shared 111 

Socioeconomic Pathway (SSP) scenarios in China. However, the understanding of 112 

change of population exposure is far from enough, especially lacks the further 113 



 

 

assessment of the spatially variability in different regions and their contributing factors 114 

of population exposure to CHHE changes. 115 

In this study, we calculated the global Tw and population exposure of CHHE in 116 

historical (1979-2014) and various future (2015-2100) scenarios (i.e., SSP-RCP 117 

scenario) using CMIP6 data. Furthermore, we quantitatively attributed the changes in 118 

exposure into three components, i.e., population change, climate change, and 119 

population-climate interactions in different regions and future time periods. The 120 

objectives of the study include: (a) reveal the spatial and temporal patterns of global 121 

historical and future CHHE, (b) investigate the effects of CHHE on human society, (c) 122 

attribution analysis of population exposure to CHHE. Our study can provide a 123 

theoretical basis for improving population adaptive capacity and developing mitigation 124 

measures. 125 

2 Materials and Methods 126 

2.1 Data 127 

We used a multi-model ensemble containing 10 GCMs from CMIP6 in this 128 

study (Table 1). To calculate the daily Tw, we downloaded daily maximum air 129 

temperature (Tmax), surface pressure (p) and relative humidity (Hr) for the historical 130 

simulation period (1979-2014) and future period (2015-2100) under four scenarios 131 

(SSP1-2.6, SSP2-4.5, SSP3-7.0, SSP5-8.5) from the GCMs (Bardon et al., 2021; 132 

O'Neill et al., 2016; Riahi et al., 2017). Global population data is obtained from the 133 



 

 

International Institute for Applied Systems Analysis (IIASA), including 182 countries 134 

and territories worldwide under four SSP scenarios which resolution is 0.5°×0.5° (Kc 135 

and Lutz, 2017). 136 

The global land daily gridded maximum temperature product provided by 137 

Climate Prediction Center (CPC-Unified) for the period from 1979 to 2014 with a 138 

spatial resolution of 0.5°×0.5° is used to validate the GCM's outputs. The CPC-Unified 139 

dataset is widely used in hydrometeorological studies due to its strict quality control 140 

and high accuracy (Mukherjee and Mishra, 2021; Nashwan et al., 2019; Tarek et al., 141 

2021). The daily surface pressure relative humidity data from ERA5 (the fifth 142 

generation of European Center for Medium Weather Forecasting atmospheric 143 

reanalysis) is also used to calculate daily Tw. Both CMIP6 model data and observed 144 

data were re-gridded to 0.5°×0.5° using bilinear interpolation. 145 

We used the Quantile Mapping (QM) method (Cannon et al., 2015; Maraun, 146 

2013) to correct the daily maximum temperature and relative humidity data of CMIP6 147 

based on CPC-unified and ERA5 data. The QM method has been widely used in the 148 

bias correction of climate data due to its accuracy and simplicity (Maurer et al., 2010; 149 

Tang et al., 2021; Thrasher et al., 2012). And we use root mean square error (RMSE) 150 

to assess the performance of bias correction (a smaller value of RMSE suggests a better 151 

performance of the bias correction). Additionally, we used 44 global land regions from 152 

IPCC AR6 (IPCC, 2021) to assess the spatial variability of CHHE (Figure 1). 153 

Table 1 Selected CMIP6 models in this study 154 



 

 

Model Organization Resolution 

CanESM5 
Canadian Centre for Climate Modelling and 

Analysis, Canada 
128×64 

EC-Earth3 EC-Earth-Consortium 512×256 

IPSL-CM6ALR Institute Pierre-Simon Laplace, France 144×143 

KACE-1-0-G 

National Institute of Meteorological Sciences/ 

Korea Meteorological Administration, Climate 

Research Division, Republic of Korea 

192×144 

MIROC6 

Japan Agency for Marine-Earth Science and 

Technology, Japan/ Atmosphere and Ocean 

Research Institute, The University of Tokyo, 

Japan/ National Institute for Environmental 

Studies/ RIKEN Center for Computational 

Science, Japan 

256×128 

MPI-ESM1-2-HR 
Max Planck Institute for Meteorology, 

Germany 
192×96 

MPI-ESM1-2-LR 
Max Planck Institute for Meteorology, 

Germany 
320×160 

NorESM2-LM Norwegian Climate Centre, Norway 144×96 

NorESM2-MM Norwegian Climate Centre, Norway 288×192 

UKESM1-0-LL 
National Centre for Atmospheric Science, UK/ 

Met Office Hadley Centre, UK 
192×144 



 

 

 155 

Figure 1 Geographic location and description of 44 land regions derived from IPCC 156 

AR6 (IPCC, 2021) 157 

2.2 Definition of Compound Heatwave and Humidity Extremes 158 

We used Tw to measure the intensity of compound heatwave and humidity 159 

extremes. Tw was calculated by the algorithm proposed by Davies-Jones (Davies-Jones, 160 

2008). When the daily ambient Tw is greater than 35°C, the evaporative heat dissipation 161 

efficiency of the human body through the skin will be greatly reduced and the body will 162 

not be able to maintain a stable body temperature (H. Chen et al., 2022). To maintain 163 



 

 

the body temperature at 37°C, Tw needs to be less than 35°C (Pal and Eltahir, 2015; 164 

Sherwood and Huber, 2010). However, data from the 2003 European heatwave showed 165 

that a Tw of around 30°C can cause thousands of human deaths (Fouillet et al., 2008), 166 

and empirical data show that working outdoors above 32°C is also very dangerous 167 

(Buzan et al., 2015; Liang et al., 2011). Therefore, we mainly investigated the change 168 

in Tw with threshold exceeding Tw 35°C and we also explore the case of Tw exceed 169 

32°C as supplementary analysis in this study. This provides an early warning for 170 

vulnerable people, such as children and the elderly, in these areas, as well as an 171 

indication of higher-risk areas in the future. 172 

The calculation of Tw is given as follows: 173 
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where Tw is wet bulb temperature (K), TE is equivalent temperature (K), rs is saturation 183 

mixing ratio calculated by Tmax, HR is relative humidity, p is surface pressure (Pa), p0 is 184 

standard atmospheric pressure (Pa). 185 

2.3 Attribution of Population Exposure to CHHE 186 

Population exposure is defined as the product of the number of compound event 187 

days and the number of people in each pixel (H. Chen and Sun, 2021; Tuholske et al., 188 

2021). We used the approach developed by Jones et al. (2015) to analyze the 189 

contribution of population and climate change to the increase of population exposure, 190 

which has been widely applied to the attribution analysis of extreme events (Ullah et 191 

al., 2022; Weber et al., 2020). We attribute the change of population exposure to three 192 

parts: population change, climate change and population-climate interactions: 193 

 H HE CE P P CE P CE  =  +  +  +   (8) 194 

where ΔE represents the change of population exposure, CEH and PH represent the 195 

occurrence of compound events and population in the historical period, and ΔCE and 196 

ΔP represent their change in the future compared to the historical period, δ represent 197 

data bias. The contribution rate of each item can be calculated as follows: 198 
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where CRP, CPclim and CRint represent the contribution rate of population change, 202 

climate change and population-climate interactions, respectively. 203 

3 Results and discussions 204 

3.1 Projected Changes in Tw characteristics 205 

We first examine the performance of the raw and corrected multi-model 206 

ensembles average in simulating the Tmax and Hr (Figure 1). For Tmax, we find the raw 207 

CMIP6 data tends to underestimate the annual average. According to Figure 1b, QM 208 

method is better for high temperature corrections. As this study mainly focuses on mid 209 

to low latitude regions, the effect of the poorer correction in low temperature on the 210 

results can be ignored. For Hr, we find that the raw CMIP6 data slightly overestimates 211 

the annual average, and the correction effectively reduces the error. Overall, the QM 212 

method effectively reduces the RMSE of the model data and the corrected CMIP6 data 213 

can simulate the Tmax and Hr of the historical period well, so we speculate that it is 214 

reasonable to use the corrected CMIP6 data to calculate the future compound extremes 215 

(Figure 2). 216 



 

 

 217 

Figure 2. Bias correction performance of annual average Tmax form multi-model 218 

ensemble for 1979-2014 over global land areas. (a) Bin scatter of the raw Tmax and 219 

observed Tmax for all global land pixels. (b) is corrected Tmax. (c) change in global 220 

land Tmax for 1979-2014. (d-f) is same for Hr. 221 
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We divided the future period into three sub-periods according to the IPCC AR6 223 

(near term (2021-2040), mid-term (2041-2060), long term (2081-2100)) and use 224 

observed data and corrected CMIP6 data to calculate the historical and future Tw. Figure 225 

3 showed the spatial feature and global average change of Tw for historical and different 226 

scenarios future period. Then we calculated the Tw changes relative to the baseline 227 

period (1979-2014) for different periods. Tw has an increasing trend in almost all land 228 

pixels under four future scenarios. The spatial distribution of Tw increases in the three 229 

scenarios with higher emissions (SSP2-4.5, SPP3-7.0, SSP5-8.5) is similar, with the 230 

greatest warming in northern North America, central Africa, the Qinghai-Tibet Plateau, 231 

and the Malay Archipelago than the remaining regions. In the near term, there is no 232 

significant difference in increase between the four future scenarios, the warming in all 233 

scenarios is around 1.8°C. But for the long term, the SSP3-7.0 and SSP5-8.5 scenarios 234 

have very significant warming, with most of the global land pixels warming above 5°C 235 

and some regions will warm by more than 7°C. 236 



 

 

 237 

Figure 3. Spatial features of Tw using 1979-2014 baseline for diverse future scenarios 238 

at (a) Near Term (2021-2040), (b) Mid-Term (2041-2060) and (c) Long Term (2081-239 

2100). 240 

We then calculated the full time series of the global average Tw and probability 241 

density function (PDF). According to Figure 4, the four future scenarios do not differ 242 

significantly in warming magnitudes until 2050. After 2050, the warming in the SSP1-243 

2.6 scenario almost stops and remains at 1.8°C due to lower emission levels and 244 

mitigation measures, while the other three scenarios show continuous warming, with 245 

the SSP5-8.5 scenario showing the fastest warming, reaching 6.7°C at the end of 21st 246 

century. The same conclusion can be drawn from the probability density plot, where 247 

both the mean and variance are smaller for scenario SSP1-2.6, implying that the 248 

warming in this scenario is smaller and closer to historical values. The higher emissions 249 

scenarios have larger means and variances, implying higher warming level. 250 

 251 



 

 

 252 

Figure 4 (a) Time series and probability density function (b) Probability density 253 

function of global annual average Tw relative to 1979-2014. Shading areas denote the 254 

interquartile ensemble spread, i.e. the range between the 25th and 75th percentiles of 255 

the model ensemble, representing the inter-model uncertainty. 256 

We divided the global land area into 46 sub-regions based on the IPCC AR6 257 

and analyzed 44 non-polar sub-regions. Figure 5 shows the Tw of history period and 258 

four future scenarios over different regions. In the historical and near term, the average 259 

Tw is below 32°C in all regions of the world, and there was little difference in warming 260 

between sub-regions. In the mid-term, the average Tw of CAR and SEA is close to 35°C, 261 

meaning that in some areas Tw has already above 35°C, which can pose a serious threat 262 

to human body. In the long term, the average Tw of CAR, SEA, WAF, CAF, NEAF, 263 

SEAF and SEA is close or more than 35°C, meaning that the equatorial region will face 264 

serious threats in the future. By the end of 21st century, the GIC, NEN, CAR, NEAF 265 

and SEAF sub-regions will have warmed much more than the global average, 266 

approaching 9°C in scenario SSP5-8.5. This puts a huge strain on the adaptive capacity 267 

of the local population. Although the latitude of NWN, NEN and GIC is high and Tw is 268 

still safe for human in the future, the significant increase of Tw in these regions may 269 

pose other environmental problems that will also require attention in the future. 270 



 

 

 271 

Figure 5 Heatmap of Tw for history period and four future scenarios in different sub-272 

regions. (a) Near Term (2021-2040). (b) Mid-Term (2041-2060). (c) Long Term 273 

(2080-2100). 274 

3.2 Projected Changes in Population Exposure 275 

Since Tw is a measure of environmental heat stress on humans, it is necessary 276 

to combine population data to assess the impact of Tw rise on humans. In the historical 277 

period, only a few land pixels of Tw occasionally exceeded 35°C. Figure 6(a-d) shows 278 

the spatial distribution of the number of days in a year when Tw exceeds 35°C for 279 

different emission scenarios at the end of 21st century. In scenarios SSP1-2.6 and SSP2-280 

4.5, the exposed areas at the end of 21st century are very similar to the current ones due 281 

to the low level of warming, and only a few pixels such as CAR, WAF and SEA have 282 

some exposure. In scenarios SSP3-7.0 and SSP5-8.5, exposure occurs in regions near 283 

the equator, in the Caribbean, and in southeastern China. The area exposed under the 284 

scenario SSP3-7.0 is small, but the excessive population makes the exposure under this 285 

scenario almost equal to scenario SSP5-8.5 which has the higher temperature. In 286 



 

 

addition, the area of exposure in the Indian region is not large (308 and 642 thousand 287 

square kilometer under scenario SSP3-7.0 and SSP5-8.5, respectively), but the 288 

exposure remains large due to the extremely high population density in the region. 289 

 290 

 291 

Figure 6. Spatiotemporal features of future population exposure and exposure area. (a-292 

d) Spatial distribution of exposure under four scenarios (SSP1-2.6, SSP2-4.5, SSP3-293 



 

 

7.0, SSP5-8.5) in the long term, respectively. (1-3) is an enlargement of focus area of 294 

(a-d). (e) Sub-regions exposure area for each scenario at 35°C threshold. (b) Sub-295 

region exposure area exceeded different thresholds under scenario SSP5-8.5. 296 

 297 

We also analyzed the time series of population exposure (Figure 7). Population 298 

exposure is low for each scenario until 2050, and after 2050 there is a slow increase in 299 

exposure in the SSP2-4.5 scenario and a rapid increase in exposure in SSP5-8.5 and 300 

SSP3-7.0. In the middle and late stages of scenario SSP1-2.6, population exposure tends 301 

to decrease as Tw stops increase and the population decreases, but in the SSP2-4.5 and 302 

SSP5-8.5 scenarios, the increase in Tw offsets the decrease in population and the 303 

population exposure remains on an upward trend. Due to the rapid population growth 304 

in the scenario SSP3-7.0 and the strong temperature rise in the scenario SSP5-8.5, the 305 

population exposure in both scenarios increased rapidly, reaching 105 million person-306 

day at the end of 21st century. 307 



 

 

 308 

Figure 7. Time series of future global population exposure to CHHE under four 309 

scenarios (SSP1-2.6, SSP2-4.5, SSP3-7.0, SSP5-8.5). Shading areas denote the 310 

interquartile ensemble spread, i.e. the range between the 25th and 75th percentiles of 311 

the model ensemble, representing the inter-model uncertainty. 312 

Furthermore, we examined the number of days of exposure under other 313 

thresholds in the scenario SSP3-7.0 and SSP5-8.5 (Figure 8). As the threshold decreases, 314 

the exposed area gradually expands to both sides of the equator. When Tw threshold 315 

decreases 3℃ to 32℃, exposure increases ten-fold in subregion EAS and ENA, where 316 

increase faster than other regions at the same latitude (Figure 9(b)). It may be due to 317 

the high urbanization rate and the significant urban heat island effect in these areas. 318 



 

 

 319 

Figure 8. Spatial distribution of exposure at different thresholds of Tw at the end of 320 

21st century under scenario SSP3-7.0 and SSP5-8.5. (a-c) represent 32℃, 33℃ and 321 

34℃ thresholds, respectively. 322 



 

 

 323 

Figure 9 (a) Sub-regions population exposure for each scenario at 35°C threshold. (b) 324 

Sub-region population exposure exceeded different thresholds under scenario SSP5-325 

8.5. 326 

 327 

3.3 Contributions of population and climate change to increased 328 

exposure 329 

To better understand how heatwaves affect humans and to develop mitigation 330 

measures, we analyzed the contribution of future climate and population changes to 331 

exposure changes globally and in 44 sub-regions. Population changes accounts for 332 

about 20% in 2020 and decreases over time, converging to 0 after 2050 (Fig. 10). In the 333 

long term, the contribution of each factor is relatively stable under scenario SSP1-2.6, 334 

with climate change accounting for about 80% and the population-climate interactions 335 

for 20%. In scenarios SSP2-4.5 and SSP3-7.0, the proportion of interactions gradually 336 



 

 

increases and approaches 50% at the end of 21st century, indirectly indicating a further 337 

increase in the relative role of population change. In scenario SSP5-8.5, the proportion 338 

of interactions increases and then decreases due to strong warming effects, with an 339 

extreme value in 2060 and a share of about 10% at the end of 21st century. These results 340 

suggest that climate change dominates future increases in population exposure, 341 

particularly in Africa, and the impact of population growth cannot be ignored. 342 

 343 

Figure 10. Contributions of climate, population and population-climate interaction 344 

effects to change in total population exposure in four scenarios. (a-d) Global average 345 

contribution proportion for scenarios of SSP1-2.6, SSP2-4.5, SSP3-7.0, SSP5-8.5, 346 

respectively. 347 

 348 

The contribution of each factor was calculated for the scenarios, considering the 349 

variability between regions (Fig. 11). Because not every sub-region has exposure and 350 

attribution analysis for a smaller number of exposure sub-regions would have a larger 351 

error, we only considered sub-regions with more than 100 exposure pixels. In the 352 

scenario SSP3-7.0, the African region has a rapid population increase, so the interaction 353 

proportion is significantly higher in the WAF, CAF, NEAF and SEAF sub-regions than 354 



 

 

in the other regions. In the exposed areas, only EAS has some population decrease, so 355 

the interaction proportion is negative. In scenario SSP5-8.5, the EAS, SAS, SEA and 356 

Americas all experience population declines at the end of 21st century, so the interaction 357 

proportions for this region are all negative. There is a small amount of population 358 

growth in Africa, so the interaction ratio is positive, but less than the scenario SSP3-359 

7.0. According to Figure 11, WAF, CAF, NEAF and SEAF sub-regions will experience 360 

higher warming than the global average, and their populations will grow rapidly with 361 

lack of adaption and cooling infrastructures.  362 

 363 

Figure 11. Proportion of contribution of population effect, climate effect and 364 

interaction effect to population in each sub-region at the end of 21st century under 365 

scenario (a) SSP3-7.0 and (b) SSP5-8.5, respectively. 366 

 367 

 368 

3.4 Discussion 369 

In this study, we first examined projected changes in the future CHHE. Our 370 

result show that global Tw will increase significantly in the future due to climate change. 371 

This is consistent with pervious studied in Africa and China (Fotso-Nguemo et al., 2023; 372 

H. Chen et al., 2022). Even in the scenario SSP1-2.6 with minimum emissions and 373 

mitigation measures, where anthropogenic greenhouse gas emissions are significantly 374 



 

 

reduced to reach carbon neutrality, there is a 1.8°C warming in Tw, which would result 375 

in Tw exceeding 32°C in the CAR SEA region, and outdoor work in summer would be 376 

affected. In contrast, under scenario SSP5-8.5 global average warming of Tw would 377 

reach 6.7°C, with some areas approaching 9°C. Large areas near the equator would 378 

have Tw exceeding 35°, and without cooling facilities, prolonged outdoor activities 379 

would become unfeasible.  380 

Under scenarios SSP3-7.0 and SSP5-8.5, the region near the equator will have 381 

a large area exposed to Tw>35°, while the scenarios SSP2-4.5 and SSP1-2.6 are safer 382 

with few area of exposure. Presumably high forest cover and high relative humidity in 383 

areas such as SEA NSA and CAF, resulting in a high heat index. On the other hand, the 384 

African region is experiencing higher warming, so the heat stress index is also rising 385 

faster. In the future, much of Africa is expected to still lack adequate adaptation and 386 

mitigation measures, especially considering the rapid population growth (Asefi-387 

Najafabady et al., 2018; Weber et al., 2018). Without the establishment of effective 388 

cooling facilities in these areas, heatwave and humidity extremes could lead to severe 389 

heat stroke and fatalities (Thiery et al., 2021). 390 

In the European heatwave of 2003, a 32°C Tw already caused the deaths of 391 

elderly people and children (Coffel et al., 2018; Fouillet et al., 2008). To explore 392 

potential future risk exposure and impact on outdoor labor, we calculated exposure 393 

under different thresholds for scenario SSP3-7.0 and SSP5-8.5. At the 32°C threshold, 394 

there is a several-fold increase in exposure in both equatorial regions. In addition, the 395 



 

 

EAS and ENA sub-regions have much higher increases in exposure than other regions 396 

at the same latitude, but these two sub-regions are more developed in the future, are 397 

better able to develop continuous mitigation policies and have more cooling facilities, 398 

and the impact of high temperatures on human health will be less than in low-income 399 

areas. However, heatwave events can affect outdoor work and increase stress on power 400 

systems. In these areas, future studies should pay more attention to the impact of 401 

heatwaves on infrastructure and the economy (Rajeev and Mishra, 2022; Yin et al., 402 

2023). 403 

Climate change, population change, and their interaction effect are main factors 404 

causing increased exposure (Coffel et al., 2018; Raymond et al., 2020). When we 405 

calculated the relative contribution of population, we used historical meteorological 406 

data, which rarely exceeded the threshold, making the contribution of population 407 

change almost zero (Chen et al., 2022; Coffel et al., 2018). Population exposure in 408 

2020s is small but its uncertainty range is large that means population exposure has 409 

large relative bias in 2020s. The large uncertainty make sum of three contribution 410 

proportion exceed 1. The portion above 1 represents the effect of data uncertainty. As 411 

population exposure increase, the influence of uncertainties decreases, the sum of three 412 

factors’ contribution proportion is close to 1. The proportion of population climate 413 

interactions indirectly reflects the impact of population change when the change of 414 

population exposure is large and the uncertainties of data cannot influence the result 415 

too much. Climate change dominates the increase in exposure at all future times in all 416 



 

 

scenarios. As populations in Africa and South Asia will continue to increase in the 417 

future, the contribution of population-climate interactions in these regions is greater 418 

than in other regions, exceeding 50% in scenario SSP3-7.0. In scenario SSP5-8.5, the 419 

population decrease in many sub-regions, leading negative contribution of interaction. 420 

Only several Africa sub-region which have much population having small positive 421 

contribution of interaction (Coffel et al., 2018). There is an urgent need to reduce 422 

anthropogenic greenhouse gas emissions and reduce the extent of global warming on a 423 

global scale. In developing countries in Africa and SEA, mitigation policies, universal 424 

access to cooling facilities and controlled population growth should be put in place to 425 

help reduce losses in the areas most affected by extreme heatwave events (Fotso-426 

Nguemo et al., 2023; Tuholske et al., 2021). 427 

Recently, some studies started to focus on the effects of radiation on human 428 

health. Previous indicated solar radiation can reduce human endurance exercise 429 

capacity (Otani, Kaya, Tamaki, Watson, & Maughan, 2016). Human’s head directly 430 

expose to solar radiation outdoor, and human’s brain is vulnerable to the environmental 431 

conditions. Exposure to direct solar radiation at lower temperatures may also be 432 

hazardous to human health (Piil et al., 2020). There is longer hours of sunlight and 433 

stronger radiation in equatorial regions and peoples there may face the greater threat in 434 

the future. 435 

Although we used bias correction and multi-model ensemble data to simulate 436 

future CHHE, uncertainty of future data is still inevitable. Uncertainties of Tw change 437 



 

 

and population increase as time. However, with population exposure increase as time, 438 

uncertainties of contribution decrease. Because the larger ΔCE bring larger ΔE, and the 439 

value of contribution is related to ΔCE/ΔE, the variance between the different model 440 

will be smaller than single factor. Scenario SSP1-2.6 has largest uncertainty because of 441 

smallest population exposure. Scenario SSP3-7.0 and SSP5-8.5 have very small 442 

uncertainties at the end of century. Besides the model uncertainty mentioned above, 443 

observed data, resample method and bias correction method we used may also have 444 

uncertainties. Recently, several studies used machine learning method to generate high 445 

resolution climate data, these new methods provide a new way to improve the accuracy 446 

of future projections (Anderson & Lucas, 2018; Yuval & O'Gorman, 2020). 447 

4 Conclusions 448 

In this study, we investigated the changes of compound heatwave and humidity 449 

extremes in global scale, using Tw from CMIP6 models under historical and different 450 

future scenarios including SSP1-2.6, SSP2-4.5, SSP3-7.0 and SSP5-8.5. Furthermore, 451 

we explore the characteristics of population exposure change and attribution of 452 

exposure change. The main conclusions are down as follows. 453 

(1) The global Tw will increase significantly in the future. The warming under four 454 

scenarios (SSP1-2.6, SSP2-4.5, SSP3-7.0, SSP5-8.5) is 1.79℃, 3.37℃, 5.46℃, 6.69℃, 455 

respectively. Large areas near the equator would have Tw exceeding 35°. 456 

(2) Population exposure in the equatorial region will increase significantly under 457 

high emissions scenarios, reaching 105 million person-day by the end of 21st century. 458 



 

 

And the rate of exposure increase in southeastern American and southeastern China is 459 

faster than other regions. 460 

(3) Climate change dominates the increase in exposure at all future times in all 461 

scenarios. At the end of 21st century, climate change dominates the increase in exposure 462 

in all scenarios, with a proportion of 80%, 60%, 45%, and 90% under SSP1-2.6, SSP2-463 

4.5, SSP3-7.0, and SSP5-8.5 scenarios, respectively. 464 
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