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Abstract
Bipolar disorder (BD) is a debilitating disorder affecting ~ 1% of the world’s population. Although many
common and some rare alleles are associated with this complex disorder, little is known about the role of
de novo variation. For the �rst time, this study investigates de novo mutations (DNMs) in families
ascertained from genetically isolated populations. Exomes of approximately 1200 individuals consisting
of 214 trios were quality controlled and analyzed using Genome Analysis Toolkit (GATK). DNMs were
called using HAIL, followed by stringent sample and variant �lters. Genes carrying deleterious DNMs
(dDNMs) in affected participants were annotated for biological functions and associated brain co-
expression modules. A total of 42 loss of function or damaging missense DNMs in 42 genes, including
NRXN1, SHANK3, and SPECC1, were detected among individuals with BD and related disorders.
Additionally, �ve genes, XKR6, MRC2, SUGP2, DICER1, PLEC showed recurrent dDNMs, of which XKR6 and
MRC2 were previously reported. These genes were signi�cantly enriched for functions related to learning,
post-synaptic organization, nervous system development, and calcium ion transport. These genes also
signi�cantly overlapped with brain co-expression modules associated with neurogenesis and immunity
and signi�cantly enriched in genes expressed in excitatory neurons, endothelial cells, and microglia.
These �ndings support a role for DNM in BD and shed light on its neurobiology. If replicated, genes with
signi�cant burdens of DNMs are good candidates for functional genomic studies.

Introduction
Bipolar disorder (BD) is a complex mental disorder characterized by recurrent manic and depressive
episodes. The lifetime prevalence of this disorder is approximately 2% 1, 2. Genetic and epidemiological
studies provide compelling evidence that BD is a multifactorial disorder and that genetic and
environmental factors contribute to its pathogenesis 34. A meta-analysis of 24 twin studies estimates the
broad-sense heritability of BD to be about 67% 4. Variants across the allele frequency spectrum are
implicated in BD: common single nucleotide polymorphisms account for about 20% of the heritability 5, 6.
Association studies have also implicated rare CNVs such as 16p11.2 duplication7. The Bipolar Exome
(BipEx) collaboration recently identi�ed an excess of inherited ultra-rare loss of function (lof) single
nucleotide variants (SNVs) in patients with BD among genes under strong evolutionary constraint in
major BD subtypes, compared to controls 8.

With respect to de novo variation, germline 9–12, postzygotic mosaic 11, 13, and mitochondrial
heteroplasmic variants 13 have been proposed as risk candidates contributing to BD, however their
sample sizes are still small, and no genes yet meet conventional criteria as de novo “hits” in BD. Most of
the existing evidence of de novo mutation (DNM) in BD comes from the study of simplex families. About
15% of �rst-degree relatives of people with a BD diagnosis develop BD themselves 14, 15, even though they
share ~ 50% of inherited genetic risk factors. This suggests a role for (non-inherited) de novo variation in
risk or penetrance. Thus, multiplex families may be highly informative for DNM studies. However, the
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contribution of DNMs to BD in multiplex families is largely unexplored, with only 1 study reporting DNMs
in 18 multiplex families 12.

To better understand the contribution of rare de novo single-nucleotide variants (SNVs) and
insertion/deletion variants in multiplex BD families, we used deeply clinically phenotyped and whole
exome sequenced families from Amish and Mennonite (Anabaptist) communities in North and South
America who were ascertained through probands with BD or related illnesses as part of the Amish
Mennonite Bipolar Genetics Study (AMBiGen; Detera-Wadleigh et al in press). Communities such as these
provide access to large families, mostly with both parents available for study, psychiatric diagnoses
largely uncomplicated by comorbid substance abuse 16, and a relatively homogeneous genetic
background owing to founder effects and low rates of introgression from non-Anabaptist populations 17.

The present study comprised all 199 complete trios from the AMBiGen cohort who have been exome
sequenced to date. Unaffected siblings were used as controls when available. DNMs were identi�ed
through a rigorous quality control (QC) procedure. Genes carrying deleterious DNMs in affected
participants were annotated for biological functions and associated brain co-expression modules. The
results highlight neurodevelopmental, immunological, and synaptic contributions to bipolar disorder.

Methods

Study cohort
All complete trios were drawn from among 1 179 individuals ascertained, assessed, and whole-exome
sequenced as part of the Amish Mennonite Bipolar Genetics Study (AMBiGen). AMBiGen consists of
families ascertained through probands with bipolar disorder and related conditions (Detera-Wadleigh et al
in press). DNA was extracted from whole blood (n = 771), lymphoblastoid cell lines (n = 403), or saliva (n 
= 4) using Qiagen DNeasy Blood & Tissue or OraGene saliva kits. One sample had an unknown DNA
source. Supplementary Table S1 provides details of the cohort.

De�nition of Phenotypes
AMBiGen recruited probands with bipolar disorder and their family members, some of whom also have a
psychiatric disorder. All diagnoses were based on the Diagnostic and Statistical Manual of Mental
Disorders, �fth edition (DSM 5). The offspring of 199 trios that passed �ltering included individuals with
a variety of major psychiatric disorders: 107 cases (49 bipolar I [BD-I], 11 bipolar II [BD-II], 6 schizophrenia
[Scz], 6 schizoaffective disorder [SczAD], 11 recurrent [MDD-R] and 12 single episode [MDD-S] cases of
major depressive disorder, 2 social anxiety disorder [SAD], 10 unspeci�ed psychiatric disorder. The 92
trios with offspring unaffected by any psychiatric disorder were used as controls. Since a variety of
psychiatric disorders show familial aggregation with BD 18 and there is strong genetic overlap among
psychiatric disorders across the allele frequency spectrum 3, 8, we divided the trios into four groups based
on offspring phenotype: 1) Narrow phenotype (severe bipolar subtypes: BD-I and SczAD, n = 55); 2) Broad



Page 4/22

phenotype (the narrow group plus BD-II, Scz, and MDD-R, n = 83); 3) All cases (the broad group plus MDD-
S, SAD, and unspeci�ed major psychiatric disorder, n = 107); and 4) Controls (none of the listed disorders,
n = 92). (Supplementary Table S2)

Whole-exome sequencing (WES)
WES was performed by the Regeneron Genetics Center (RGC) (RGC, Tarrytown, NY, USA). Library capture
and sequencing has been described in detail previously 19. Brie�y, the IDT xGen Exome Research Panel
v1.0 (Integrated DNA Technologies, Coralville, IA, USA) capture was used and 75bp paired-end read
sequencing was performed on the Illumina NovaSeq 6000 platform (Illumina San Diego, CA, USA). All
samples were randomized before library preparation and sequencing.

Read alignment and variant calling
Reads were aligned to the human genome build 38 (GRCh38) reference genome provided by UCSC using
BWA-mem2 version 2.2.1 20. We used Genome analysis Tool Kit (GATK) version 4.2.4.1 21 for variant
calling based on the GATK4 best practices work�ow 22. Single nucleotide variants (SNVs) and
insertions/deletions were called jointly across all 1,179 samples using the GATK HaplotypeCaller package
to produce a version 4.2 variant callset �le (VCF). Variant call accuracy was estimated using the GATK
variant quality score recalibration (VQSR) approach 23.

Dataset QC
The VCF �le, containing 1 179 samples, was loaded into Hail 0.2 (https://hail.is/) to perform basic QC
steps. Multi-allelic sites were split into bi-allelic sites using HAIL 0.2. A total of 5 438 676 variants in 19
396 genes were included in the VCF �le. An overview of the QC and data cleaning process is presented in
Supplementary Figure S1.

Initial variant �ltering
Low-complexity regions de�ned by RepeatMasker (downloaded from the UCSC Table browser:
http://genome.ucsc.edu/cgi-bin/hgTables) were removed, as were SNVs and Indels that failed VQSR
(tranche �lter level of 99 for both SNVs and Indels).

Genotype �ltering
Samples with mismatched genotyped gender were excluded from the downstream analysis. Variants with
< 10 reads, homozygous reference calls with a genotype quality (GQ) < 25; homozygous variant calls with
< 0.9 of the read depth supporting the alternate allele or with a Phred-scaled likelihood (PL) of being
homozygous reference of < 25 were excluded. Additionally heterozygous calls with variant call rate < 0.9
((Reference allele depth + alternative allele depth) divided by total depth < 0.9), with a PL of being
homozygous for the reference allele < 25, or with < 0.25 of the read depth supporting the alternate allele
(i.e., an allele balance of < 0.25) were excluded. Heterozygous calls in the X or Y non-pseudoautosomal
regions in males were excluded.
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Sample QC
We removed samples with estimated contamination levels using FREEMIX > 2.0% 24 or chimeric reads > 
8.5%. We also removed low quality samples with call rate < 95%. To check the accuracy of the reported
pedigree information, relatedness was calculated between each pair of samples using Hail’s King
function and sex was imputed for each sample using Hail’s impute_sex function. Combined with the
imputed sex, these inferred pedigrees were compared to reported pedigrees and checked for
discrepancies. We de�ned duplicate and 1st-degree relative samples using a KING 25 kinship value of
greater than 0.354 and 0.117, respectively. No duplicate samples were identi�ed. As a result of the above
QC steps, a total of 23 samples in the dataset were excluded, leaving 1 156 samples in the analysis.

Final variant �ltering
For �nal variant �ltering, variants with call rate < 90% or a Hardy-Weinberg equilibrium p-value less than
1x10− 6 were excluded, leaving 1 156 samples and 1 082 271 unique variants. This dataset was then used
as the starting point for the de novo work�ow.

Variant annotation
We used the Variant Effect Predictor (VEP 26) version 104 to annotate variants against GRCh38. VEP
assigns properties such as gene name, consequence, and pathogenicity inference by Combined
Annotation Dependent Depletion (CADD) version 1.6 to each variant 27. In addition, we annotated with
allele frequencies in the Genome Aggregation Database (gnomAD) r2.1.1 in non-neuro samples 28

(https://gnomad.broadinstitute.org/), and allele frequencies in Anabaptist populations (from the
Anabaptist Variant Server (AVS), https://edn.som.umaryland.edu/Anabaptist/query.htm) after lifting the
genome coordinates over to GRCh38. Finally, we annotated constraint matrix with probability of being
loss-of-function intolerant (pLI) scores, loss-of-function observed/expected upper bound fraction (LOEUF)
scores, using the gnomAD loss-of-function metrics table from release 2.1.1 28.

We processed the VEP annotated consequences, and we de�ned variant-speci�c consequences and gene
annotations as the most severe consequence of a canonical transcript in which that variant lies. We then
assigned variants to four distinct consequence classes: lof, missense, synonymous and noncoding. We
subdivided missense variants into ‘missense damaging’ (misD) if the CADD Phred-scaled scores is
greater than 15. The threshold for the CADD Phred-scaled scores was preset according to previous
studies 10, 11. Lof or misD DNMs were referred to as deleterious or dDNMs. We de�ned evolutionarily-
constrained genes as those with LOEUF scores < 0.35, as recommended by the gnomAD team.

Detection of DNMs
De novo variants were called using the de novo function of Hail 0.2, developed by Samocha et al. 29

(https://github.com/ksamocha/de_novo_scripts). Population allele frequencies for variants were
obtained from the non-neuro subset of gnomAD 28 and these frequencies were used as the input priors.
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As additional parameters, parents’ homozygous reference genotypes were required to have no more than
3% of reads supporting the alternate allele, offspring’s heterozygous calls were required to have at least
30% of reads supporting the alternate allele, and the ratio of offspring read depth to parental read depth
was required to be at least 0.3.

DNM �ltering and Sample QC
This process identi�ed 4 415 putative de novo variants at 3 729 distinct genomic locations in the 208
offspring in this dataset. For QC on the de novo variants, we retained variants if they were high
con�dence as indicated by the calling algorithm (Hail 0.2), medium con�dence and a singleton in the
dataset (N = 1 156). To remove variants stemming from cell line artifacts, an allele balance of at least 0.4
was required for the 104 offspring whose data were generated from lymphoblastoid cell line DNA. Since
true de novo variants should be rare, variants were removed if they had an allele frequency > 0.1% in the
non-neuro subset of gnomAD, or > 1% in Anabaptist populations (based on the AVS). Variants were
excluded if they appeared more than twice in the remaining list of putative DNMs and were then limited to
one variant per person per gene, retaining variants with the most severe consequences. For sample QC,
samples whose DNA source was whole-blood or saliva were excluded if they had more than seven
protein-coding putative de novo variants. Samples whose DNA source was from cell lines were dropped if
they had more than �ve protein-coding putative de novo variants. We subsequently performed manual
inspection with IGV-2.11.8 30 and excluded remaining DNMs with either of the following criteria as in the
previous study11: (1) supported by less than two reads in IGV visualization, (2) coinciding with other two
or more variant positions in the same read (likely due to misalignment), and (3) with two or more reads
supporting the variant in the parent(s) (suggestive of transmission or systematic errors). For the �nal
sample QC, a total of �ve samples with more than seven DNMs were excluded from the remaining
samples.

On average, the 199 offspring in the �nal dataset had 0.97 [range: 0.91–0.99] of the exome target
meeting 15× sequencing depth, 0.0027 [range: 0.0019–0.0179] of free-mix contamination, and 0.02
[range: 0.003–0.083] of chimeric read percentage. Sample information for the 199 trios passing QC is
available in Supplementary Table S3.

DNM validation
We validated a subset of the DNMs with Sanger sequencing prioritizing dDNMs that were lof, misD in the
narrow phenotype (BD-I and SczAD). Sequencing primers were designed using NCBI Primer-Blast
(https://www.ncbi.nlm.nih.gov/tools/primer-blast/) and synthesized by Integrated DNA Technologies (IDT
Inc, Coralville, Iowa, USA). Forward and reverse primer sequences are shown in Supplementary Table S6.
Sanger sequencing was performed by Psomagen Inc. (Gaitthersburg, Maryland, USA).

Incorporation of published DNMs in controls
To increase statistical power of our case-control comparisons, we incorporated DNMs from published
control trios comprising the unaffected siblings of ASD probands in SPARK 31. We chose SPARK trios
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because their DNMs were detected in a similar method to ours: They were exome-sequenced at RGC,
aligned to GRCh38, genotype-called using the GATK4 pipeline, and DNM-called using Hail0.2. Variant and
sample �ltering methods are also similar to what we used. However, due to data availability, we only used
autosomal DNMs for our case-control comparison. After re-annotation with our procedures (described
above), 3 583 exonic DNMs from 3 032 control trios were combined with the autosomal exonic DNMs
from our 92 control trios for the downstream analysis.

Statistical analysis of the patterns of dDNM enrichment and genes recurrently hit by dDNMs by
phenotype

All statistical tests were performed using R (http://www.r-project.org/). To test for overall rates and
recurrence of DNMs, we �t the data to Poisson-distributed models. For comparisons against control
DNMs, we used a one-tailed two-sample exact Poisson test. For comparisons against mutation model
expectations, we used denovolyzeR 32 that estimates the number of expected DNMs by incorporating the
triplet context, indel rates, the gene length, and null expectation based on macaque–human gene
comparisons. We used a previously developed mutability model 29 to compute a mutability table
containing the expected number of DNMs per gene per variant class. The mutation rate for damaging
missense DNMs (CADD score ≥ 15) in a gene was used from the mutability table generated by Dong et al
33, 34. We did not include inframe indels in this analysis because mutation rates for inframe indels are not
evaluated within the statistical framework. The observed versus expected number of DNMs for each
variant class were compared using a one-tailed Poisson test. The mutation rates were adjusted with the
overall rate of synonymous DNMs in SPARK control trios, assuming that the rates of synonymous DNMs
are not greatly different across case and control groups from different ancestries, based on the results in
the Iossifov et al. 35 and Howrigan et al. 36 studies.

Statistical signi�cance for the observed numbers of dDNMs in a gene was assessed by using the
denovolyzeByGene function in DenovolyzeR 32. As above, we used the mutation rate in a gene from the
mutability table generated by Samocha et al. 29 and Dong et al. 33, 34, and excluded inframe indels from
the analysis. The exome-wide signi�cance threshold was de�ned as P = 2.74 × 10− 6 based on the number
of genes with available mutation rates in Samocha et al. (n = 18 271) 29.

All the analyses except for overall DNM rate comparison against the mutation model expectation were
restricted to autosomal DNMs since Chr X DNMs are hard to interpret and none were validated.

Incorporation of published DNMs in Bipolar disorder
We incorporated published DNMs in BD to further re�ne their effect on BD risk. We collected results from
independent exome-sequenced BD trios from three previous studies 9–11. Speci�c publications and
descriptive data are listed Supplementary Table S4. In total, we assessed 354 published BD trios. DNMs
extracted from Supplementary Data 1 of Nishioaka et al 11 which included Fromer et al9 and Goes et al10.
These were re-annotated using the same procedures as the present study and combined with our list of
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DNMs. The combined DNM list in cases includes DNMs from the 355 narrow, 437 broad (including BD-
NOS), and 461 total case phenotype groups.

Functional enrichment analysis
To explore functional enrichment of genes carrying dDNMs we employed g:Pro�ler
(https://biit.cs.ut.ee/gpro�ler/gost) 37, which provides up-to-date information from numerous databases,
including gene ontology (GO).

Co-expression analysis of DNMS
In the co-expression analysis, we considered variants based on their phenotype and function. We used six
independent gene lists extracted from the DNM list combined with previous studies: 1) genes with lof
variants from narrow group; 2) genes with misD variants from narrow group; 3) genes with lof variants
from broad group; 4) genes with misD variants from broad group; 5) lof variants from control group; 6)
genes with misD variants from control group.

Reference module overlap

To characterize which functional pathways are associated with the DNMs from six gene lists, we used
published co-expression modules. Weighted gene co-expression network analysis (WGCNA) identi�es
clusters, or ‘modules’, of genes that are highly correlated due to similar expression patterns 38. The
reference modules used were identi�ed in healthy controls across multiple brain regions in Gandal et al.
39 and Hartl et al. 40. A hypergeometric test was run on the gene overlap between each of DNM gene lists
with each reference module from Gandal et al. 39 & Hartl et al. 40. The background genes were set as the
19 396 unique protein-coding genes compiled from the list of the IDT xGen Exome Research Panel v1.0
(Integrated DNA Technologies, Coralville, IA, USA) capture.

To determine if the gene list overlap is greater than what would be expected by random chance, a
permutation test was also performed on each overlap greater in size than 1 gene and not with the grey
modules. To do this, a set of genes equal in size to the list was selected from the AMBIGen background.
The gene set selected was random but corrected for gene length, i.e., selected from a similar distribution
of gene lengths as the original AMBIGen list (with small de�ned as < 13 Mbp, medium 13–46 Mbp, and
large > 46 Mbp; these groupings were selected by creating 3 groups of approximately equal size among
the union of the AMBIGen gene lists). The overlap of the permuted gene list with each reference module
was calculated; this process was repeated 1000 times for each overlap. Modules that signi�cantly
overlapped with the control lists were removed from consideration, so that the reported modules are
exclusive to phenotype-associated DNM lists. All p-values were adjusted using the Benjamini- Hochberg
(BH) method.

Characterization of reference modules
Functional enrichment
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Functional enrichment for each of the reference modules was performed using the R package topGO 41,
which accounts for the hierarchical structure of the GO database by penalizing ‘parent’ pathways with
enriched ‘children’. Pathways are scored by the number of genes in that pathway also found in DNM list
(‘signi�cant’) vs the number of total genes in that pathway from the background (‘annotated’). Using the
expected number of signi�cant genes given the size of the list and background, Fischer’s exact test is
performed. All p-values were corrected for multiple comparisons using the BH method. We used the same
background genes (n = 19 396) as in the co-expression analysis.

To further synthesize and extract meaning from these GO results, topic modeling was employed on all
signi�cant GO terms across models. Brie�y, topic modeling is a text mining method for unsupervised
classi�cation of text. The algorithm identi�es natural groups of co-occurring words in signi�cant GO
terms, or “topics”. The algorithm can then quantify the mixture of words associated within each topic,
while also determining the mixture of topics that describes each grouping (in this case – reference
module). Here, Frequently in and Exclusively (FREX) words are used to characterize each topic. The
strength of association of each word with each topic is described by the parameter beta. The strength of
association of each gene list module with each topic is described by the parameter gamma, which is the
estimated proportion of words from the GO terms in that module that are generated from the respective
topic. Thus, each module is summarized by general biological function across all pathway results.
Number of topics (K = 4) was chosen based on optimal exclusivity and semantic coherence, biological
knowledge, strength of association between gene lists and topics.

Cell type enrichment

Cell-type enrichment for each module signi�cantly overlapped with at least one DNM gene list was
calculated as the hypergeometric overlap between the module genes list and the list of genes associated
with each cell type 42. All p-values were corrected for multiple comparisons using the BH method.

Developmental trajectories

In order to explore the expression of DNMs during development, we performed a developmental trajectory
analysis on each reference module that signi�cantly overlapped with at least one DNM gene list.
Neocortical gene expression values across different windows of life from 421 samples from 41 human
brains were accessed from Li et al. 43. For each module, genes were averaged across samples at each
time window and plotted as a smooth curve to visualize periods of average higher and lower expression.

Results

DNMs in AMBiGen
WES data passed all QC procedures in 199 trios, comprising 107 affected offspring (including 55 narrow
or 83 broad cases), 92 unaffected offspring, 110 fathers, and 110 mothers. After variant-level QC �ltering,
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the DNM rate was 1.69 per affected and 1.66 per unaffected offspring, following the expected Poisson
distribution (Supplementally Figure S2), similar to the DNM rate in a recent study 44.

A total of 334 rare DNMs were observed (Supplementary Table S5), including 170 DNMs in protein-coding
exons among 59/107 (55%) of affected and 52/92 (57%) of unaffected offspring. In trios where the
offspring was affected with a “broad” phenotype, we observed 42 rare dDNMs in 42 distinct genes; no
gene carried more than one DNM (Table 1). All 10 DNMs selected for validation were successfully
validated by Sanger sequencing (Supplementary Table S6).

Patterns of DNM enrichment
As expected, there were no signi�cant differences overall in the rates of dDNMs between affected and
unaffected offspring (Table 2). The lof DNM rate among offspring with a narrow diagnosis was slightly
above the DNM model expectation (rate ratio = 1.47, uncorrected P = 0.18) and nominally increased over
controls (rate ratio = 2.27, uncorrected P = 0.03). The lof DNM rate in lof-intolerant genes was similar
between affected and unaffected offspring, as were the rates of synonymous DNMs. There was a trend
toward enrichment of lof in offspring with BD-I (Supplementary Table S7, rate ratio = 2.23, uncorrected P 
= 0.04), while misD DNMs were more slightly prevalent in offspring with MDD-R (ratio = 2.17, uncorrected
P = 0.03).

Functional enrichment analysis of genes with dDNMs in
affected offspring
Genes hit by dDNM in affected offspring represented a non-random subset of all genes tested. Functional
enrichment analysis demonstrated that genes with a dDNM among offspring affected with a narrow
diagnosis were signi�cantly associated with neuron projection, nervous system development, and
calcium ion transmembrane activity (Fig. 1a). Genes with dDNMs among offspring with a broad
diagnosis were signi�cantly enriched for functions associated with learning and postsynaptic
organization (Fig. 1b). To test whether the observed dDNMs were agnostic to phenotype, we removed
from the list the 44–58 genes that carried dDNMs in unaffected offspring and repeated the enrichment
analysis. The results were essentially unchanged.

Genes hit by recurrent dDNMs
The occurrence of multiple de novo events in a single gene, in a cohort of individuals with a common
phenotype, may implicate that gene in the pathogenesis of the condition under study. To test this, we
combined our results with those of three previously published studies of DNM in bipolar disorder 9–11 and
compared them altogether. Five genes, XKR6, MRC2, SUGP2, DICER1, and PLEC showed recurrent dDNMs
in the broad phenotype group. XKR6 and MRC2 were previously reported as recurrent hits by Nishioka et
al. 11 The numbers of dDNMs per gene were compared to the expected values calculated by
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denovolyzeByGene. Nominally signi�cant excesses of dDNMs were detected in SUGP2 (uncorrected P = 
2.86 x 10− 4), DICER1 (uncorrected P = 8.72 x 10− 4), and PLEC (uncorrected P = 0.0015).

Co-expression analysis of dDNMs
Supplementary Table S8 shows the six lists of genes used in the co-expression analysis: 1) genes with lof
or 2) misD variants in “narrow” cases; 3) genes with lof or 4) misD variants in “broad” cases; 5) genes
with lof or misD variants in controls.

Hypergeometric overlap with reference modules. The broad and narrow misD gene lists were found to
signi�cantly overlap with the PsychENCODE modules geneM11, geneM15, geneM18, geneM25, geneM29,
geneM32, and geneM34 39, above what would be expected by random chance per 1000 permutation tests
(Fig. 2a, Table 3). The broad misD gene list also signi�cantly overlapped with geneM15, while the narrow
LoF gene list overlapped gene M5 39. The broad and narrow misD and LoF gene lists all signi�cantly
overlapped with Hartl module BRNACC.M2 40 (Fig. 2a, Table 3). Notably, the module Hartl_BRNACC.M2 is
by far the most enriched for genes hit by lof DNMs (OR = 6.1–6.8), while PsychENCODE_geneM34 is most
enriched for misD (OR = 4.9–6.1) in the both phenotype groups (Table 3).

Functional enrichment of overlapped modules. GO functional enrichment followed by topic modeling
revealed that PsychENCODE modules geneM5 and geneM32 are related to immune and in�ammatory
response, geneM11 and geneM25 to transcription and epigenetic modi�cation, and geneM29, geneM34
39, and Hartl BRNACC.M2 40 to transcription related to synaptic signaling (Fig. 2b & Fig. 2c). These results
suggest a broad range of implicated biological functions, with an emphasis on immune response,
transcription, and synaptic signaling.

Cell type enrichment. Reference modules geneM5, geneM15, and geneM32 were signi�cantly enriched for
endothelial cells, geneM15 was enriched for excitatory neurons, and geneM5 was enriched for microglia
(Fig. 3a). The other reference modules were not found to be signi�cantly enriched for one of the Lake et
al. cell type categories 42.

Developmental trajectories. The reference modules described above followed three general
developmental expression trajectories: (1) High levels of prenatal expression and decreased expression
throughout the lifespan (PsychENCODE geneM11, geneM29, geneM34, and Hartl BRNACC.M2); (2) Low
levels of expression that increase during embryonic windows, decreasing during late pregnancy and early-
life years, then increasing again from childhood through adulthood (geneM11 and geneM25); (3)
Expression that increases through pregnancy into early-life years, then decreases through adulthood
(geneM5 and geneM32). These developmental trajectories are shown in Fig. 3b. Together, these
expression patterns implicate genes highly expressed prenatally and in infancy.

Discussion
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To our knowledge, this is the �rst study that investigated DNMs in coding regions in multiplex BD families
from a genetic isolate, adding substantially to the limited set of BD trios that have been subjected to de
novo analysis to date. The results support a role for DNM in BD and related disorders. This is also the �rst
de novo study to investigate gene overlap with gene co-expression modules in human brain, thus
implicating immune-related genes in the etiology of BD. This �nding lends strong support to the
previously proposed role for immune dysfunction in BD 45.

The enrichment patterns of dDNMs showed a tendency for enrichment of lof DNMs in offspring with
more severe phenotypes (BD, SczAD, and Scz) and enrichment of misD in offspring with milder
phenotypes (MDD). These �ndings agree with previous studies of DNMs in BD 11 and other psychiatric
disorders 35, 36.

Gene set enrichment analysis demonstrated that genes hit by dDNMs in BD and related conditions are
enriched for functions related to synapses, learning, post-synaptic organization, nervous system
development, and calcium ion transport. The pathway results were robust to removal of genes that
carried dDNMs in unaffected offspring. Synapse and calcium ion channel genes are associated
consistently with BD, as previously discussed 11. Learning involves neuroplasticity, the promotion of
which by lithium may be related to its therapeutic effects in BD. These results also highlight genes that
are expressed in early life and involved in neurodevelopment, suggesting that at least some cases of BD
and related disorders have a neurodevelopmental origin.

Genes recurrently hit by dDNM in this and in previous studies deserve further scrutiny. While we found no
genes reaching the exome-wide signi�cance threshold, we observed enrichment of dDNMs in SUGP2,
DICER1, and PLEC, which have also been implicated in BD by other lines of evidence.

SUGP2 was detected in BD-I subjects in both our study and the study of Goes et al. SUGP2 encodes a
member of the arginine/serine-rich family of splicing factors. The encoded protein functions in mRNA
processing. In TWAS using TWAS hub (http://twas-hub.org/)46, which measures an association between
gene expression and a complex phenotype using GWAS summary-level data, the model trained using
transcriptome data of GTEx Brain Cerebellum showed signi�cant associations between SUGP2 and
bipolar disorder and schizophrenia with a Z scores of 4.4 or higher. Open Targets Genetics
(https://genetics.opentargets.org/)47, 48 that can highlight functionally involved genes by integrating
functional and biological data from multiple disparate sources into GWAS summary data, SUGP2 was
signi�cantly associated with BD-I.

DICER1 was detected in SczAD subjects in both our study and the study of Fromer et al9. DICER1
synthesizes DICER, a member of the ribonuclease III protein family that is involved in the generation of
microRNAs (miRNAs), which regulate gene expression at the posttranscriptional level. MiRNAs are 22-nt-
long RNAs generated from longer precursor RNAs. In general, miRNAs repress translation, but they can
also acquire other functions after binding to their target RNA. Notably, many studies have implicated
miRNAs in the development of psychotic disorders. DICER has an important role in the development and
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function of the immune 49 and central nervous systems 50. DICER1 is upregulated in the dorsolateral
prefrontal cortex 50, 51, and lymphoblastoid cell lines of schizophrenia cases 52. In addition, DICER1
single-nucleotide polymorphisms 53 and copy-number variations 54 are associated with schizophrenia.
Interestingly, valproic acid, a mood stabilizer used to treat bipolar disorder, induces DICER degradation 55.
Similarly, lithium affects expression of let-7e, which is thought to target DICER mRNA 56.

PLEC was detected in an MDD-R subject in our study and a BD-I subject in the study of Nishioka et al11.
PLEC encodes plectin that is a prominent member of an important family of structurally and functionally
related proteins, termed plakins or cytolinkers, that are capable of interlinking different elements of the
cytoskeleton. Plakins, with their multi-domain structure and enormous size, not only play crucial roles in
maintaining cell and tissue integrity and orchestrating dynamic changes in cytoarchitecture and cell
shape, but also serve as scaffolding platforms for the assembly, positioning, and regulation of signaling
complexes. Interestingly, PLEC lies within one of the most signi�cant BD GWAS loci 5, and PLEC was
identi�ed as one of the 56 candidate antidepressant response genes that are associated with
electroconvulsive stimuli-induced recovery in a mouse model of depression57.

Co-expression analysis identi�ed clusters, or modules, of genes hit by lof or misD DNMs with similar
expression patterns in brain from donors with BD and related disorders. PsychENCODE modules gene’
M25 and geneM11, enriched for genes hit by misD DNMs in the narrow phenotype in our study, were
associated with transcription and epigenetic modi�cation. These modules were not enriched in GWAS of
BD or Scz 39. This suggests a distinction between genes hit by dDNMs and those regulated by common
variants. Module geneM5, enriched for genes hit by lof DNMs in the narrow phenotype, and M32, enriched
for genes hit by misD DNMs in the narrow and broad phenotypes, are immune-related modules that
increase neuroin�ammatory processes and are broadly expressed in signaling pathways. These modules
were associated with BD, Scz, and ASD in PsychENCODE39. These �ndings support a role for
in�ammatory processes in BD as in other major psychiatric disorders 58. Genes hit by dDNMs in the
narrow or broad phenotypes were enriched in nucleus accumbens, a brain region that has been suggested
to be associated with BD and Scz 59 (Fig. 2a, Table 3).

The present study has several limitations. First, the sample size is modest for a DNM study, limiting
statistical power to detect exome-wide signi�cant associations, particularly with individual genes.
However, since this is a family sample, we were able to include relatives with SczAD, Scz, and MDD-R,
thus increasing sample size and statistical power. Other potential limitations include a proportion of
sequenced DNA extracted from LCLs. However, we did not observe a substantially higher rate of DNM in
DNA from LCLs. While selected DNMs all validated by Sanger sequencing, we could not validate all
dDNMs due to limited DNA availability. In addition, some probands had incomplete phenotype
information and controls were limited to unaffected siblings who could develop mood disorders later in
life. However, we augmented some of the case-control comparisons by use of unaffected siblings from
an ASD study that were processed under a similar pipeline. We do not know how DNMs contribute to
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familial BD; we speculate that DNMs add to existing polygenic and other inherited risk factors to modify
penetrance, symptom severity, or associated impairment.

We have identi�ed several rare, dDNMs among cases of BD and related conditions in this family sample,
supporting an etiological role for both neurodevelopment and immunity in BD and related disorders. The
results suggest that DNMs may be a genetic contributor to BD even in multiplex families. While further
studies are needed, genes with recurrent dDNMs are good targets for functional genomic investigation.
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Figure 1

g:Pro�ler analysis for the genes hit by dDNMs. a Signi�cantly enriched GO terms of the genes hit by
dDNMs from narrow group in molecular function (MF) and biological process (BP). b Signi�cantly
enriched GO terms of the genes hit by dDNMs from broad group in MF and BP.
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Figure 2

Co-expression analysis for the genes hit by dDNMs. a Signi�cant overlaps between DNM lists and
reference module by permutation test. b Gene ontology (GO) functional enrichment of reference modules.
c Reference module strength of association with each topic.
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Figure 3

Characterization of reference modules that signi�cantly overlap with the genes hit by dDNMs. a Cell-type
enrichment of reference modules that signi�cantly overlap with gene lists. bAverage gene expression per
module across development.
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