Study Sample
Following the Declaration of Helsinki, this study was conducted after obtaining approval from the Ethics Committee of the Kitakyushu Municipal Medical Center and Faculty of Medicine, Tottori University (Approval No.: 2662). The study participants were adult patients who underwent planned non-cardiac surgery with intubation under general anesthesia at the Kitakyushu Municipal Medical Center between March 2015 and April 2016.
A total of 730 participants completed the questionnaires to evaluate preoperative psychological stress, drinking/smoking habits, and alcohol/nicotine dependence. Inclusion criteria included patients between categories I and III in the American Society of Anesthesiologists physical status classification (ASA-PS), who were at least 20 years of age. Exclusion criteria included the inability to complete to the questionnaire due to dementia or dysgraphia, as judged by the anesthesiologists.
Procedure
Questionnaires were given to patients at the preoperative consultation (one to three days before surgery). Anesthesiologists (YM and HM) provided a verbal explanation of the study using the patient’s manual, including the study details, such as purpose, methods, the right to refuse participation, and contact information for questions and complaints related to the study (Opt-in and Opt-out). Patients provided completed and signed questionnaires to attending anesthesiologists, implying consent for the study.
We analyzed how drinking/smoking habits, the degree of dependence, and the degree of psychological stress were related to postoperative complications within 30 days of surgery. The patients’ background, surgical, and anesthesia data were obtained from the electronic medical records and preoperative questionnaires. We also investigated the duration of hospitalization and in-hospital death as secondary outcomes. Postoperative complications included those that met the Japan Clinical Oncology Group (JCOG) postoperative complications criteria, as well as those that required additional treatment, such as hyperactive delirium, asthma, and catheter infections.
Measurements (covariates)
We assessed factors known to affect postoperative complications to include as covariates, including age, sex, body mass index (BMI), ASA-PS (as determined by attending anesthesiologists), Preoperative use of psychotropics (hypnotics, anxiolytics, and antidepressants), anesthesia time/surgical time, and the Surgical Apgar score (sAs, collected from the electronic anesthesia records by the first author). Details of each evaluation tool are outlined below.
Alcohol screening in the year prior to surgery
The Alcohol Use Disorder Identification Test (AUDIT) is a self-administered screening test that was developed by the WHO in the 1980s to evaluate alcohol consumption, dependence, and problematic drinking [12]. The AUDIT includes 10 items and can be used across various ethnicities and cultures. Respondents are asked to answer 10 questions regarding alcohol use in the preceding year; items 1–3 assess the amount and frequency of alcohol consumption, items 4–6 assess the degree of dependence, and items 7–10 assess problematic drinking, with a total score of 0–40 points. The cutoff value for problematic drinking is 8 points or higher.
Tobacco screening in the year prior to surgery
The Fagerström Test for Nicotine Dependence (FTND) is a modified version of the Fagerström Tolerance Questionnaire and was developed by Heatherton et al. to assess the need for nicotine replacement therapy in the treatment of withdrawal symptoms among smokers who are trying to quit [13]. This simplified test contains six items that assess tobacco consumption and the degree of dependence. Each item has a varying degree of importance (points), and scores are summed to yield a total score of 10. The degree of dependence is categorized as follows: Low dependence (0–2 points), medium dependence (3–6 points), and high dependence (7–10 points) [14]. The cutoff for nicotine dependence was 3 points or higher.
Mental health screening 30 days prior to surgery
In the medical field, the Hospital Anxiety and Depression Scale (HADS) is a well-established self-administered 14-item scale that has two subscales that assess anxiety (7 items) and depression (7 items). The HADS was developed by Zigmond and Snaith in 1983 to evaluate the degree of anxiety and depression in non-psychiatric hospitals and clinics [15]. Items related to physical symptoms, such as dizziness, headache, and low appetite were not included as they are not depression-specific symptoms. Respondents rated each HADS item on a 4-point scale (0–3 points), whereby a score of 0 is the most positive, and a score of 3 is the most negative. A higher HADS score represents a greater risk of anxiety and depressive disorders. A score of 11–19 points indicates adjustment disorder, and a score of 20 or more indicates major depressive disorder [16].
Meanwhile, the 6-item Kessler Psychological Distress Scale (K6) is a simplified version of the 10-item version of the scale and evaluates nonspecific psychological stress in workplaces and the field of epidemiology [17], hence K6 can assess the overall psychological stress, such as mood and anxiety disorders, but not depression. Arnaud et al. reported that the K6 is a convenient tool with a reliability that is equivalent to that of the K10 [18]. In this study, we used the Japanese version of the K6, which includes items 2, 4, 5, 8, 9, and 10 of the K10. Each K6 item is scored on a scale of 1 to 5 (1: never; 2: rarely; 3: some of the time; 4: most of the time; 5: all the time), with a total score 0f 0–24 points. We defined that a score of 8 points or higher was considered as indicative of psychological stress [19].
The preoperative severity of patient comorbidity (ASA-PS)
The ASA-PS was developed by Meyer Saklad in 1941 [20]. The goal of the ASA-PS classification is to assess the overall health status and comorbidities of preoperative patients. Items are graded on a 6-point scale crudely, whereby a higher score indicates a higher risk of perioperative complications, 30-day readmissions, and longer hospitalization [20, 21]. This is a subjective classification that is completed by the evaluator (an attending anesthesiologist) and does not consider surgical invasiveness, the method of anesthesia, or other intraoperative factors. Given that this is only a preoperative evaluation of a patient, we also used the sAs as an objective measure of intraoperative invasiveness in this study.
The intraoperative surgical and anesthetic invasiveness (sAs)
Following the Apgar score in obstetrics, Gawande et al. proposed the sAs in 2007, which has a maximum score of 10 points [22]. This total score is calculated by quantifying and scoring three parameters from intraoperative anesthesia records, including lowest mean blood pressure, lowest heart rate, and amount of blood loss. The amount of blood loss is an indicator of surgical complexity and the surgeon’s performance, and changes in heart rate and blood pressure reflect the patient’s physiological state and the appropriateness of anesthetic management. This scoring system effectively predicts the postoperative 30-day mortality rate and postoperative complications, for both general surgery and vascular surgery [23]. A maximum sAs (10 points) indicates the most appropriate intraoperative management.
Assessment of Postoperative Complications
The main outcome of this study was the occurrence of 30-day postoperative complications that required additional treatment or extended hospitalization. All complications were defined by the adverse event (AE) terms from the JCOG postoperative complications criteria. Those that were not included in the AE terms were classified as “others” (e.g., delirium, bronchial asthma, and catheter infections, among others).
JCOG postoperative complications criteria version 2
This measure is based on the original article describing the Clavien–Dindo classification of surgical complications (2004) [24], which has been frequently used to objectively assess procedural skills and 72 postoperative complications (73 items including “Others”) [25]. The AE terms and each of their grading details were standardized from the Clavien–Dindo classification, with the approval of the JCOG operational committee. Version 2 (2013) is the most recent. Furthermore, AE terms such as pneumonia, ileus, anastomotic leak, wound infection, and postoperative hemorrhage were graded, from grade I to grade V (death). This study did not take the severity of complications into consideration.
Statistical Analysis
For statistical testing of medians, the Mann–Whitney U test was used for the analysis for the comparison of patients with and without postoperative complications. For statistical testing of proportions, the chi-squared test was used to test the difference in proportion for the comparison of patients with and without postoperative complications. When the expected numbers for the chi-squared test were small, we used a Fisher’s exact test. We conducted multiple logistic regression analysis. The dependent variable was postoperative complications, and independent variables were age, sex, BMI, ASA-PS, Preoperative use of psychotropics, sAs, anesthesia time, drinking and smoking habits (AUDIT, FTND), HADS, and K6. Model 1 included improved drinking/smoking habits after surgical decision-making as a covariate, and Model 2 included the degree of alcohol/nicotine dependence at the time of surgical decision-making as a covariate. A male and female subset of Model 2 (Model 3 and 4, respectively) was also created. Taking multicollinearity into consideration, for a correlation of 0.4 and above, one of the two variables was removed. We used the c-statistic (area under the curve [AUC]) and accuracy as indicators of the model’s predictive precision. JMP version 12 (from SAS) was used for modeling, with a significance cutoff of p < 0.05.
We assigned zero points to missing items in the AUDIT, FTND, K6, and HADS if more than 75% of all questions had been answered. The questionnaires with the following missing responses were excluded from the analysis: AUDIT responses with items 1–3 missing (questions related to the amount and frequency of drinking), FTND responses with item 4 missing (number of cigarettes smoked per day), and responses with 25% or more missing items (3 or more items in the AUDIT, 2 or more items in the FTND and K6, and 4 or more items in the HADS).