
ONMCA: One-Network-Multi-Chain Architecture for
Customizable Asset-Oriented Blockchain Systems
Liang Wang

Hebei University
Wenying Zhou

Hebei University

Lina Zuo
Hebei University

Haibo Liu
Hebei University

Research Article

Keywords: Digital asset management, Blockchain, Software architecture, Customizable design

Posted Date: October 6th, 2023

DOI: https://doi.org/10.21203/rs.3.rs-3386787/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License

Additional Declarations: No competing interests reported.

Version of Record: A version of this preprint was published at Peer-to-Peer Networking and Applications
on April 11th, 2024. See the published version at https://doi.org/10.1007/s12083-024-01698-8.

https://doi.org/10.21203/rs.3.rs-3386787/v1
https://doi.org/10.21203/rs.3.rs-3386787/v1
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/s12083-024-01698-8

ONMCA: One-Network-Multi-Chain Architecture for

Customizable Asset-Oriented Blockchain Systems

Liang Wang1,2, Wenying Zhou1*†, Lina Zuo1,2†, Haibo Liu1,2†

1*School of Cyber Security and Computer, Hebei University, Qiyidong Road, Baoding,
071000, Hebei, China.

2Hebei Key Laboratory of High Trusted Information System, Hebei University, Qiyidong
Road, Baoding, 071000, Hebei, China.

*Corresponding author(s). E-mail(s): zwy@stumail.hbu.edu.cn;
Contributing authors: wangl@hbu.edu.cn; zuolina@hbu.edu.cn; liuhaibo@hbu.edu.cn;

†These authors contributed equally to this work.

Abstract

The development of modern digital economies requires trusted digital asset management (DAM),
for which blockchain technology is increasingly being adopted. However, the current architecture for
constructing blockchain-based DAM systems (BDAMSs) is inadequate. Existing BDAMSs adopt a
modified layered architecture, which enriches the database layer by adding a blockchain platform
that acts as a third party to process DAM business logic with pre-written smart contracts. This
architecture faces four issues that make it non-credible and non-customizable to DAM demands: 1)
pseudo decentralization, 2) not asset-oriented, 3) contract dependency, and 4) high load of chains.
To overcome these issues, we propose the One-Network-Multi-Chain Architecture (ONMCA), which
allows multiple heterogeneous chains to be established within a same network. ONMCA enables
diverse digital assets to be managed in a customizable way through the following features: 1) asset
stakeholders are allowed to join the blockchain network, eliminating third parties; 2) transactions are
designed to portray the changes in asset states, making the system asset-oriented; and 3) a control
layer is added to take over business logic, and smart contracts are forced to regulate asset transactions
full-time. We formalize ONMCA and analyze it comprehensively, and the results show that ONMCA
meets the requirements of DAM and is qualified to build credible and adaptive BDAMSs.

Keywords: Digital asset management, Blockchain, Software architecture, Customizable design

1 Introduction

1.1 Background

Digital asset management (DAM) underpins the
innovation of today’s digital society and involves
the basic benefits of everyone. The driving
information technologies fundamentally shape all
aspects of modern economies and industries [1–3].

What ensues is the generation, creation and accu-
mulation of massive digital assets. They will be
mined for immeasurable value if we can manage
them well, and DAM systems (DAMSs) are nec-
essary for achieving this goal. On the other hand,
those digital assets are also in the interests of indi-
viduals and organizations. An improper DAMS
will be bound to undermine people’s control over

1

the ownership, circulation and application of their
digital assets [4, 5]. It is therefore significant to
ensure the reliability of DAMS design.

Blockchain is increasingly being adopted to
build trust for DAM because of its remark-
able qualities, such as network decentralization,
records tamper-resistance, and histories traceabil-
ity [6–8]. Blockchain-based DAMSs (BDAMSs)
are expected to provide enhanced reliability for
stakeholders to operate their digital assets. They
need to meet several basic requirements. Firstly,
stakeholders should be allowed to participate in
DAM by joining the blockchain network, and
supervise each other’s behavior by reaching con-
sensus. Secondly, data models of the blockchain
should be customizable for diverse digital assets,
and ownership and usage rights of those digital
assets should be easily traced back through these
data models. Finally, smart contracts should be
designed to regulate the trading of digital assets
rather than handle complex business logic.

However, existing BDAMSs do not work well
as intended in meeting the above DAM require-
ments. They follow a modified layered architec-
ture, which enriches the database layer by adding
a blockchain platform that acts as a third party
to process business logic with pre-written smart
contracts. Four issues are hard to solve in this
architecture:

1. Pseudo decentralization. The blockchain plat-
form is usually controlled by a third party,
like Ethereum1. Normal asset holders will
have no opportunity to become a node of the
blockchain platform, so nothing can be done
once the platform suddenly fails. The credi-
bility of BDAMSs relies on the reputation of
blockchain service providers.

2. Not asset-oriented. The on-chain transactions
only record the operations on smart contracts,
but not directly on digital assets. For example,
the deployment, update, and function calls of
a smart contract will be recorded as trans-
actions, but these transactions may not be
directly related to the state changes of assets.

3. Contract dependency. An asset holder must
program a comprehensive contract to define
his/her specific digital assets and handle
related DAM tasks. The definition of these

1https://ethereum.org

assets is described simply by the contract’s
state variables rather than the blockchain’s
data models, so changes in these assets are
difficult to interlink clearly. This means that
assets exist by contracts. Once a contract
lapses, the assets that depend on it are also
unavailable.

4. High load of chains. It will be a large load
for smart contracts to run complicated busi-
ness logic. Especially, a DAM task may
involve cooperation of multiple chains, which
increases coding complexity of smart con-
tracts.

This modified layered architecture partially
results from the commercial packaging of the con-
cepts – SMART CONTRACT. Since Ethereum
launched its blockchain-based smart contract plat-
form, the concept of smart contract has gradually
been accepted as a ticket to using blockchain.
Nowadays, smart contracts refer more to pro-
gramming interfaces than legal agreements [9].
Many Cloud service providers have built their
own smart contract platforms on their Cloud
resources [10, 11]. They adopted a form of service
provision similar to Ethereum, further consoli-
dating the mode this transitional architecture is
applied. We have noticed in practice that DAM
tasks rely primarily on non-contract program-
ming, and that blockchain systems become just
third-party endorsers whose credibility is very
hard to guarantee.

No one would believe that blockchain’s poten-
tial stops there. Essentially, blockchain was born
for DAM. In the case of Bitcoin2, cryptocurren-
cies are internalized into the data models of the
blockchain. Each node in Bitcoin network has the
ability to manage the assets under its jurisdiction.
In the area of DAM, this ability needs to be pre-
served, which of course requires the help of a more
advanced architecture.

System architecture is mainly used to guide
and validate the design of a class of software sys-
tems [12–14]. A good system architecture avoids
catastrophic malfunctions and security issues in
a specific application and ensures that the target
software supports the business logic of the spe-
cific application. This paper mainly discusses the

2https://bitcoin.org

2

design of blockchain system architecture from the
point of asset-oriented application.

1.2 Motivation

The analysis in Section 1.1 has shown that the
current blockchain system architecture is not
conducive to the development of BDAMS. Our
motivation comes from the desire to address the
lack of credibility and customizability of existing
BDAMSs and better manage diverse types of digi-
tal assets. To this end, we conducted this research
from the perspective of architecture innovation.

1.3 Contributions

We propose a new system architecture
named One-Network-Multi-Chain Architecture
(ONMCA), and the contributions of our work are
as follows:

1. Digital asset stakeholders are allowed to join
the blockchain network to jointly oversee asset
transactions, keep local storage of their assets,
and make the system free from third-party
control. This solves the problem of ”pseudo
decentralization”.

2. Multiple heterogeneous blockchains are allowed
to coexist in the same network. Data models
and functionality of each chain can be cus-
tomized according to the types of digital assets.
This solves the problem of ”not asset-oriented”.

3. A control layer is added to take over business
logic, and smart contracts are forced to regulate
asset transactions exclusively. This solves the
problems of ”contract dependency” and ”high
load of chains”.

2 Related Work

At present, there are two main types of blockchain
architectures: the chain-app-separated architec-
ture (CASA) based on permission-less blockchain,
and the chain-app-merged architecture (CAMA)
based on permission-ed blockchain.

CASA considers blockchain as a data ser-
vice platform, similar to a database. The dif-
ference is that the platform is provided by a
third party rather than deployed locally. There-
fore, when designing an application based on
CASA, the upper-level apps and the underlying
data service platform are separated. There are

many examples that make CASA the most pop-
ular system architecture today. MedShare [15],
HealthBlock [16], and BiiMED [17] are blockchain-
based medical data management systems that
implemented on Ethereum. Ethereum serves as
the third party to provide data services for
these systems. Commonly, those applications that
have adopted CASA use smart contracts of the
blockchain platforms to realize business logic [18].
BC-Rec [19] is a recommender system frame-
work based on Ethereum and uses smart contracts
to ease cold-start, sparsity, and shilling attack
problems. AuthROS [20] is a secure data shar-
ing method that codes smart contracts to ensure
the immutability and security of private data flow
between nodes. EthReview [21] aims at exploiting
Ethereum smart contracts to control the num-
ber of discounted tokens to reward honesty in the
system and punish fraud. However, the immutabil-
ity and coding complexity of smart contracts
make the above systems very hard to extend and
expose them to some potential risks. Lu et al. [22]
introduced a cross-business DAMS that reduced
contract deployment risks to some extent, whereas
it is also based on CASA. In fact, all the four issues
we mentioned in Section 1.1 largely stem from this
architecture.

Compared to CASA, CAMA emphasizes the
native application support of blockchain. In
CAMA, the servers that provide applications
are also the nodes of the blockchain network.
The blockchain network is maintained by nodes
belonging to application users, so it is no longer a
third party. Each peer node is allowed to perform
business logic individually and some special nodes
maintain the consistency of chain data through
consensus. Hyperledger Fabric (HF)3 is one of the
representative techniques of CAMA. It mitigates
the issues of ”pseudo decentralization” and ”not
asset-oriented” we mentioned in Section 1.1 to
some extent. Based on HF, Chen et al. [23] built
a a personnel electronic information management
system to improve the efficiency of storage and
synchronization in management processes. The
drawback of this system was that it did not fit well
with different data types. Then, FAbAsset [24] was
proposed to support multiple data types in DAM,
like fungible token and non-fungible token, but it

3https://www.hyperledger.org/use/fabric

3

was inefficient when overusing channels to han-
dle DAM business. Rodrigo et al. [25] proposed
UniCon architecture, which was similar to HF, to
build BDAMSs that could manage large scale dig-
ital assets. The key idea of UniCon is to allow
BDAMSs to track the ownership of assets, which
makes it possible to solve the problems of low
flexibility, limited scalability, and high transaction
cost. However, the weak adaptability of multiple
data types cannot be solved unless the blockchain
data models of CAMA can directly support the
storage of assets.

In short, neither CASA nor CAMA completely
solved the issues we mentioned in Section 1.1.
Therefore, we need to design a more appropri-
ate architecture for building BDAMSs that better
meet the requirements of DAM.

3 Preliminaries

3.1 System Architecture

Three elements – components, connections, and
configuration – are key considerations in system
architecture as they define the structure, interac-
tions, and behavior of the system [26].

Components refer to the individual building
blocks or elements of a system architecture [27].
They can include hardware devices, software mod-
ules, databases, services, and other functional
units. Components can be both physical and vir-
tual. The selection, arrangement, and interaction
of components are crucial for defining the overall
structure and functionality of the system.

Connections in system architecture refer to the
interactions and relationships between the com-
ponents of a system [28]. They define how data,
control, and communication flow between different
parts of the system. Connections can involve var-
ious elements such as communication protocols,
network infrastructure, application programming
interfaces (APIs), and integration points. Estab-
lishing reliable and efficient connections between
components is essential for the system to operate
smoothly.

Configuration refers to the settings, parame-
ters, and arrangements that determine the behav-
ior and operations of the system [29]. It includes
both the initial setup and ongoing management of
the system’s components. Configuration involves
defining options, preferences, permissions, and

rules that configure the behavior of individual
components or the system as a whole. Proper con-
figuration management ensures that the system
operates according to the desired specifications
and requirements.

3.2 Blockchain

Blockchain is an immutable distributed database
for recording data in a chain structure, where
each block contains a set of transaction records
and is linked to the previous block in a cryp-
tographic way [30]. Its striking features include
decentralization, immutability, and traceability.

1. Blockchain implements decentralization by
utilizing a network of nodes that collectively
verify and validate transactions through con-
sensus mechanisms, eliminating the need for a
central authority. This decentralized approach
ensures transparency, security, and removes
single point of failure.

2. Blockchain achieves immutability by using
cryptographic hash functions to create a
unique hash for each block, which is based on
the data within that block [31]. Any change to
the data within a block would result in a dif-
ferent hash, making it evident that the block
has been tampered with. Additionally, the
block’s reference to the previous block’s hash
creates a chronological chain, further securing
the data’s integrity.

3. Blockchain enables traceability by recording
all transactions in a transparent and per-
manent manner. Each transaction is linked
to previous transactions through crypto-
graphic hashes, forming an immutable chain
of records. This allows for easy tracing of the
origin, movement, and ownership of assets or
information stored on the blockchain, enhanc-
ing transparency and accountability.

The combination of these features makes
blockchain a powerful technology with applica-
tions in various fields, including cryptocurrency,
financial services, DAM, supply chain manage-
ment, and more.

3.3 Formal Methods

Formal methods are a sort of techniques for model-
ing and verifying computer system design based on

4

strict mathematical foundation [32]. For designing
of a system architecture, we need to know if this
architecture is applicable before we can use it. So,
we use formal methods to provide a framework on
which the architecture can be described, designed
and verified. Three aspects of formal methods will
be used in this paper:

1. System modeling: Describe system S and its
behavior by constructing model M .

2. Formal specification: Describe the constraints
Q of system S by evaluating its key properties,
such as security and flexibility.

3. Formal verification: Prove that the model M
satisfies the formal specification Q (i.e. M ⊨

Q).

3.4 Bilinear Map

Let GS and GT are both multiplicative cyclic
groups of prime order q. A bilinear map e : GS ×
GS → GT must satisfy the following characteris-
tics:

1. Bilinearity: For ∀a, b ∈ Z∗
q and ∀p ∈ GS , there

is e(pa, pb) = e(p, p)ab.
2. Non-degeneracy: e(p, p) ̸= 1, where p ∈ GS .
3. Computability: Exist a computationally effi-

cient algorithm for computing GS × GS →
GT .

4 Architecture Modeling

In this section, we will begin by summarizing
the fundamental requirements for the design of
ONMCA. Next, we will overview and formalize the
architecture model of ONMCA.

4.1 Requirements

It is necessary to briefly review the classification
of digital assets before analyzing requirements of
architecture design, because this is a priority for
DAM on the one hand and closely related to the
design of blockchain data models on the other.
Digital assets can be classified in various ways
depending on different taxonomies, as shown in
Table 1.

For the sake of explanation, we synthesize the
above classifications and categorize digital assets
based on transaction modes of their property
rights, as shown in Table 2, where d denotes a

Table 1 Digital assets classification.

Basis Class Examples

By type Test-based assets Documents,reports,
e-books

Multimedia assets Images,videos,audios
Code-based assets Software applications,

scripts, APIs
Financial assets Cryptocurrencies,

digital stocks,
digital bonds

IP assets Patents, trademarks,
copyrights

By purpose Marketing assets Logos, branding
materials,
social media graphics

Sales assets Product demos,
brochures, pricing
sheets

Educational assets E-learning courses,
webinars, tutorials

Operational assets Workflow documents,
process diagrams,
technical manuals

Legal assets Contracts, agreements,
policies

By value Core assets Proprietary software,
patented technology,
unique content

Support assets Marketing collateral,
customer data,
support documentation

Discretionary assets Nonessential software,
experimental projects

By Lifecycle Conceptual Initial ideas,
brainstorming, sketches

Development Prototypes, wireframes,
mockups

Finalized Completed products,
designs, content

Retired Obsolete software,
outdated content

digital asset, u the usage right of d, and o the own-
ership of d. The transaction mode of transfer-type
assets is to change their ownership, for example, a
BTC (the currency unit of Bitcoin) is transferred
from A to B. In contrast, the transaction mode
of distribution-type assets is to distribute their
usage rights, for example, A authorizes B and C to
use copies of d. More specially, the transaction of
value-added assets refers to changing their charac-
ter through adding new elements to their bodies,
and each element may has its own property rights,
for example, A creates d′ by adding a new idea to
d, then A partially owns d′.

5

Table 2 Classification of digital assets based on transaction
modes of property rights.

Category Transaction mode Typical asset

Transfer-type A
d
−→ B

d
−→ Cou Cryptocurrencies

Distribution-type Bu d
←− Aou d

−→ Cu Data

Value-added d
A

ou

−−−→ d′
B

ou

−−−→ d′′ Documented ideas

Inevitably, the diversity of digital assets will
bring about the coding complexity of smart con-
tracts in developing a BDAMS. At the same time,
DAM tasks also have variety depending on the
assets they operate on. We focus on the DAM
tasks that manage the on-chain lifecycle of differ-
ent assets as shown in Figure 1. The common
DAM tasks and their objectives are listed as
follows:

• Register: Registering an asset on the blockchain.
• Unregister: Unregistering an asset from the
blockchain.

• Transfer: Changing the ownership of an asset.
• Distribution: Dispensing the usage license of an
asset.

• Minting: Initializing the features of an asset on
the blockchain.

• Feeding: Adding new features or elements to an
asset.

• Transformation: Solidifying a mature asset in
structure.

Obviously, each of these tasks can change the
state of an asset, and should be managed as a
transaction and regulated with a contract.

According to the above analysis, we summarize
requirements of the architecture design as follows:

1. Functionality
User behavior must determine system states;
Contracts must be used only to describe asset
transactions;
Business logic needs to be separated from con-
tracts;
ONMCA-based systems must implement
basic DAM tasks.

2. Scalability
Multiple consensus protocols should be
allowed to coexist;
No limit needs to be put on the number of
chains created and operated by each user.

Transfer-type assets

Distribution-type assets

Value-added assets

Enrolled

asset

Transferred

asset

Register Transfer

Unregister Transferred

asset

Retailed

asset

Enrolled

asset

Distributed

asset

Register Distribution

Unregister Distributed

asset

Retailed

asset

Minted

asset

Grown

asset

Minting Feeding

Transformation Grown

asset

Transformed

asset

Fig. 1 On-chain lifecycle of different assets.

3. Customizability
Blockchain data models must determine
transaction modes;
Consensus protocols must be customizable;
Control interfaces must be customizable;
Contract templates must be customizable;
No limit needs to be put on the choice of
programming language.

4. Security
Each user should contribute at most one node
to the blockchain network;
ONMCA-based systems should be resistant to
common attacks;
Chains need to be isolated from each other.

4.2 Architecture Overview

4.2.1 Model Description

ONMCA aims to guide the designing of BDAMSs.
Each asset holder can deploy a node on the
open blockchain network of a BDAMS to man-
age his/her own assets in a customizable way.
It is a composite architecture, which resembles a
microservice-like architecture on the whole and a
layered architecture on individual nodes, as shown
in Figure 2.

Logically, ONMCA contains seven layers as
shown in Figure 2. On the bottom is the network
layer. The nodes of this layer come from users who
want to join the DAM consortium. A dedicated
node program will be installed on each node to run
the entire BDAMS. The rest of the layers serve
the design of the node program. Multi-chain layer

6

Network layer

Multi-chain layer

Contract layer Service data layer

Control layer

Service layer

Application layer

Data flow Control flow Invocation

Fig. 2 Architecture model of ONMCA.

is the core of ONMCA. Multiple chains, which
may be heterogeneous, are allowed to coexist in
this layer. Among them, the contract chain, which
is compulsory, is responsible for linking contract
scripts stored in the contract layer. Other chains
are called state chains and help to manage the life-
cycles of particular types of digital assets. They
are tailored to demand, but must be kept consis-
tent with the data stored in the service data layer.
The contract layer and service data layer are both
databases. The former stores contracts about var-
ious asset transactions, and the latter stores the
data generated during business logic execution.
The control layer provides a group of interfaces
that control the data and behavior of the lower

layers, and these interfaces are invoked by the ser-
vice layer to execute business logic. By invoking
these interfaces reasonably, the service layer builds
various services for the DApps in the application
layer.

ONMCA-based BDAMSs have three types of
default users, which are asset manager (AM), ser-
vice provider (SP), and service consumer (SC). An
AM adds a server that stores his/her digital assets
to the blockchain network by running the node
program. The AM may also be an SP who pro-
vides DAM services through the node program.
An SC may be an AM when sharing assets with
other AMs through the node program, but more
commonly, he/she may just be an asset visitor who
uses a personal device and works at the applica-
tion layer as a temporary light node to enjoy DAM
services provided by SPs.

4.2.2 Design Principles

The design of the node program is the key to devel-
oping an ONMCA-based BDAMS. Its workflow
should conform to the following principles:

Principle 1: Customizable consensus.

Reserve interfaces in the control layer to write or
terminate a consensus protocol for each blockchain
of the multi-chain layer. These protocols regulate
the communication rules of nodes in the network
layer.

Principle 2: Customizable data models.

Reserve interfaces in the control layer to define
or disable blockchain data models in the multi-
chain layer. A data model contains a set of data
structures, manipulations, and constraints.

Principle 3: Customizable contracts.

Reserve interfaces in the control layer to cre-
ate or invalidate contracts in the contract layer.
A contract consists of counterparties, transaction
objects, and contract terms, where the contract
terms are executed in an event-triggered manner
by calling interfaces of the control layer.

Principle 4: Customizable DAM ser-

vices. Reserve interfaces in the control layer for
programming various DAM services in the service
layer. At the same time, these interfaces store the
service data in the service data layer.

Principle 5: Customizable DAM tasks.

Create customized applications in the applica-
tion layer by invoking DAM services in the
service layer. The styles of Client/Server and

7

Browser/Server are allowed to build applications
for outside-system SCs.

Principle 6: Separation of on-chain oper-

ations and business logic. Let contracts take
charge of on-chain operations and let interfaces in
the control layer take over business logic.

4.2.3 State Transition

An ONMCA-based blockchain system can be
defined as a quintuple M = {Q,R,E, q0, F},
where Q = {q0, q1,, qn}, (n ≥ 0) is a non-empty
finite state set, R = {r0, r1, ..., rm}, (m ≥ 0) the
set of users’ requests, E = {e | e : Q×R→ Q}
the set of maps that executes users’ requests and
changes the states of the system, q0 ∈ Q the initial
state of the system, and F ⊂ Q the set of accepted
states of the system.

A blockchain system runs by four steps: trans-
action initiation (TI), transaction distribution
(TD), transaction verification (TV), and trans-
action packing (TP). Each step will push the
blockchain system into a new state. Let Ex ⊂ E

be a set of maps that execute the tasks of step
x, the following is an example of a system state
transition maps:

ETI = {submit} ;

ETD = {broadcast, communicate} ;

ETV = {submit} ;

ETP = {approve, reject} .

The state transition diagram of M is shown in
Figure 3.

submit

broadcast

communicate

approve

submit

𝑞0 𝑞1

𝑞2𝑞3
Fig. 3 State transition diagram of ONMCA

4.3 Architecture Composition

4.3.1 Components

Each layer has its own unique components as
shown in Table 3. The following is an introduction
to the main components of each layer.

Table 3 Components of ONMCA.

Layer Components

Network layer Node
Multi-chain layer Transaction, Asset, Block, Blockchain
Contract layer Database
Service data layer Database
Control layer TransControl, AssetControl,

UserControl, ContrControl
Service layer MetaService, TransService,

AssetService, UserService, ContrService

1. Node
Node components form the underlying net-
work of a blockchain system. They can be
server machines, personal computers, smart-
phones, tablets, and other networking devices
that are capable of installing and running
node programs. A node program should pro-
vide basic ability of communication and inter-
faces for deploying consensus protocols. A
blockchain system requires a sufficient number
of nodes that can store the entire blockchain
data to keep working.

2. Transaction
Transaction components are used to record
the events of asset state changing. They may
have different structures and manipulations
depending on the types of digital assets. They
are also atomic components that make up
some other components, such as asset, block,
and blockchain.

3. Asset
Asset components may have different forms
by designing. Generally, an asset can be com-
posed of a group of transaction components
related to this digital asset. These transac-
tions are organized in some way, including
chaining together. It is worth noting that the
asset component differs from the real digital
asset. The former represents the transaction
history of the latter in the form of a data
model.

8

4. Block
Block components are the key to build a full
blockchain. They may have various structures,
manipulations, and different ways to organize
transactions. The input of a block contains a
set of transactions, and the output is a hash
pointer to the block, which helps to attach the
block to a blockchain.

5. Blockchain
Blockchain components constitute the multi-
chain layer. Connecting blocks together in
some way will builds a blockchain. However,
the connecting is not necessarily in the form
of a chain. It depends on the specific DAM
requirements.

6. Database
Database components work across two lay-
ers, which are the contract layer and the
service data layer. The database in contract
layer serves as a repository for all contract
scripts, and the database in service data layer
is responsible for managing all the data gen-
erated from business logic.

7. TransControl
TransControl components are middlewares
that control the behavior of transaction com-
ponents and provide interfaces for service
layer to interact with the transaction compo-
nents.

8. AssetControl
AssetControl components are middlewares
that control the behavior of asset compo-
nents and provide interfaces for service layer
to interact with the asset components.

9. UserControl
UserControl components are middlewares
that control users’ information stored in the
database of the service data layer. They also
provide interfaces for users to interact with
the system.

10. ContrControl
ContrControl components are middlewares
that manage user-defined contract scripts
stored in the database of the contract layer.
They also provide interfaces for users to cus-
tomize their contract templates.

11. MetaService
MetaService is a component that provides
services to other components in the ser-
vice layer. It offers basic libraries to other
components, whereby these components can

customize application programming interfaces
(APIs) for the application layer.

12. TransService
TransService components allow users to cre-
ate, revoke, and verify transactions. Transac-
tion verification is the key to keep a blockchain
healthy. Function (1) verifies a transaction
Tx, and if 0 is returned, Tx will be not
recorded on-chain.

{0, 1} ← V erify (Tx, paras) . (1)

13. AssetService
AssetService components are used for query-
ing transactions of specific digital assets. Once
receiving a user’s request, the AssetService
component will analyze the corresponding
contract and then execute the services that
the user requests according to the contract.
Let Ui be the user, Nj the blockchain net-
work, and Ck the contract that Ui signs.
Ui can initiate a transaction Tx that oper-
ates on an asset AUi,Nj ,m, where m is the
system-assigned serial number of this asset.
Function (2) is one of the terms of Ck and is
used to generate Tx.

Tx = GenTx(paras,AUi,Nj ,m,

pkfrom, pkto, Ck),
(2)

where paras is a set of system parameters,
pkfrom the public key of the transaction initia-
tor, and pkto the public key of the transaction
recipient.

14. UserService
UserService components are responsible for
user registration and authentication. They
implement basic interfaces from the MetaSer-
vice component, and maintain users’ informa-
tion stored in the database of the service data
layer. They also bridge users to the system
by calling interfaces provided by UserControl
components. An SP will take charge of the
authentication of user Ui. If the authentica-
tion passes, Ui will pick a secret key ski ∈ Z∗

p ,

and then compute the public key pki = gski

according to the Bilinear Map. The key pair
(ski, pki) of Ui will come into play when Ui’s
digital assets are processed.

15. ContrService
ContrService components provide interfaces

9

for users to create, modify, and revoke con-
tracts. They have connections with UserSer-
vice components and ContrControl compo-
nents, and allow users to update contract
scripts stored in the database of the contract
layer. We predefined a series of contract tem-
plates that meet the basic DAM requirement
for customization. These templates are saved
as static members of ContrService. Besides,
ContrService reserves specific interfaces for
users to update these predefined templates
or create new templates. An example of the
contract template is shown in Figure 4.

Parties: addr(pkA), addr(pkB), …

Signatures: sigA, sigB, …

Issuer: The originator of the contract.

AssetNumber: The system-assigned identifier of the asset.

AssetName: The owner-assigned name of the asset.

AssetDigest: The hash pointer of the asset.

Terms: Term_1{

deliver(

AssetNumber,

AssetDigest,

addr(pkA),

addr(pkB));

}

……
Term_n{……}

Contract template 𝒄𝒕𝒊

Fig. 4 Contract template. pkX , the public key of party
X; sigX , the signature of party X; addr (pkX), the address
generated from pkX .

Overall, the components in the multi-chain
layer and the service layer should provide cus-
tomization for different objects. In the multi-chain
layer, the components allow for customizable data
models. In the service layer, the components
enable customizable business logic. For develop-
ers of ONMCA, they can develop BDAMSs with
unique properties that meet specific DAM needs.
At the same time, the users of ONMCA-based
BDAMSs can design demand-driven business logic
by combining or overriding the interfaces that the
components provide.

4.3.2 Connections

Communication between components of ONMCA
follows the service request framework shown in

Figure 5, where S = {s1, s2, ..., sn} is a collection
of services that users request, F = {f1, f2, ..., fm}
the corresponding function calls of S, and R =
{r1, r2, ...rl} a set of results of F .

In Out

Do

Do

Function calls (F)

Function calls (F)

Request services (S) Request return (R)

System border Interface

Fig. 5 Service request framework of ONMCA

This framework presents a three-step work-
flow: (1) a user request a service si ∈ S (i ≤ n)
from the ONMCA-based system; (2) the system
calls a function fj ∈ F (j ≤ m) to deal with si;
and (3) the system responds to the user with the
result rk ∈ R (k ≤ l) after fj is finished.

Figure 6 illustrates the connections among the
main components of ONMCA. Calling interface
is the only way for components to interact with
each other and the outside world. Interfaces of a
component specify the services (messages, oper-
ations, and variables) that the component can
provide. As shown in Figure 6, the MetaService
component provides basic services to other ser-
vice components, which invoke interfaces from the
control layer to provide services to users. The
data of the TransControl and AssetControl com-
ponents comes from the multi-chain layer, and
that of the ContrControl and UserControl comes
from the service data layer. The provision of
data is also achieved through interface calls. The
asset, transaction, and database components are
these service providers. They are also the building
blocks of constructing a blockchain. Finally, the
node components are the physical carriers of all
other components.

4.3.3 Configuration

The configuration of ONMCA’s components is set
by parameters, which makes it easy for develop-
ers to customize a BDAMS. We use Argscp to

10

User

AssetService

MetaService

TransService

AssetControl

Transaction

Database

(for storing contracts

and service data)

Node

UserService

Asset

TransControl UserControl

provide service

request service

ContrService

ContrControl

Blockchain Block

Fig. 6 Connections of ONMCA

denote the set of parameters that the configura-
tion of component cp has, and describe the basic
configuration of the components in each layer as
follows.

1. ArgsNode

ArgsNode is used to turn a compute machine
into a node of the blockchain system. The
parameters in ArgsNode will be set when the
node program is installed. The meanings of
the parameters in ArgsNode are described as
follows.
NodeName is the unique identifier for the
node.
NodeType is the type of the node, such as
light node, permanent node, etc.
NodePosition is the geographic coordinate
location of the node.
NodeIP is the IP address of the node.
RuntimeEnvironment is the software envi-
ronment required for running the node, such
as operation system, programming language,
libraries, dependencies, etc.
ComputeResources specifies the computing
resources required for the node, such as CPU,
memory, storage space, bandwidth, etc.
MaxChains specifies the upper limit of the
number of chains that can run simultaneously
on the node.

Concurrency represents the ability of the
node to process requests concurrently, speci-
fying the max number of requests.
FaultTolerance specifies the fault tolerance
mechanism of the node and how it handles
failure scenarios.
ConsensusProtocols specifies the consensus
protocols allowed to run on the node.

2. ArgsTransaction

Parameters in ArgsTransaction are used to
describe the structure and functions of a
Trasanction component. Most of these param-
eters can be user-defined, which provides room
for customization. However, we list the follow-
ing types of parameters as non-optional ones
to keep a transaction verifiable.
TransParties describes the parties of a trans-
action. They are usually associated with uses’
public keys for authenticability.
TransContent is the transaction object that
can be expressed numerically. Nevertheless,
this parameter may just be a flag when the
data structures in a blockchain have already
been designed to express a transaction object.
For example, the payment of one unit of
BTC is described as an ownership transferring
rather than a change in numbers.
Signatures sets the digital signature of each
party of the transaction.
Timestamp records the exact date and time
when the transaction took place.
HashPointer is an unique identifier of the
transaction. It is calculated by hashing all the
key elements of the transaction.

3. ArgsAsset

Setting ArgsAsset has the similar manner as
setting ArgsTransaction. The followings are
several distinct parameters.
AssetNumber is the system-assigned identi-
fier of the asset.
RealAsset is bound to the real digital asset,
and is the unique identifier of it.
TailHash is the hash pointer of the latest
transaction related to the asset. This param-
eter specifies the entry for asset tracing.
AssetState represents the current state of
the asset, such as available for sale, shareable,
banned, revoked, etc.

4. ArgsBlock

Setting ArgsBlock has the similar manner as
setting ArgsAsset. The followings are several

11

distinct parameters.
BlockNumber is a number that indicates
where the block is located in the current
blockchain.
BlockStructure selects the data structure of
the block from pre-set structures, which can
be designed when the node program is devel-
oped.
BlockHash is the hash pointer of the block.

5. ArgsBlockchain

The parameters in ArgsBlockchain are used to
organize the blocks that have the same struc-
ture. The followings are non-optional ones of
these parameters.
BlockchainID is the unique identifier of the
blockchain.
BlockchainStructure selects the data struc-
ture of the blockchain from pre-set structures.
The structure will determine how the blocks
are organized into a blockchain.
BlockchainLength indicates the total num-
ber of blocks in the blockchain.

6. ArgsDatabase

The parameters in ArgsDatabase provide con-
straints on database reading and writing. The
following parameters are very important when
the database component is accessed.
DatabasePosition indicates whether the
database works at the contract layer or the
service data layer.
DatabaseType indicates the type of the
database. There are no restrictions on using
relational or non-relational databases.
AccessMode specifies the way of accessing
the database, including connection address,
authentication information, and so on.

7. Args∗Control

The parameters for the components in the
control layer are mainly used to normalize the
way of calling interfaces of these components.
InterfaceNames sets a name for each inter-
face.
InterfaceArgs declares a group of arguments
for each interface.
Functionality describes the functionality of
each interface.

8. ArgsMetaService

The function of the MetaService component

is to serve other components. Since the ser-
vices to be provided depend on the spe-
cific DAM requirements, the parameters in
ArgsMetaService are also highly customized.

9. Args∗Service

The parameters for the components in the ser-
vice layer are mainly used to normalize the
way that these components provide services.
Note that the service here may refer to several
related interfaces.
ServiceNames sets a name for each service.
ServiceArgs declares a group of arguments
for each service.
Functionality describes the functionality of
each service.

5 Evaluation

In this section, we demonstrate the effectiveness
of ONMCA by examining how it meets DAM
requirements.

5.1 Functionality Analysis

The requirements covered in this section cor-
respond to the functionality requirements men-
tioned in Section 4.1.
Proposition 1. User behavior determines system
states.

We describe the system response mechanism
microscopically for giving a more clear perspec-
tive. We introduce the concept of TRIGGER that
represents the transference of the system state.
Trigger t ⊩ [q, r] indicates that the system state
will be turn to q when a certain request r is pro-
cessed. According to Figure 3, we can define the
key triggers as follows:

ts ⊩ [q0, submit] ,

tb ⊩ [q1, broadcast] ,

tc ⊩ [q2, communicate] ,

ta ⊩ [q3, approve] ,

tj ⊩ [q0, reject] .

First, a listener is deployed on each node to
monitor the receipt of requests. When request
submit is received, ts will be triggered to turn
the system state into q0. After the system enters
state q0, a broadcast request will be issued.
tb of each node is triggered by receiving the

12

broadcast request. After that, each node will send
a communicate request to other node, by which
the system state will converge to q1. When all
nodes cooperate with each other to reach data
consistency of the system, q2 is achieved. During
this process, tc of each node will be triggered. The
received transaction will be validated, and one of
the two requests approve and reject will be issued
after the validation. If approve is issued, ta will
be triggered and the system state will become q3.
Otherwise, tj will be triggered and the system
state will be turn back to q0, which indicates a fail-
ure of state transition. When the system state is
q3, all nodes are waiting for a new submit request
to finish this round of state transition successfully.
Definition 1. An operation that can cause a com-
plete change in the state of a system is called a
transition operation (OprT), otherwise it is called
a non-transition operation (OprNT).
Definition 2. The state transition caused by an
OprT is called a global state transition, which is
defined as

qi ← e (qi−1, OprT) , qi ̸= qi−1, i ≥ 1,

where qi is the system state of number i, and e the
map of state transition. On the contrary, OprNTs
may shift the local state of the system, but will
not cause a global state transition. This process is
defined as

{

qi ← e (qi, OprNT) , i ≥ 1

lk ← f (lk−1, OprNT) , lk ̸= lk−1, qi ▷ lk, k ≥ 1
,

where lk is a local state of the system, f a function
that executes an OprNT, and qi▷ lk means qi can
tolerate the existence of lk.
Theorem 1. At least one OprT is triggered is
a sufficient and necessary condition for a system
state transition.

Proof. Let Q be the pre-condition ”At least one
OprT is triggered”, and P the post-condition ”A
system state transition occurs”.

Proof of Q⇒ P : Assume that the current sys-
tem state is qm, the user behavior is represented by
a set of operations On = {Opr0, Opr1, ..., Oprn},
n ≥ 0, and there exists Opri (i ≤ n) such that
Opri is an OprT . By Definition 2, it follows that
Opri will definitely turn qm into qm+1 under the
action of e, where qm ̸= qm+1, so Q⇒ P is proved.

Proof of Q⇐ P : Assume that no OprT is trig-
gered. If there is a system state transition from qm
to qm+1, then qm+1 ← e (qm, OprT) must hold by
Definition 2. This contradicts the assumption. So
Q⇐ P is proved.

The proof of the theorem is completed.

Since the user behavior can be represented
with a set of operations On, the system state will
be determined depending on whether ∃OprT ∈
On is true. Therefore, Proposition 1 is true.
Proposition 2. Contracts can and only can be
used to describe asset transactions.

In ONMCA, the concept of CONTRACT is
no longer the same as SMART CONTRACT, but
back to its original meaning. A contract is a script
signed in advance by the parties of a transac-
tion and automatically executed in the blockchain
system. Contracts are generated from templates,
and each contract corresponds to an actual digital
asset transaction. With this in mind, We define
a contract as C =< S,G, T >, where S is a set
of statements in the contract C, G a set of states
of C, and T a set of triggers of C. Here, we also
use the definition of TRIGGER mentioned at the
beginning of this section. The difference is that the
states in G are not about the system, but about
the contract.
Definition 3. For each trigger

t = (g, S′), t ∈ T, g ∈ G,S′ ⊆ S,

there exists

αt = (a1, a2, · · · , ai)
T
, ai ∈ {0, 1} , i = |S

′| ,

such that

termt = (s1, s2, · · · , si)× αt ̸= 0, si ∈ S′,

where termt is a term of C triggered by t. Let us
say that αt is a feature vector of t, and describes
the state change of C that t will cause.

Let Ŝb
k and Ŝe

k be two sets of statements in
termk that initiate and complete trigger k, respec-

tively. Ŝb
k ∩ Ŝe

k = ∅. We define two relationships
between contract terms as follows.
Definition 4. Mutual independence: An exe-
cution of termx does not cause the execution
of termy and vice versa, which is denoted by

13

termx ↮ termy. It holds that termx ↮ termy, if
the following conditions are met:

{

Ŝe
x ∩ Ŝb

y ̸= Ŝe
x

Ŝb
x ∩ Ŝe

y ̸= Ŝe
y

.

Definition 5. Strict progression: The completion
of termx causes the execution of termy, but not
vice versa, which is denoted by termx 7→ termy.
It holds that termx 7→ termy, if the following
conditions are met:

Ŝe
x ∩ Ŝb

y = Ŝe
x

Ŝb
x ∩ Ŝe

y ̸= Ŝe
y

Ŝe
x ̸= Ŝb

y

.

Theorem 2. There is no looping between the
terms of a contract.

Proof. Assume that a third relationship exists
between termx and termy (x ̸= y), then termx ↮

termy and termx 7→ termy are not true at the
same time. This means that only one condition
might hold:

Ŝe
x ∩ Ŝb

y = Ŝe
x

Ŝb
x ∩ Ŝe

y = Ŝe
y

Ŝe
x = Ŝb

y

.

As x ̸= y, i.e., termx ̸= termy, there must have

Ŝb
x ̸= Ŝe

y, so there is no looping between termx

and termy.
This completes the proof.

To sum up, the change of contract state can
reflect the process of asset transaction, and at the
same time, our design limits the contracts to a low
level of description, without breaking the logic of
asset transactions. So, Proposition 2 is true.
Proposition 3. Business logic is separated from
contracts.

As shown in Figure 4, the contracts in
ONMCA are not independently executable. They
are like header files in C programming language,
where the terms are descriptions and declarations
to business logic. The components ContrControl
and ContrService are responsible for connecting
the declarations to the actual interfaces. Since
these declarations are just identifiers rather than

references, business logic is separated from con-
tracts at the programming level. So, Proposition 3
holds.
Proposition 4. ONMCA-based systems imple-
ment basic DAM tasks.

As listed in Section 4.1, the basic DAM tasks
include register, unregister, transfer, distribution,
minting, feeding, and transformation. The tran-
sition of an asset’s states during the on-chain
lifecycle of the asset still follows the service request
framework shown in Figure 5 and the state transi-
tion pattern shown in Figure 3. By Definition 1, we
know that all of the DAM tasks shown in Figure 1
are OprT s. At the same time, a state transition
of an asset will eventually result in a transaction
of the asset, which means that the state transi-
tion can be described with a contract according to
Proposition 2. Therefore, Proposition 4 holds.

5.2 Scalability Analysis

The requirements covered in this section corre-
spond to the scalability requirements mentioned
in Section 4.1.
Proposition 5. Multiple consensus protocols are
allowed to coexist in ONMCA.
Definition 6. Assume that the size of each mes-
sage forwarded by a node is fixed. Then, the traffic
of each node can be defined as the number of
messages forwarded by that node.
Definition 7. The pressure of a node is defined
as the ratio of the traffic of the node to the total
traffic of the network. We use δn to denote the
pressure of the node n.
Definition 8. Let N be the set of nodes in a
blockchain network and Cons the consensus pro-
tocol used in the network. The max node pressure
denoted by ∆Cons can be calculated as follows:

∆Cons = max δn, n ∈ N.

Proposition 5 is true if we can show that mul-
tiple consensus protocols coexist without signifi-
cantly increasing the max node pressure. Without
loss of generality, we select three common consen-
sus protocols, Practical Byzantine Fault Tolerance
(PBFT) [33], Raft [34], and Cascading Consensus
Protocol (CCP) [35], to examine the change of the
max node pressure.

14

Single PBFT. Assume that their is only
PBFT in the blockchain network. Firstly, the mas-
ter node sends a message to other nodes in the
pre-preparation stage, and the number of com-
munication for this process is |N | − 1. Secondly,
each node receiving the message will send it again
to other nodes, and this needs to take (|N | − 1)

2

communications. Thirdly, each node sends an
acknowledgment message to other nodes in the
commit stage, and |N | (|N | − 1) communications
are made. Finally, all nodes reply the confirmation
message to client, and this costs |N | communica-
tions. Therefore, the total traffic of the network
using single PBFT is calculated by Eq. (3).

Trall = (|N | − 1) + (|N | − 1)
2
+ |N | (|N | − 1) + |N |

= 2|N |2 − |N |.

(3)

Table 4 shows the traffic generated by each node
during the above process. So, we can calculate the
max node pressure of PBFT with Eq. (4).

∆PBFT =
Trmax

Trall
=

2|N | − 1

2|N |2 − |N |
=

1

|N |
, (4)

where Trmax is the max traffic of a single node.

Table 4 Traffic in single PBFT.

Role Pre-prepare Prepare Commit Reply

master |N | − 1 0 |N | − 1 1
others 0 |N | − 1 |N | − 1 1

Single CCP. Assume that their is only CCP
in the blockchain network. The process of CCP
can be split into two stages. In stage one, the
sender sends message m1 to the receiver, and then
the receiver sends m1 to a random node, which
passesm1 on in the same way to another node, and
so on, until m1 gets back to the sender again. In
this process, except for the sender and receiver, all
other nodes that receive m1 reply to the receiver
with message m2. The times of communication of
stage one are 2|N | − 2. In stage two, the sender
sends message m3 to a random node, which passes
m3 on to another node. All the nodes except
for the sender and receiver do the same thing as
they did in stage one, and m3 finally reaches the
receiver. The times of communication of stage two

are 2|N | − 3. So, the total traffic of the network
using single CCP is calculated by Eq. (5).

Trall = (2|N | − 2) + (2|N | − 3) = 4|N | − 5. (5)

Table 5 shows the traffic generated by each node
during the above process. So, we can calculate the
max node pressure of CCP with Eq.(6).

Table 5 Traffic in single CCP.

Role Stage one Stage two

sender 1 1
receiver 1 0
others 2 2

∆CCP =
Trmax

Trall
=

2

4|N | − 5
. (6)

Single Raft. Assume that their is only Raft in the
blockchain network. During the Log Replication
phase, the leader sends a block log record to all
followers with |N |−1 communication times. After
receiving the leader’s message, each follower sends
a reply message to the leader, and the number
of communications in this process is also |N | − 1.
When receiving more than half of reply messages
from followers, the leader sends a message to the
client and the followers for confirming the success,
and this process costs |N | times of communication.
So, the total traffic of the network using single
Raft is calculated by Eq. (7).

Trall = (|N | − 1)+(|N | − 1)+|N | = 3|N |−2. (7)

Table 6 shows the traffic generated by each node

Table 6 Traffic in single Raft.

Role Log replication Commit Reply Notify

leader |N | − 1 0 1 |N | − 1
follower 0 1 0 0

during the above process. So, we can calculate the
max node pressure of Raft with Eq.(8).

∆Raft =
Trmax

Trall
=

2|N | − 1

3|N | − 2
. (8)

15

PBFT+CCP+Raft. Assume that PBFT, CCP,
and Raft coexist in the blockchain network
and run simultaneously in one consensus cycle.
According to Eq. (4), Eq. (6), and Eq. (8), the max
node pressure with multiple consensus protocols
can be calculated with Eq. (9).

∆Multi =
2|N |+ 2

8|N | − 7
. (9)

Now, we use the difference limit to examine the
max node pressure in the multi-consensus network
as the number of nodes increases.

lim
|N |→∞

(∆Multi −∆PBFT)

= lim
|N |→∞

2|N |2 − 6|N |+ 7

8|N |2 − 7|N |
=

1

4
.

(10)

lim
|N |→∞

(∆Multi −∆CCP)

= lim
|N |→∞

8|N |2 − 18|N |+ 4

32|N |2 − 68|N |+ 35
=

1

4
.

(11)

lim
|N |→∞

(∆Multi −∆Raft)

= lim
|N |→∞

−10|N |2 + 24|N | − 11

24|N |2 − 37N + 14
= −

5

12
.

(12)

Eq. (10), Eq. (11), and Eq. (12) show that,
compared with a single consensus protocol, mul-
tiple consensus protocols will not cause excessive
node pressure when the number of nodes increases.
This proves Proposition 5.
Proposition 6. No limit needs to be put on the
number of chains created and operated by each
user.

Under the constraints of ONMCA, users access
the underlying network by running a node pro-
gram, which allows users to create and operate
multiple chains locally. According to the design
principles mentioned in Section 4.2.2, a user can
use the node program to create and operate any
number of chains without being interfered with
by other users and without taking up other users’
resources. These chains can employ different data
models and consensus protocols. Based on Propo-
sition 5, it is no problem that each chain has its
own consensus protocol. So, Proposition 6 is true.

5.3 Customizability Analysis

The requirements covered in this section corre-
spond to the customizability requirements men-
tioned in Section 4.1.
Proposition 7. Blockchain data models deter-
mine transaction modes.

The data structure is one of the key elements
of a blockchain data model. ONMCA’s customiz-
ability to multiple data assets comes from the
flexible design of the transaction data structure
(denoted by txn). Next, we focus on the transac-
tion modes shown in Table 2 to examine how txns
can describe different transaction modes.

To describe the transfer-type transaction
mode, we can make the current transaction txncur

connect to previous transaction txnpre by adding
the hash pointer of txnpre as an element of
txncur. Doing so will create a chain of transac-
tions, which represents a digital asset, much like
Bitcoin does. The key to this transaction data
structure is that the asset owner must generate a
signature sig (hash (txnpre)) for txncur to indicate
the handing over of the asset ownership.

To describe the distribution-type transaction
mode, we just need to slightly change the way
of signing transfer-type transactions. The asset
owner has to sign each transactions for each new
user of the asset to keep the ownership from
transferring.

To describe the value-added transaction mode,
we can add a new element to store the new feature
ftr that a new transaction txn contains, and then
let the provider of the new feature offer a signature
sig (ftr) to txn to claim the new shared ownership
of the asset.

Figure 7 shows the above different designs.
Apparently, ONMCA allows blockchain data mod-
els to be customized to describe different transac-
tion modes. So, Proposition 7 is true.
Proposition 8. Consensus protocols, contract
templates, and control interfaces are customizable
in ONMCA.

Based on the design principles we proposed
in Section 4.2.2, it is mandated by design that
a BDAMS following ONMCA can have customiz-
able consensus protocols and contract templates.
As we discussed in Section 4.3, users can deploy
consensus protocols on different chains with the
node component at the network layer. Meanwhile,
users can create and modify contract templates

16

Transaction mode Transaction data structure

𝑡𝑥𝑛0 𝑡𝑥𝑛1 𝑡𝑥𝑛2
𝑠𝑖𝑔𝐴 𝑠𝑖𝑔𝐵

𝑡𝑥𝑛0 𝑡𝑥𝑛1 𝑡𝑥𝑛2
𝑠𝑖𝑔𝐴

𝑡𝑥𝑛0 𝑡𝑥𝑛1 𝑡𝑥𝑛2
𝑠𝑖𝑔 𝑓𝑡𝑟𝐴 𝐴𝑓𝑡𝑟𝐴 𝑓𝑡𝑟𝐵

𝑠𝑖𝑔 𝑓𝑡𝑟𝐵 𝐵

𝐴՜𝑑 𝐵՜𝑑 𝐶𝑜𝑢
𝐵𝑢՚𝑑 𝐴𝑜𝑢՜𝑑 𝐶𝑢
𝑑 𝐴𝑜𝑢 𝑑′ 𝐵𝑜𝑢 𝑑′′

Fig. 7 Blockchain data models for different transaction
modes.

by invoking interfaces of the ContrControl com-
ponent at the control layer. In addition, what
interfaces the components of the control layer can
provide is also determined at the beginning of the
development of the BDAMS. Thus, Proposition 8
is true.
Proposition 9. There is no limit on the program-
ming language in which ONMCA-based systems
can be developed.

The contracts in ONMCA are template-based,
and the terms therein will be translated into inter-
face calls, so there is no need to use a special
contract language to implement these contracts.
At the same time, all components are based on the
service request framework, so any programming
language that can provide the framework, such as
Java, Python, C++, etc., can develop BDAMSs
based on ONMCA. In sum, Proposition 9 is true.

5.4 Security Analysis

The requirements covered in this section corre-
spond to the security requirements mentioned in
Section 4.1.
Proposition 10. Each user can contribute at
most one node to the blockchain network.

ONMCA provides UserService and UserCon-
trol components to ensure the uniqueness of
each account in the target system. Furthermore,
ONMCA is geared towards permission-ed environ-
ment, which means that we can administratively
guarantee the uniqueness of the identities of net-
work participants. Therefore, having each user

contribute up to one node to the blockchain net-
work in a unique identity is easy to achieve at both
the network layer and the service layer. In other
words, Proposition 10 is true.
Proposition 11. ONMCA-based systems are able
to resist common attacks.

We analyze ONMCA’s defense capabilities
against common attacks faced by blockchain sys-
tems, including Sybil attack, relay attack, denial
of service (DoS) attack, and contract vulnerability
attack.

Resisting Sybil attacks. Sybil attack is a
cyber attack that disrupts the balance of a system
by creating multiple virtual identities, accounts,
or nodes [36, 37]. If an attacker creates a sufficient
number of fake identities, he/she may take con-
trol of the entire system by outvoting other honest
nodes. By Proposition 10, however, it is stipulated
that users can only contribute at most one node
to the network and be authenticated both online
and offline. So the success rate of Sybil attacks is
extremely low.

Resisting relay attacks. A relay attack is a
type of cyber attack where an attacker intercepts
and relays communication between two legitimate
parties [38, 39]. The attacker uses specialized
devices to capture and transmit signals, allow-
ing them to bypass security measures and gain
unauthorized access. ONMCA allows designers to
use session tokens to prevent this attack from
happening. Once a transaction starts, the sender
sends the receiver with a one-time token, which is
used by the receiver to transform a secret. Sup-
pose that an attacker has poached this secret and
tries to initiate a new session. Then, the token
of the new session will be changed, making the
attacker’s work meaningless. This design can be
implemented by customizing the consensus pro-
tocols in the network layer. So ONMCA-based
systems are able to resist relay attacks effectively.

Resisting DoS attacks. A malicious client
may send a request of service without any effort,
but the system has to use a lot of resources to
process the request and respond to the client.
This is a common vulnerability that DoS attack-
ers usually exploit [40, 41]. In ONMCA-based
systems, however, a user who conducts a DoS
attack will certainly leave a trace online. The
users entering the system must have been authen-
ticated both online and offline. The evildoer will
suffer high social penalties. At the same time,

17

the variables qualified for users to request can be
restricted through setting the MetaService com-
ponent. In addition, users are prohibited from
interacting directly with the service data layer,
as shown in Figure 6, preventing invalid requests
from depleting storage resources.

Resisting contract vulnerability attacks.

Smart contracts are essentially human-written
computer code, so their flaws and vulnerabilities
are inevitable [42, 43]. ONMCA’s contracts are
not smart contracts but contract templates. We
can circumvent most of the risks with ONMCA
by using contract templates that are certified by
the market. Meanwhile, ONMCA’s contracts do
not involve business logic, so they are less likely to
have code vulnerabilities that affect assets. More-
over, using contract templates not only reduces
duplication of development, but also reduces the
severe economic losses caused by smart contract
vulnerabilities.

In sum, Proposition 11 is true.
Proposition 12. Chains are isolated from each
other.

Chains in ONMCA may have different data
models and consensus protocols, and each chain
can have only one initiator. An initiator deter-
mines the intended use of a chain, and organizes
other nodes to take part in this chain’s con-
sensus. The initiator operates all these processes
by its own node program. Then, no one else
will be able to change this chain’s elements and
characteristics. Also, the transactions with dif-
ferent data structures can only be packed into
their own chains. The above setting can be regu-
lated by the components of the control layer. So,
Proposition 12 is true.

5.5 Solving Existing Architectural

Issues

Table 7 shows how ONMCA addresses the four
issues mentioned in Section 1.1.

Table 7 Issues addressing.

Issues Propositions

Pseudo decentralization Proposition 1, Proposition 10
Not asset-oriented Proposition 2, Proposition 4,

Proposition 6, Proposition 7
Contract dependency Proposition 3, Proposition 7
High load of chains Proposition 3, Proposition 12

6 Conclusion

The development of today’s digital asset manage-
ment systems needs the support of a more cred-
ible and customizable blockchain system archi-
tecture. Against this background, we propose
ONMCA, which is a new architecture for build-
ing multi-chain BDAMS. Compared to existing
architectures, ONMCA eliminate the key issues
of DAM, including pseudo decentralization, not
asset-oriented, contract dependency, and high load
of chains. Therefore, ONMCA will greatly pro-
mote the engineering application of blockchain in
DAM.

Some limitations of our work point out sev-
eral future research directions. First, we have not
discuss ONMCA-based software development yet,
but it is important for ONMCA to come into use.
So we leave this line of research as future work
for public, especially for engineering researchers.
Second, we did not discuss ONMCA at a full man-
agement level, whereas management schemes do
need further study as they may determine the
vitality of the architecture. Finally, ONMCA is
still need more architecture patterns to verify its
effectiveness in practice.

We hope that more scholars will be involved
in the improvement and validation of ONMCA
and that ONMCA will help more engineers and
managers.

Acknowledgments. This paper is funded in
part by the Natural Science Foundation of Hebei
Province under grant No. F2023201032.

Declarations

Funding This paper is funded in part by the
Natural Science Foundation of Hebei Province
under grant No. F2023201032.
Conflict of interest All the authors declare that
they have no confict of interests.
Data Availability Not applicable.
Ethics Approval Not applicable.
Consent to participate All the authors involved
in this manuscript have agreed to participate in
this submitted paper.
Consent for publication All the authors
involved in this manuscript give full consent for
publication of this submitted paper.

18

Availability of data and materials Not appli-
cable.
Code availability Not applicable.
Authors’ Contributions L.W. designed the
research. W.Z. built the models and drafted the
paper. L.Z. proved the propositions and helped
organize the paper. H.L. performed the formal
analysis. All authors reviewed the manuscript.

References

[1] S. Alam, M. Shuaib, W. Z. Khan, S. Garg,
G. Kaddoum, M. S. Hossain, Y. B. Zikria,
Blockchain-based initiatives: current state
and challenges, Computer Networks 198
(2021) 108395.

[2] J. Zhang, S. Zhong, T. Wang, H.-C. Chao,
J. Wang, Blockchain-based systems and
applications: a survey, Journal of Internet
Technology 21 (2020) 1–14.

[3] F. Casino, T. K. Dasaklis, C. Patsakis, A
systematic literature review of blockchain-
based applications: Current status, classi-
fication and open issues, Telematics and
informatics 36 (2019) 55–81.

[4] G. T. Ho, Y. M. Tang, K. Y. Tsang,
V. Tang, K. Y. Chau, A blockchain-based
system to enhance aircraft parts traceability
and trackability for inventory management,
Expert Systems with Applications 179 (2021)
115101.

[5] Z. Yang, K. Yang, L. Lei, K. Zheng, V. C.
Leung, Blockchain-based decentralized trust
management in vehicular networks, IEEE
internet of things journal 6 (2018) 1495–1505.

[6] D. D. F. Maesa, P. Mori, Blockchain 3.0
applications survey, Journal of Parallel and
Distributed Computing 138 (2020) 99–114.

[7] D. Berdik, S. Otoum, N. Schmidt, D. Porter,
Y. Jararweh, A survey on blockchain for
information systems management and secu-
rity, Information Processing & Management
58 (2021) 102397.

[8] Y. Lu, The blockchain: State-of-the-art and
research challenges, Journal of Industrial
Information Integration 15 (2019) 80–90.

[9] Z. Zheng, S. Xie, H.-N. Dai, W. Chen,
X. Chen, J. Weng, M. Imran, An overview
on smart contracts: Challenges, advances and
platforms, Future Generation Computer Sys-
tems 105 (2020) 475–491.

[10] R. B. Uriarte, H. Zhou, K. Kritikos, Z. Shi,
Z. Zhao, R. De Nicola, Distributed service-
level agreement management with smart con-
tracts and blockchain, Concurrency and
Computation: Practice and Experience 33
(2021) e5800.

[11] M. Taghavi, J. Bentahar, H. Otrok,
K. Bakhtiyari, A blockchain-based model
for cloud service quality monitoring, IEEE
Transactions on Services Computing 13
(2019) 276–288.

[12] P. Zheng, Z. Wang, C.-H. Chen, L. P. Khoo,
A survey of smart product-service systems:
Key aspects, challenges and future perspec-
tives, Advanced engineering informatics 42
(2019) 100973.

[13] M. Ozkaya, F. Erata, A survey on the prac-
tical use of uml for different software archi-
tecture viewpoints, Information and Software
Technology 121 (2020) 106275.

[14] J. Beese, S. Aier, K. Haki, R. Winter, The
impact of enterprise architecture manage-
ment on information systems architecture
complexity, European Journal of Information
Systems (2022) 1–21.

[15] M. Wang, Y. Guo, C. Zhang, C. Wang,
H. Huang, X. Jia, Medshare: A privacy-
preserving medical data sharing system by
using blockchain, IEEE Transactions on
Services Computing (2021).

[16] B. Zaabar, O. Cheikhrouhou, F. Jamil,
M. Ammi, M. Abid, Healthblock: A secure
blockchain-based healthcare data manage-
ment system, Computer Networks 200 (2021)
108500.

19

[17] R. Jabbar, N. Fetais, M. Krichen,
K. Barkaoui, Blockchain technology for
healthcare: Enhancing shared electronic
health record interoperability and integrity,
in: 2020 IEEE International Conference on
Informatics, IoT, and Enabling Technologies
(ICIoT), IEEE, 2020, pp. 310–317.

[18] Z. Wang, H. Jin, W. Dai, K.-K. R. Choo,
D. Zou, Ethereum smart contract security
research: survey and future research oppor-
tunities, Frontiers of Computer Science 15
(2021) 1–18.

[19] B. Alhijawi, M. A. Alrub, M. Al-Fayoumi,
Generalized ethereum blockchain-based rec-
ommender system framework, Information
Systems 111 (2023) 102113.

[20] S. Zhang, W. Li, X. Li, B. Liu, Authros:
Secure data sharing among robot operat-
ing systems based on ethereum, in: 2022
IEEE 22nd International Conference on Soft-
ware Quality, Reliability and Security (QRS),
IEEE, 2022, pp. 147–156.

[21] M. Zulfiqar, F. Tariq, M. U. Janjua, A. N.
Mian, A. Qayyum, J. Qadir, F. Sher, M. Has-
san, Ethreview: an ethereum-based product
review system for mitigating rating frauds,
Computers & Security 100 (2021) 102094.

[22] Q. Lu, A. Binh Tran, I. Weber, H. O’Connor,
P. Rimba, X. Xu, M. Staples, L. Zhu, R. Jef-
fery, Integrated model-driven engineering of
blockchain applications for business processes
and asset management, Software: Practice
and Experience 51 (2021) 1059–1079.

[23] J. Chen, Z. Lv, H. Song, Design of per-
sonnel big data management system based
on blockchain, Future generation computer
systems 101 (2019) 1122–1129.

[24] S. Hong, Y. Noh, J. Hwang, C. Park, Fabas-
set: Unique digital asset management sys-
tem for hyperledger fabric, in: 2020 IEEE
40th International Conference on Distributed
Computing Systems (ICDCS), IEEE, 2020,
pp. 1269–1274.

[25] P. Rodrigo, J. Pouwelse, M. d. Vos, Unicon:
Universal and scalable infrastructure for digi-
tal asset management, in: Proceedings of the
2nd International Workshop on Distributed
Infrastructure for Common Good, 2021, pp.
5–10.

[26] D. C. Luckham, J. J. Kenney, L. M. Augustin,
J. Vera, D. Bryan, W. Mann, Specifica-
tion and analysis of system architecture using
rapide, IEEE transactions on software engi-
neering 21 (1995) 336–354.

[27] B. N. Silva, M. Khan, K. Han, Towards
sustainable smart cities: A review of trends,
architectures, components, and open chal-
lenges in smart cities, Sustainable cities and
society 38 (2018) 697–713.

[28] C. Gehrmann, M. Gunnarsson, A digital twin
based industrial automation and control sys-
tem security architecture, IEEE Transactions
on Industrial Informatics 16 (2019) 669–680.

[29] J. Kim, Y. Dvorkin, A p2p-dominant distri-
bution system architecture, IEEE Transac-
tions on Power Systems 35 (2019) 2716–2725.

[30] A. I. Sanka, M. Irfan, I. Huang, R. C. Cheung,
A survey of breakthrough in blockchain tech-
nology: Adoptions, applications, challenges
and future research, Computer communica-
tions 169 (2021) 179–201.

[31] B. K. Mohanta, D. Jena, S. S. Panda, S. Sob-
hanayak, Blockchain technology: A survey on
applications and security privacy challenges,
Internet of Things 8 (2019) 100107.

[32] T. Kulik, B. Dongol, P. G. Larsen, H. D.
Macedo, S. Schneider, P. W. Tran-Jørgensen,
J. Woodcock, A survey of practical for-
mal methods for security, Formal Aspects of
Computing 34 (2022) 1–39.

[33] M. Castro, B. Liskov, et al., Practical byzan-
tine fault tolerance, in: OsDI, volume 99,
1999, pp. 173–186.

[34] D. Ongaro, J. Ousterhout, In search of
an understandable consensus algorithm, in:
2014 USENIX annual technical conference
(USENIX ATC 14), 2014, pp. 305–319.

20

[35] L. Wang, J. Liu, W. Liu, Staged data deliv-
ery protocol: A blockchain-based two-stage
protocol for non-repudiation data delivery,
Concurrency and Computation: Practice and
Experience 33 (2021) e6240.

[36] M. Baza, M. Nabil, M. M. Mahmoud, N. Bew-
ermeier, K. Fidan, W. Alasmary, M. Abdal-
lah, Detecting sybil attacks using proofs of
work and location in vanets, IEEE Transac-
tions on Dependable and Secure Computing
19 (2020) 39–53.

[37] C. Pu, K.-K. R. Choo, Lightweight sybil
attack detection in iot based on bloom filter
and physical unclonable function, computers
& security 113 (2022) 102541.

[38] N. V. Abhishek, A. Tandon, T. J. Lim, B. Sik-
dar, A glrt-based mechanism for detecting
relay misbehavior in clustered iot networks,
IEEE Transactions on Information Forensics
and Security 15 (2019) 435–446.

[39] Y.-J. Tu, S. Piramuthu, On addressing
rfid/nfc-based relay attacks: An overview,

Decision Support Systems 129 (2020) 113194.

[40] Y. Pan, Y. Wu, H.-K. Lam, Security-based
fuzzy control for nonlinear networked con-
trol systems with dos attacks via a resilient
event-triggered scheme, IEEE Transactions
on Fuzzy Systems 30 (2022) 4359–4368.

[41] L. F. Eliyan, R. Di Pietro, Dos and ddos
attacks in software defined networks: A sur-
vey of existing solutions and research chal-
lenges, Future Generation Computer Systems
122 (2021) 149–171.

[42] M. Zhang, X. Zhang, Y. Zhang, Z. Lin,
{TXSPECTOR}: Uncovering attacks in
ethereum from transactions, in: 29th
USENIX Security Symposium (USENIX
Security 20), 2020, pp. 2775–2792.

[43] Z. Liu, P. Qian, X. Wang, Y. Zhuang, L. Qiu,
X. Wang, Combining graph neural networks
with expert knowledge for smart contract vul-
nerability detection, IEEE Transactions on
Knowledge and Data Engineering (2021).

21

	Introduction
	Background
	Motivation
	Contributions

	Related Work
	Preliminaries
	System Architecture
	Blockchain
	Formal Methods
	Bilinear Map

	Architecture Modeling
	Requirements
	Architecture Overview
	Model Description
	Design Principles
	State Transition

	Architecture Composition
	Components
	Connections
	Configuration

	Evaluation
	Functionality Analysis
	Scalability Analysis
	Customizability Analysis
	Security Analysis
	Solving Existing Architectural Issues

	Conclusion
	Acknowledgments

