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Abstract
In this study, we assess the performance of the NASA Earth Exchange Global Daily Downscaled Projections’ (NEX-GDDP)
CMIP6 models in simulating extreme climate indices over China and its eight subregions. Future projections of these indices
for the period 2081–2100 are investigated under three scenarios. The �ndings suggest that the models reasonably
reproduce the spatial patterns of absolute indices related to extreme temperature, except for the percentile indices. There are
larger model spreads for warm days, heat wave frequency, and heat wave days. The models effectively capture the
climatological distributions of most extreme precipitation indices, although limitations are observed for consecutive wet
days (CWDs) and extremely heavy precipitation days (R50). Among the subregions, the multimodel ensemble performs best
in simulating the spatial patterns of extreme climate indices in Northeast China. Compared to CMIP6 models, NEX-GDDP-
CMIP6 exhibits enhanced capability in simulating the spatial distributions of extreme climate events, displaying higher
spatial correlation coe�cients and improved model consensus. Consistency among different models is high for temperature
extremes, with northwest, southwest and southern regions projected to experience the most signi�cant increase during the
21st century. Precipitation extremes are also projected to increase, except for consecutive dry days (CDDs). Inconsistencies
among models are observed, particularly for the CDD and CWD indices in the whole country and for the total precipitation in
the southern region. However, with higher emission scenarios, consistency improves for other precipitation indices. The
extreme precipitation indices in Southwest, East and South China exhibit the most substantial and noticeable increases.

1. Introduction
In recent decades, the global temperature has been steadily rising. Between 2011 and 2020, the global average temperature
increased by 1.09°C compared to the preindustrial period (1850–1900), primarily due to human activities (IPCC 2021). The
IPCC AR6 Working Group I has pointed out that, irrespective of emission scenarios, the temperature rise is inevitably poised
to exceed the 1.5°C threshold within 2020 to 2040. In fact, as of July 2023, global temperatures have surpassed the
preindustrial levels by approximately 1.5°C, marking it as the highest global monthly average temperature in recorded human
history (Climate Change Service 2023). Globally, human activities have resulted in an increased frequency and intensity of
extreme weather events and climate incidents (Dong et al. 2020, 2022; Engdaw et al. 2023; Jiang et al. 2022; Lu et al. 2016;
Madakumbura et al. 2021; Xu et al. 2022; Yin et al. 2017). This has escalated the risks of heatwaves, droughts, and �oods,
with profound implications for ecosystems, human health, and socioeconomic well-being (Fu and Wen 2002; Williams et al.
2015). As the warming trend continues to intensify, extreme climate events will pose critical threats to food and water
security. Moreover, extreme events such as severe heatwaves, �oods, droughts, and wild�res have become increasingly
common in China. Beyond the threshold of temperature rise, the intensity and scope of these extreme climate events are
bound to escalate further, with far-reaching consequences.

China’s climate is signi�cantly in�uenced by the East Asian monsoon and the Qinghai-Tibet Plateau, resulting in high climate
sensitivity, large variability, and a wide range of extreme weather and climate events, often leading to frequent disasters
(Chen et al. 2023; Cui et al. 2019; Duan and Wu 2005; Liu et al. 2023). In recent years, China has experienced multiple record-
breaking extreme climate events. For instance, in the summer of 2023, a historically rare heavy precipitation event occurred
in most parts of North China, with the maximum accumulated rainfall reaching 1003 mm in Licheng County, Xingtai, Hebei
Province (National Climate Center of China 2023). In the summer of 2022, an extremely prolonged heatwave event affected
the central and eastern regions of China, with the overall intensity of the heatwave being the strongest since 1961 (Ma and
Yuan 2023). In 2021, Zhengzhou, Henan Province, experienced an unprecedented extreme rainfall event, with a maximum
daily precipitation of 624 mm, close to the annual average precipitation of the station (641 mm), resulting in signi�cant loss
of life and extensive economic damage (Zhang et al. 2023). In the future, anthropogenic climate change will increase the
occurrence of extreme weather and climate events in China, heightening the country’s exposure to climate risks and leading
to a lock-in effect (IPCC 2022). Therefore, it is essential to conduct high-precision estimations of the future evolution of
extreme climate events in China and take proactive measures in advance.
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Climate system models not only have the capability to simulate historical changes in global climate but also provide
estimations of future variations, serving as crucial research tools for climate change detection and attribution. The previous
CMIP5 models have demonstrated the ability to replicate the increasing spatial distribution of precipitation in China from
northwest to southeast. However, they tend to underestimate precipitation in the coastal regions of southern China while
overestimating precipitation in the northern part of the country and the Qinghai-Tibet Plateau (Chen et al. 2014). Additionally,
they have shown good performance in simulating the climatic means and trends of precipitation extremes in China (Chen
and Sun 2015). The simulations of precipitation extremes in the CMIP5 models have revealed wet deviations in western and
northern China, accompanied by dry biases in southeastern China, as reported by Jiang et al. (2015). The sixth phase of the
International Coupled Model Intercomparison Project (CMIP6) has witnessed the largest participation of models among all
previous phases, providing critical data support for the IPCC-AR6 report. Compared to the climate models used in the
previous phase, CMIP6 models feature higher resolutions, more intricate and re�ned physical processes, and utilize the latest
shared socioeconomic pathways (SSPs) for future projections. Compared to the CMIP5 models, the CMIP6 models exhibit
substantial improvements in simulating the dry bias in southern China and show compelling enhancements in capturing the
climatological characteristics of extreme precipitation events (Chen et al. 2020; Xu et al. 2021; Zhu et al. 2021). CMIP6
models also perform better in simulating extreme temperature events in China than CMIP5 models (Yang et al. 2023).
However, they still encounter di�culties in reproducing the spatial patterns of certain extreme temperature indices, such as
TX90P (days with maximum temperature exceeding the 90th percentile) and heatwave events (Hirsch et al. 2021; Zhu et al.
2020). The differences in simulations between the two generations of models are mainly attributed to the upgraded physical
schemes in the CMIP6 models (Zhu et al. 2020). Zhu et al. (2021) found that the spatial distributions of extreme indices in
the 21st century projected by the CMIP5 and CMIP6 models are generally consistent. The projected results of the CMIP6
models indicate a signi�cant increase in the TXX index (annual maximum of the daily maximum temperature) over northern
China, while the southern region is expected to experience the most pronounced increases in TX90P and WSDI (warm spell
duration index) (Zhang et al. 2021). In the future, apart from a decreasing trend in the CDD (consecutive dry days) index,
various regions across China are expected to experience a signi�cant increase in total precipitation, maximum consecutive 5-
day precipitation, and the number of heavy rainfall days. Moreover, the CMIP6 simulations also indicate a greater increase in
total precipitation and extreme precipitation over the Yangtze River basin and areas near 40°N (Zhu et al. 2021).

Although the CMIP6 models have shown signi�cant improvements in simulating performance compared to previous model
generations, there is still considerable uncertainty in the simulations and projections (Wei et al. 2023; Xu et al. 2021). This
primarily stems from the models’ inadequate representation of large-scale atmospheric circulation �elds, de�ciencies in
physical parameterization schemes, challenges in accurately reproducing aerosol-radiation interactions and anthropogenic
aerosol-cloud interactions’ radiative forcing, and uncertainties in emission scenarios (Fan et al. 2022; Huang et al. 2013; Van
Vuuren et al. 2011; Zhang et al. 2021; Zhou et al. 2014). In addition, the coarse resolution of the models poses challenges in
capturing local-scale climate responses and hinders their application at the regional level. Therefore, it is imperative to apply
correction and downscaling techniques to the model output before utilizing it. The National Aeronautics and Space
Administration (NASA) has initiated a global daily data downscaling program, which has performed downscaling treatments
on historical and projection experiments of 21 CMIP5 models. This program provides downscaled data at the global scale
and high resolution while also correcting biases in both historical and projection experiments. These downscaled data
exhibit excellent modeling capabilities for extreme climate events in China’s region, offering more climate change
information at the regional scale and reducing the uncertainty range of extreme precipitation events (Chen et al. 2017; Zhou
et al. 2018). Recently, NASA released the latest version of these data (NEX-GDDP-CMIP6), which is based on the downscaling
and correction of daily values using CMIP6 models (Thrasher et al. 2022). However, it remains unclear how the NEX-GDDP-
CMIP6 model performs in simulating extreme climate events in China and in projecting the potential changes in these
events.

This paper is organized as follows: Section 2 describes the observations, NEX-GDDP-CMIP6 data, methods and study area
used in this study. Section 3 evaluates the results based on the simulations of the 26 NEX-GDDP-CMIP6 models and
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multimodel ensemble (MME). The future changes in climate extremes projected by MME and climate model agreements are
also explored in Section 3. The conclusion and discussion are given in Section 4.

2. Materials and methods

2.1. Datasets
The CN05.1 dataset is a comprehensive collection of daily observations that have been acquired since 1961 from more than
2,400 ground meteorological stations scattered across various regions within China. Employing the anomaly approach,
distinct climate variables’ climatic and anomaly �elds were independently interpolated and subsequently integrated to
generate gridded data (Wu and Gao 2013). The spatial resolution of this dataset is precisely de�ned as 0.25° × 0.25°. The
daily maximum temperature and precipitation of this dataset were used to evaluate the climate models’ simulation
capabilities.

The model data utilized in this study incorporate daily maximum temperature and precipitation data under the historical
experiment of 26 CMIP6 models from the Global Daily Downscaled Projections dataset by the National Aeronautics and
Space Administration (NASA), as well as the model projections under the SSP1-2.6, SSP2-4.5, and SSP5-8.5 emission
scenarios (Thrasher et al. 2022). The BCSD method, along with error correction and spatial downscaling, was applied to
re�ne the CMIP6 historical and future projections. The dataset can be downloaded from the following website:
https://www.nccs.nasa.gov/services/data-collections/land-based-products/nex-gddp-cmip6. The spatial resolution of the
dataset is 0.25° × 0.25° (Table 1). In line with the PCC AR6 report, the reference period spanned from 1995 to 2014, while the
projection period covered 2015 to 2100, with a speci�c focus on the long period of the 21st century (2081–2100).

Table 1
Information on the 26 climate models used in the study

  NEX-GDDP-CMIP6

Model Total 26 models: ACCESS-CM2 ACCESS-ESM1-5 BCC-CSM2-MR CanESM5 CMCC-CM2-SR5 CMCC-
ESM2 CNRM-CM6-1 CNRM-ESM2-1

EC-Earth3 EC-Earth3-Veg-LR GFDL-CM4

GFDL-ESM4 GISS-E2-1-G HadGEM3-GC31-LL INM-CM4-8 INM-CM5-0 IPSL-CM6A-LR

KACE-1-0-G MIROC6 MIROC-ES2L

MPI-ESM1-2-LR MRI-ESM2-0 NESM3

NorESM2-LM TaiESM1 UKESM1-0-LL

Simulation Historical (1961–2014)

SSP1-2.6 (2015–2100)

SSP2-4.5 (2015–2100)

SSP5-8.5 (2015–2100)

Variable tasmax, pr

Temporal
Resolution

Daily

Spatial
Resolution

0.25°×0.25°

Under the SSP1-2.6 scenario, the CMCC-CM2-SR5 and GFDL-CM4 models do not have daily maximum temperature data,
while the GFDL-CM4 model also lacks daily precipitation data.
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2.2. Methods
We selected a total of 13 extreme climate indices as the primary focus, comprising 5 extreme temperature indices and 8
extreme precipitation indices (Table 2). To facilitate a concise summary of the results, the chosen indices were classi�ed as
follows: PTOT, SDII, RX1D, RX5D, and TXX were categorized as absolute indices; CDD and CWD were classi�ed as duration
indices; R20, R50, and T35 were designated as threshold-based indices; and TX90P, HWF, and HWD were denoted as
percentile indices. Notably, TXX, TX90P, CDD, CWD, R20, R50, RX1D, RX5D, SDII, and PTOT were established and de�ned by
the Expert Team on Climate Change Detection and Indices (ETCCDI), while T35, HWF, HWD, and R50 have also garnered
widespread application in climate change research (Wu et al. 2023; Hirsch et al. 2021; Sun et al. 2011).

Table 2
Extreme temperature and precipitation indices

Indices De�nitions Units

TXX The annual maxima of daily maximum ℃

T35 Number of days with maximum temperature greater than and equal to 35 °C day

TX90P Percentage of days when Tmax larger than the 90th percentile %

HWF Annual count of heat waves (de�ned as 3 succeeding days with Tmax exceeding 90th percentile
of the climatology)

time

HWD Annual count of days for the heat waves day

CDD Maximum number of consecutive days with precipitation less than 1 mm day

CWD Maximum number of consecutive days with precipitation no less than 1 mm day

R20 Annual count of days when precipitation greater than and equal to 20 mm day

R50 Annual count of days when precipitation was greater than and/or equal to 50 mm day

RX1d Annual maximum 1-day precipitation mm

RX5d Annual consecutive maximum 5-day precipitation mm

SDII Annual total precipitation divided by the number of wet days in the year mm/day

PTOT Annual total precipitation in wet days mm

For a comprehensive investigation of regional variations, we adopted the regional classi�cation established by Zhou et al.
(2014) to divide China into 8 subregions. These subregions included Northeast China (NEC; 39°–54°N, 119°–134°E), North
China (NC; 36°–46°N, 111°–119°E), East China (EC; 27°–36°N, 116°–122°E), Central China (CC; 27°–36°N, 106°–116°E),
Northwest China (NWC; 36°–46°N, 75°–111°E), the Tibetan Plateau (SWC1; 27°–36°N, 77°–106°E), Southwest China (SWC2;
22°–27°N, 98°–106°E), and South China (SC; 20°–27°N, 106°–120°E).

The Taylor diagram is a vital and concise tool used to assess the capabilities of models by examining the statistics
concerning pattern correlation coe�cients and the ratios of standard deviations (RSD) obtained from model outputs and
observational data. A comprehensive elucidation of these statistics can be found in Taylor’s work (2001). A close proximity
of both the correlation coe�cient and RSD to 1 signi�es a strong performance by the model.

The Taylor skill score (TS) is a comprehensive index devised using pattern correlation coe�cients and ratios of standard
deviations (RSDs). The closer the TS score approaches 1, the stronger the simulation performance of the model. We
calculated the Taylor skill scores (TS) for extreme climate indices simulated by individual models and the ensemble mean,
as well as the TS scores for the eight subregions simulated by the multimodel ensemble (MME).
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1

In this equation, R represents the pattern correlation coe�cient, and equals 0.999, which is substituted into the formula as
the maximum correlation coe�cient among all models. and denote the area-weighted ratios of standard deviations
(RSDs) for the models and observations, respectively.

Simulated and projected changes in extreme climate indices in the long-term period (2081–2100) relative to the baseline
period of 1995–2014 are calculated as follows:

When the indices’ units are mm and mm/day:

Relative Change =  (2)

When the indices’ units are %, ℃ and day:

Relative Change =  (3)

3. Results

3.1. Performance of NEX-GDDP-CMIP6 models
First, an evaluation of the downscaling models’ capability to simulate the climatology of extreme high-temperature events
was conducted (Fig. 1). In the observations, the epicenter of extreme high temperatures resided in the northwestern region of
China, with values surpassing 40℃. Other high-value areas were in North China and the Yangtze River Basin, where
temperatures exceeded 37°C. The lowest values, below 15℃, could be found in the northwestern part of the Qinghai-Tibet
Plateau. The NEX-GDDP-CMIP6 ensemble average closely aligned with observations, exhibiting a spatial correlation
coe�cient of 0.98. However, the model overestimated values in the northeastern region. The regions with high T35 index
values were likewise situated in the northwestern part of China, as well as in North China and the Yangtze River Basin, where
values exceeded 16 days. Low-value regions encompassed the southwest and northeastern parts of the country, with values
below 0.5 days. The model ensemble average effectively simulated the number of hot days, with a spatial correlation
coe�cient reaching 0.88. Nevertheless, it overestimated and underestimated the number of hot days in the northeastern
region and the area south of the Yangtze River, respectively. The high-value regions for TX90P were predominantly
concentrated in western Yunnan Province, Guangdong Province, and other areas, with values exceeding 20%. Low-value
regions were mainly observed in North China, with values below 12%. The model struggled to reproduce this distribution
pattern, generally underestimating the percentage of warm days, with a spatial correlation coe�cient of 0.51. However, the
model ensemble average performed well in simulating the North China region. The high-value center of HWF was primarily
found in Qinghai Province, western Tibet Autonomous Region, western Yunnan, Guangdong, and other places, with values
exceeding 9 times. The low-value center appeared in North China, with values below 5 times. The model ensemble average
underestimated most regions of the nation, particularly the western areas, exhibiting a spatial correlation coe�cient of only
0.46. It performed relatively well in simulating the North China region. Regarding HWD, the high-value center predominantly
occurred in the western region of China and Guangdong Province, where values exceeds 40 days. The low-value center was
in North China and the northeastern region, with values below 24 days. The model ensemble average underestimated values
in the eastern part of the NWC region, as well as the CC, EC, and SC regions, with a spatial correlation coe�cient of 0.66, but
it effectively simulated the remaining areas. In summary, the NEX-GDDP-CMIP6 ensemble average successfully simulated
the spatial patterns of TXX and T35 and reasonably simulated the TX90P, HWF, and HWD indices in North China. However, it
generally underestimated extreme high-temperature indices in other regions.

TS =
4(1 + R)

2

( + )
2
(1 + R0)2σsm

σto

σto

σsm

R0

σsm σso

× 100%
Indexfuture−Indexbaseline

Indexbaseline

Indexfuture − Indexbaseline
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Further evaluation of the spatial patterns of extreme high-temperature events using Taylor diagram was conducted. Figure 2
illustrates the spatial correlation coe�cients and standard deviation ratios between various model simulations, multimodel
ensemble (MME) simulations, and observations for different extreme high-temperature indices. The results indicated that
individual models and the ensemble average performed well in simulating the TXX index, with spatial correlation coe�cients
of approximately 0.98 and standard deviation ratios close to 1. The simulations for the T35 index were also relatively good,
with spatial correlation coe�cients exceeding 0.85. However, the standard deviation ratios were above 1.5. The models
exhibited poor performance in simulating the TX90P index, with considerable discrepancies among different model results.
The MME, BCC-CSM2-MR, INM-CM5-0, INM-CM4-8, and GISS-E2-1-G models demonstrated better performance, with spatial
correlation coe�cients of approximately 0.5, although their standard deviation ratios were less than 1. The latter three
models outperformed the MME and BCC-CSM2-MR models. On the other hand, the ACCESS-ESM1-5, CMCC-CM2-SR5,
MIROC6, and MIROC-ES2L models exhibited the poorest performance and exhibited a negative correlation with observations.
The models also showed limited ability to simulate the HWF index, with scattered results on the Taylor diagram. The BCC-
CSM2-MR model performed relatively well, with a spatial correlation coe�cient exceeding 0.5 and a standard deviation ratio
close to 1. On the other hand, the ACCESS-ESM1-5, CMCC-CM2-SR5, MIROC6, and MIROC-ES2L models continued to
demonstrate a negative correlation with observations. The models’ performance in simulating the HWD index was slightly
better than that for TX90P and HWF. The MME, BCC-CSM2-MR, GISS-E2-1-G, and CNRM-CM6-1 models performed the best,
with spatial correlation coe�cients all exceeding 0.6. The ratio of their standard deviation to that of the observations was
close to 1 for the GISS-E2-1-G and CNRM-CM6-1 models. Conversely, the ACCESS-ESM1-5, MIROC6, and MIROC-ES2L models
exhibited poorer performance. The analysis indicated that the NEX-GDDP-CMIP6 model performed well in simulating TXX
and T35, possibly due to the incorporation of observational data corrections. However, the corrected models had di�culties
in simulating the TX90P, HWF, and HWD indices. These indices showed signi�cant deviations from the observations, and
there were considerable differences between the various models. Compared to the CMIP6 models, the NEX-GDDP-CMIP6
model improved its performance in representing TXX and TX90P. The downscaled dataset exhibited a higher spatial
correlation with observations and signi�cantly enhanced the consistency among models (Wei et al. 2023; Zhu et al. 2020).

The Taylor skill score provided a more intuitive evaluation of the climate model’s ability to represent the climatology of the
climate state. Figure 3 presents a histogram of the Taylor skill scores, where a score closer to 1 indicated a stronger model
capability. In Fig. 3, both individual models and MME demonstrated strong model capabilities for the TXX index, with an
MME Taylor skill score of 0.98, followed by the T35 index with a score of 0.67. However, the models exhibited weaker
performance in capturing the climatology of the TX90P index over the China region, with an MME score of only 0.49. Nine
models had a Taylor skill score exceeding 0.5, among which GISS-E2-1-G and INM-CM4-8 exhibited the highest capability for
representing the TX90P climatology, with scores reaching 0.58. The models also showed limited skill in capturing the HWF
index over the China region, with an MME score of 0.41. Five models had scores exceeding 0.5, and BCC-CSM2-MR
demonstrated the highest capability for this index, reaching a score of 0.56. On the other hand, the HWD index obtained a
higher score than TX90P and HWF, with an MME score of 0.6. Thirteen models had scores exceeding 0.5, with CNRM-CM6-1
performing the best and achieving a score of 0.68.

Table 3 presents the Taylor skill scores for different regions of China based on MME, along with the regional averages and
anomalies. For the TXX index, MME exhibited the weakest spatial modeling capabilities for the EC region, with a Taylor skill
score of only 0.63, while the NWC region demonstrated the strongest performance, with a score of 0.95. For the regional
averages, the MME showed signi�cant deviations in the NC and NEC regions, overestimating them by 2.69℃ and 2.73℃,
respectively. Regarding the T35 index, the MME performed best in simulating the NWC region, achieving a score of 0.86.
However, it exhibited limited modeling capabilities for the SWC2 and SWC1 regions, with scores close to 0. The MME showed
the largest deviation in the EC region, exceeding 4.71 days. For the TX90P index, the MME demonstrated its strongest
modeling capability for the NC region, with a Taylor skill score of 0.65, while it exhibited minimal performance for the NWC
region, with a score of only 0.06. The largest deviation of the MME occurred in the NC region, with a value of -2.14%. For the
HWF index, the MME’s modeling capabilities were generally poor for most regions, except for the NEC region, where it
obtained a score of 0.54. The region with the largest deviation from observations was SWC1, with a value of -1.31 times.
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Regarding the HWD index, the MME demonstrated its weakest modeling capability for the CC region, with a Taylor skill score
of 0.2, while performing best in simulating the NEC region, with a score of 0.69. The SC region showed the largest deviation
in the simulations, underestimated by 6.26 days compared to observations. Overall, the MME performed best in simulating
the NEC and NC regions, with most of the indices’ scores exceeding 0.4. From a national perspective, the MME simulations
tended to overestimate the TXX index and slightly overestimate the T35 index while underestimating the TX90P, HWF, and
HWD indices, particularly in regions with complex terrain. Possible reasons for these discrepancies were the inaccuracies in
the observational data used to calibrate CMIP6 model results and limitations inherent to the models themselves.

Table 3
Taylor skill scores for extreme high temperature indices in different regions of China and regional averages of

observations and MME simulations. The value inside the parentheses represents the difference between
historical experiments and observations.

    NWC SWC2 SWC1 SC CC EC NC NEC China

TXX TSS

OBS

Historical

0.95

32.02

33.49

(1.47)

0.66

30.28

31.32

(1.04)

0.79

20.10

20.61

(0.51)

0.89

35.28

35.79

(0.51)

0.89

35.35

36.35

(1.0)

0.63

36.30

36.69

(0.39)

0.92

33.35

36.04

(2.69)

0.69

32.33

35.06

(2.73)

0.98

30.12

31.47

(1.35)

T35 TSS

OBS

Historical

0.86

10.81

12.02

(1.21)

0

0.04

0.62

(0.58)

0.07

0.44

0.20

(-0.24)

0.72

6.67

5.27

(-1.4)

0.74

8.82

7.45

(-1.37)

0.67

12.29

7.58

(-4.71)

0.81

2.84

5.16

(2.32)

0.6

0.71

2.11

(1.4)

0.67

5.45

5.73

(0.28)

TX90P TSS

OBS

Historical

0.06

16.98

16.06

(-0.92)

0.26

17.93

16.07

(-1.86)

0.36

17.65

15.65

(-2.0)

0.32

15.78

14.33

(-1.45)

0.23

15.04

13.51

(-1.53)

0.35

14.81

13.57

(-1.24)

0.65

15.72

13.58

(-2.14)

0.39

14.65

15.05

(0.4)

0.49

16.34

15.16

(-1.18)

HWF TSS

OBS

Historical

0.1

7.88

7.02

(-0.86)

0.17

8.08

7.40

(-0.68)

0.35

8.08

6.77

(-1.31)

0.2

7.50

6.67

(-0.83)

0.17

7.08

6.19

(-0.89)

0.22

6.94

5.97

(-0.97)

0.48

6.83

5.73

(-1.1)

0.54

6.27

6.34

(0.07)

0.41

7.46

6.63

(-0.83)

HWD TSS

OBS

Historical

0.26

36.25

31.81

(-4.44)

0.36

29.27

23.89

(-5.38)

0.65

26.90

27.52

(0.62)

0.37

39.85

33.59

(-6.26)

0.2

31.14

28.13

(-3.01)

0.35

29.36

26.85

(-2.51)

0.39

39.83

36.68

(-3.15)

0.69

32.38

31.29

(-1.09)

0.6

34.21

30.59

(-3.62)

Figure 4 presents the time series of four extreme high-temperature indices in China, averaged over the period 1961–2014,
based on observations and simulations relative to 1995–2014. The time series TXX indicated that prior to the year 2000, the
observed index consistently exceeded the MME values. However, after the year 2000, the observed and simulated changes
showed a greater level of agreement. The trend coe�cient differences between the observed and MME values were distinct,
with values of -0.2°C per decade and 0.2°C per decade, respectively. Both coe�cients passed the signi�cance tests,
emphasizing the di�culty of the MME in replicating the temporal characteristics of the TXX index. For the remaining four
indices, the observational values exhibited an increasing trend over time, with trend coe�cients of 0.3 days per decade, 1.8%
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per decade, 0.9 events per decade, and 4.7 days per decade, respectively. The multimodel ensemble was generally successful
in reproducing the trend changes for these indices, with trend coe�cients of 0.5 days per decade, 1.6% per decade, 0.8
events per decade, and 4.3 days per decade, respectively. The observed and simulated extreme high temperature trends have
passed the signi�cance test at the 5% level. These results aligned closely with the original CMIP6 models, as bias correction
methods failed to alter the trend changes in extreme events. Although the NEX-GDDP-CMIP6 models effectively captured the
long-term trend characteristics of the latter four indices, they still exhibited limited capability in simulating interannual
variations and amplitudes associated with these indices.

Figure 5 presents the spatial distribution of eight extreme precipitation indices, as observed and simulated by MME. The
high-value center of the CDD index was in the northwestern region of China, ranging from 130 to 160 days. Conversely, low-
value areas appeared in the southern parts of the country, ranging from 20 to 40 days. This pattern showed an increasing
trend from the southeastern coastal areas toward the northwest inland. The MME could replicate this distribution pattern
fairly well, with a spatial correlation coe�cient of 0.82 compared to the observations. However, the MME noticeably
overestimated the values in the northwestern region, with the center position being signi�cantly larger and the values
exceeding 160 days. This discrepancy may have been related to inaccuracies in the “observed” data used for model
calibration. Regarding the CWD index, the high-value center was in the eastern part of the Qinghai-Tibet Plateau and the
western part of the Sichuan Basin, with values exceeding 80 days. The low-value center appeared in the northwestern region
of China, with values less than 3 days. This distribution pattern exhibited a north-to-south gradient. The MME could simulate
this distribution pattern, with a spatial correlation coe�cient of 0.6 compared to the observations. However, it struggled to
reproduce the high-value center observed in the data, and it overestimated the values in the Yunnan region, as well as in the
northeastern and northern parts of China. For the observed PTOT index, the high-value center was observed in the
southeastern coastal areas, with values exceeding 1800 mm. The low-value center appeared in the northwestern region, with
values less than 200 mm. This distribution pattern also demonstrated an increase from the southeast to the northwest. The
MME was generally capable of reproducing the spatial distribution pattern observed in the data, with a spatial correlation
coe�cient of 0.95, which was the highest among all the extreme precipitation indices. However, compared to the original
CMIP6 models, the MME still overestimated the precipitation over the southern part of the Qinghai-Tibet Plateau. The
distribution pattern of the R20 index aligned with that of PTOT, with the high-value center still located in the southeastern
coastal areas, exceeding 25 days. The MME could simulate the distribution pattern of R20 as well, with a spatial correlation
coe�cient of 0.81 compared to the observations. However, it overestimated the values on the southern side of the Qinghai-
Tibet Plateau and underestimated the values in the southeastern coastal region, mostly concentrated around the Fujian,
Jiangxi, and Anhui provinces. The distribution pattern of R50 was similar to that of R20, with the maximum value exceeding
5 days. The spatial correlation coe�cient between the MME and the observations for the R50 index was 0.51, which was the
lowest among all the extreme precipitation indices. This indicated a clear underestimation of the R50 index in the southern
region of China. The observed distributions of RX1D, RX5D, and SDII were consistent with PTOT, increasing from northwest
to southeast. The MME exhibited spatial correlation coe�cients of 0.83, 0.89, and 0.86, respectively, compared to the
observations. In the southeastern coastal region, the MME noticeably underestimated the values of these three indices,
largely due to inaccuracies in the “observed data” used for calibration.

Figure 6 depicts the Taylor diagram for eight extreme precipitation indices. The NEX-GDDP-CMIP6 models performed the
best in simulating the PTOT index, followed by the RX5D and SDII indices. The spatial correlation coe�cients for all models
were approximately 0.9, and the ratio of standard deviations was also close to 1. Regarding the CDD index, each model
demonstrated good modeling capability with spatial correlation coe�cients exceeding 0.8 and the ratio of standard
deviations ranging from 1.0 to 1.5. However, the models exhibited weaker performance in simulating the CWD index, with
spatial correlation coe�cients of approximately 0.6 and a signi�cant variation in the ratio of standard deviations, ranging
from 0.5 to 1.6 among the different models. The simulation performance of the models for the R20 index was similar to that
of the CDD index. The models exhibited the weakest capability in simulating the R50 index, with spatial correlation
coe�cients below 0.6 and ratios of standard deviations ranging from 0.5 to 1.5. The models performed relatively well in
reproducing the spatial pattern of the RX1D index, with spatial correlation coe�cients ranging from 0.8 to 0.9. However, the
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ratio of standard deviations between the model results and observations was approximately 0.5, indicating an
underestimation of the RX1D values. The NEX-GDDP-CMIP6 model showed a weaker capability in simulating the CWD and
R50 indices but performed the best in simulating PTOT, RX5D, and SDII. Compared to the original CMIP6 model, the NEX-
GDDP-CMIP6 showed better performance in capturing the spatial patterns of indices such as CDD, PTOT, and RX5D. Apart
from the CWD index, the NEX-GDDP-CMIP6 model signi�cantly reduced intermodel discrepancies and demonstrated good
modeling capabilities for extreme precipitation events. (Wang et al. 2021; Wei et al. 2023; Xu et al. 2021; Zhu et al. 2020).

Figure 7 presents the Taylor skill scores for eight extreme precipitation indices. The models exhibited good performance in
simulating the PTOT index, with values above 0.9. The RX5D and SDII indices ranked next, with most models achieving TS
scores above 0.85. The modeling performance for the R20 and CDD indices was similar, with scores of approximately 0.75.
Regarding the RX1D index, the models demonstrated TS scores of approximately 0.6, with the BCC-CSM2-MR, CMCC-CM2-
SR5, CMCC-ESM2, GFDL-ESM4, and TaiESM1 models performing the best, achieving a TS score of 0.72. The MIROC-ES2L
model performed the worst, with a TS score of 0.57. The modeling capability for the CWD index was comparable to that of
the RX1D index, with TS scores of approximately 0.6. The CNRM-ESM2-1 model performed the best with a TS score of 0.68,
while the CanESM5 model performed the worst with a TS score of 0.51. The scores for the R50 index were approximately
0.5, indicating the weakest modeling capability among the indices. The CMCC-CM2-SR5 model performed the best with a TS
score of 0.62, while the CanESM5 model performed the worst with a score of 0.37. In summary, the MME exhibited strong
modeling capability for the PTOT, RX5D, and SDII indices but performed the poorest in simulating the R50 index.

Table 4 provides the Taylor skill scores of extreme precipitation simulated by the MME for different regions in China, as well
as the observed and simulated regional averages. For the CDD index, the MME exhibited the weakest modeling capability in
the SWC1 region, with a score of only 0.52, while showing the best performance in simulating the EC region, with a score of
0.92. The MME overestimated most regions nationwide, with the largest deviation observed in the NWC region, where it
exceeded the observed values by 38.79 days. Regarding the CWD index, the MME demonstrated limited modeling capability
for the NWC and NC regions, with scores of only 0.1 and 0.19, respectively. The best simulation was observed in the EC
region, with a score of 0.8. Overall, the MME tended to overestimate the CWD index, with the SWC2 region exhibiting the most
signi�cant overestimation, exceeding the observations by 16.59 days. For the PTOT index, the MME performed the worst in
simulating the SWC1 region, with a TS score of 0.54, while achieving the highest score of 0.96 in the NC region. The MME
simulation of the PTOT index generally fell short, particularly in the NWC region, where it was underestimated by 29.87%.
Regarding the R20 index, the modeling capability of the MME was weakest in the SWC1 region, with a TS score of 0.13, while
demonstrating the strongest capability in the NEC region, with a TS score of 0.86. The MME simulation of the R20 index had
a tendency to underestimate, with the largest deviation observed in the SC region, falling short of observations by 11.68
days. The MME exhibited limited modeling capability for the R50 index in most regions, with the best performance observed
in the NEC region, achieving a TS score of 0.7. The MME tended to underestimate the R50 index in various subregions,
particularly in the SC region, where it fell short of observations by 3.23 days. For the RX1D index, the MME demonstrated the
poorest modeling capability in the CC, EC, and SWC2 regions, with TS scores below 0.2, while achieving its best performance
in the NEC region with a TS score of 0.81. The MME simulation of the RX1D index generally fell short of observations, with
the SC region exhibiting the most signi�cant underestimation, being 55.73% lower than the observed values. The MME
performed relatively well in simulating the RX5D index, with the EC region showing weaker modeling capability, indicated by
a TS score of only 0.24, while the NEC region exhibited the best simulation, with a TS score of 0.88. However, the MME still
underestimated most regions, with the NWC region displaying the largest deviation, falling short of observations by 39.65%.
The MME underestimated the SDII index in most regions. The largest deviation from observations occurs in the SC region,
with an underestimation of 23.64%. The poorest simulated region was SWC1, with a TS score of 0.26, while the best
simulated region was NEC, with a score of 0.83. Overall, the MME demonstrated varied modeling capabilities for different
extreme precipitation indices and regions. It exhibited more consistent performance in the NEC region, with TS scores mostly
exceeding 0.5 and smaller deviations from observations, possibly due to the GMFD dataset used to calibrate this set of data,
which aligned closely with observations in the NEC region. The MME also performed reasonably well for the entire region of
China, with TS scores surpassing 0.5.
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Table 4
As in Table 3 but for eight precipitation indices (the differences between historical experiments and observations for PTOT,

RX1D, RX5D and SDII are calculated as a percentile)

    NWC SWC2 SWC1 SC CC EC NC NEC China

CDD TSS

OBS

Historical

0.67

88.36
127.15
(38.79)

0.84

40.20

35.25

(-4.95)

0.52

65.42

83.55
(18.13)

0.58

27.81

25.19
(-2.62)

0.75

30.18

34.59
(4.41)

0.92

27.66

28.73
(1.07)

0.55

62.42

84.93
(22.51)

0.69

53.57

78.39
(24.82)

0.74

61.25

82.5
(21.25)

CWD TSS

OBS

Historical

0.1

5.53

4.22

(-1.31)

0.44

19.56

36.15
(16.59)

0.4

21.63

17.85

(-3.78)

0.55

15.54

24.53
(8.99)

0.63

9.43

15.73

(6.3)

0.8

10.35
16.69
(6.34)

0.19

5.99

9.33
(3.34)

0.5

8.23

10.55
(2.32)

0.64

11.39

12.8
(1.41)

PTOT TSS

OBS

Historical

0.78

179.63

125.98

(-29.87)

0.75

1118.29

1103.55
(-1.32)

0.54

530.03

534.79
(0.9)

0.88

1616.55

1501.5
(-7.12)

0.93

1076.03

987.63

(-8.22)

0.93

1313.08

1215.3

(-7.45)

0.96

433.13

409.76

(-5.4)

0.9

535.23

512.38
(-4.27)

0.92

596.72
555.97
(-6.83)

R20 TSS

OBS

Historical

0.33

0.41

0.29

(-0.12)

0.48

11.54

2.36

(-9.18)

0.13

1.46

1.24

(-0.22)

0.69

21.97

10.29

(-11.68)

0.54

13.64

5.49

(-8.15)

0.61

17.89

10.7

(-7.19)

0.67

3.82

2.22

(-1.6)

0.86

3.78

2.14

(-1.64)

0.76

5.27

2.65

(-2.62)

R50 TSS

OBS

Historical

0.02

0.02

0

(-0.02)

0

0.55

0.02

(-0.53)

0.21

0.12

0.18
(0.06)

0.06

3.45

0.22

(-3.23)

0

1.86

0.04

(-1.82)

0.02

2.91

0.25

(-2.66)

0.02

0.39

0.03

(-0.36)

0.7

0.27

0.13

(-0.14)

0.57

0.66

0.33

(-0.33)

RX1D TSS

OBS

Historical

0.55

13.76

13.4

(-2.62)

0.19

47.46

25.94

(-45.34)

0.4

19.84

19.29
(-2.77)

0.44

82.26

36.42

(-55.73)

0.16

66.58

31.94

(-52.03)

0.18

81.16

41.31

(-49.1)

0.29

40.41

27.57

(-31.77)

0.81

38.03

28.35

(-25.45)

0.67

34.63

23.06
(-33.41)

RX5D TSS

OBS

Historical

0.74

23.63

14.26

(-39.65)

0.63

101.62

75.97

(-25.24)

0.39

46.68

49.87
(6.83)

0.66

163.96

103.91
(-36.62)

0.37

124.20

81.36

(-34.49)

0.24

159.78

101.59

(-36.42)

0.76

67.40

60.28

(-10.56)

0.88

69.91

63.11

(-9.73)

0.89

66.96

54.76
(-18.22)

SDII TSS

OBS

Historical

0.58

3.30

3.71
(12.42)

0.57

7.85

6.32

(-19.49)

0.26

4.05

4.61
(13.83)

0.8

10.49

8.01

(-23.64)

0.59

9.04

6.93

(-23.34)

0.48

10.69

8.28

(-22.54)

0.61

6.56

5.96

(-9.15)

0.83

6.09

5.9

(-3.12)

0.85

5.64

5.29

(-6.21)
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We assessed the temporal variability capability of the model regarding extreme precipitation indices in the Chinese region,
and Fig. 8 presents the temporal evolution of eight extreme precipitation indices from 1961 to 2014 based on observations
and model simulations. Except the CDD index, the observed values of the other extreme precipitation indices exhibited an
increasing trend. The trend coe�cients of observed CDD, CWD, R20, R50, RX1D, RX5D, SDII, and PTOT were − 1.46 days/10
years, 0.1 days/10 years, 0.03 days/10 years, 0.02 days/10 years, 0.87%/10 years, 0.34%/10 years, 0.34%/10 years, and
0.6%/10 years, respectively. The corresponding trend coe�cients from the MME simulations were − 0.13 days/10 years, 0.01
days/10 years, 0.02 days/10 years, 0.01 days/10 years, 0.66%/10 years, 0.5%/10 years, 0.23%/10 years, and 0.12%/10
years, indicating overall agreement between the model simulations and observations. The trend coe�cients of CDD, R50,
and RX1D from observations and simulations passed a signi�cance test at the 5% level, whereas CWD, R20, and PTOT did
not pass the test. The trend coe�cients of RX5D and SDII indices from MME simulations passed a signi�cance test at the
5% level, whereas the observed values did not pass the test. However, except for the CWD index, the MME struggled to
reproduce the interannual variability of the other extreme precipitation indices. This could be due to the small changes in the
observed and simulated CWD, while the other indices exhibited signi�cant variability. Regarding the CDD index, the MME
values were obviously lower than the observed values before 1985, displaying a declining trend. After 1985, the trend
stabilized, but the MME failed to capture this behavior. The observed CDD index demonstrated signi�cant interannual and
decadal variability, which the MME struggled to reproduce. The MME simulations approximated the values of the PTOT, R20,
and R50 indices compared to observations but struggled to simulate their interannual variability. The observed RX1D, RX5D,
and SDII indices exhibited quasiperiodic variations with signi�cant interannual variability, which were also challenging for
the MME to replicate accurately.

3.2. Future changes in extreme events
Given that multimodel ensembles (MMEs) generally outperform individual models in most cases, the projections of extreme
temperature indices during 2081–2100 were obtained using the NEX-GDDP-CMIP6 MME under three scenarios: SSP1-2.6,
ssp2-4.5, and SSP5-8.5. Figure 9 illustrates the spatial variability of the TXX, T35, TX90P, HWF, and HWD indices estimated
by the MME. The dots represent regions where 90% of the models exhibited consistent signs with the multimodel ensemble
average. Under the SSP1-2.6 scenario, the TXX index showed an increase nationwide (Fig. 9a), with a national average
increase of 2.14℃ (Table 5). The increase in the northern region was greater than that in the southern region. However, there
was considerable inconsistency among models in the SC and NEC regions. Under the SSP2-4.5 and SSP5-8.5 scenarios, the
pattern of TXX index change remained consistent with the low-emission scenario, but the magnitude of increase became
more signi�cant. The TXX index increased by 3.2℃ and 5.57℃ nationwide under the SSP2-4.5 and SSP5-8.5 scenarios,
respectively, and the consistency among models increased with higher emission scenarios. Similarly, the T35 index
increased nationwide under the SSP1-2.6 scenario, with high-value centers appearing in the NWC and CC regions, exceeding
30 days, and a national average increase of 12.2 days. Under the SSP2-4.5 and SSP5-8.5 scenarios, the T35 index further
increased, with national average increases of 19.26 days and 41.12 days, respectively. As emission scenarios increased, the
range of high-value centers expanded. In the SSP5-8.5 scenario, except for the SWC1, SWC2, and NEC regions, most of the
country experienced T35 index values exceeding 45 days, and the consistency among models remained high across all three
emission scenarios. The TX90P index also increased with higher emission scenarios, exhibiting high consistency among
models. Across the three scenarios, the national increases were 20.57%, 31.36%, and 51.18%, respectively. The NEC and NC
regions showed relatively smaller increases compared to other regions. Regarding the HWF index, under the SSP1-2.6
scenario, the minimum value center appeared in the NEC region, with values below 6 occurrences nationwide (7.88
occurrences). Under the SSP2-4.5 scenario, the HWF increased nationwide, reaching 10.69 occurrences. In the SSP5-8.5
scenario, the HWF index values were smaller in the SWC1 and SWC2 regions compared to the previous two scenarios but
increased in other regions with increasing emission scenarios, reaching 11.45 occurrences nationwide. The model
consistency was lower in the SWC1 and SWC2 regions, while it remained high in other regions. The HWD index increased
with higher emission scenarios, with the NEC region still exhibiting the minimum value center. The national values for the
three scenarios were 70.13 days, 111.05 days, and 190.96 days, respectively. Overall, by the end of the 21st century, the
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consistency among models regarding the change in extreme high-temperature events was high, with increases observed in
most regions nationwide.
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Table 5
Projected changes in the 13 extreme climate indices for 2081–2100 compared to 1995–2014 in the 8 subregions

and China under the three scenarios

  Scenario NWC SWC2 SWC1 SC CC EC NC NEC China

TXX

(℃)

SSP1-2.6

SSP2-4.5

SSP5-8.5

2.29

3.45

6.01

2.02

2.90

5.01

2.19

3.26

5.46

1.73

2.55

4.65

2.23

3.29

5.51

2.16

2.96

5.13

2.37

3.45

5.59

2.22

3.28

5.68

2.14

3.20

5.57

T35

(day)

SSP1-2.6

SSP2-4.5

SSP5-8.5

13.47

21.72

42.58

7.24

11.40

27.28

3.89

5.86

12.31

16.72

30.46

74.07

17.77

28.04

56.35

18.35

28.63

59.32

11.07

17.51

37.59

5.00

8.43

21.45

12.20

19.26

41.12

TX90P

(%)

SSP1-2.6

SSP2-4.5

SSP5-8.5

19.09

29.87

49.43

27.89

40.97

59.73

27.33

42.11

64.91

24.91

37.18

56.39

21.38

30.68

48.81

23.84

33.82

52.88

15.52

23.67

40.52

15.36

23.31

42.49

20.57

31.36

51.18

HWF

(time)

SSP1-2.6

SSP2-4.5

SSP5-8.5

8.38

12.21

13.82

9.65

11.06

8.37

9.05

12.12

9.36

9.65

11.88

10.73

9.42

12.48

14.43

10.04

12.90

14.03

7.71

11.50

16.05

6.94

9.71

13.36

7.88

10.69

11.45

HWD

(day)

SSP1-2.6

SSP2-4.5

SSP5-8.5

64.32

105.22

185.25

99.09

150.22

226.29

93.88

150.88

245.93

85.92

133.73

211.89

70.42

105.75

178.04

79.05

117.41

194.74

48.01

77.33

143.75

49.63

78.28

154.01

70.13

111.05

190.96

CDD

(day)

SSP1-2.6

SSP2-4.5

SSP5-8.5

-1.68

-2.59

-3.11

-1.24

0.35

0.87

-1.74

-1.60

-3.35

0.23

1.37

3.49

-1.58

-0.92

-0.90

0.35

1.11

2.00

-2.00

-2.18

-3.57

-1.04

-1.61

-2.86

-1.41

-1.44

-2.00

CWD

(day)

SSP1-2.6

SSP2-4.5

SSP5-8.5

0.28

0.38

0.63

3.19

1.64

1.96

1.94

1.81

3.02

2.14

1.30

1.19

0.95

1.01

1.18

1.16

0.87

1.32

1.00

1.10

1.42

1.46

1.32

1.57

1.35

1.12

1.57

PTOT

(%)

SSP1-2.6

SSP2-4.5

SSP5-8.5

14.31

20.66

33.24

7.84

5.75

10.62

13.88

18.29

34.68

9.23

7.26

8.86

9.65

8.89

14.46

8.60

8.53

11.80

11.81

13.34

23.48

11.84

11.99

17.05

11.29

13.63

21.99

R20

(day)

SSP1-2.6

SSP2-4.5

SSP5-8.5

0.13

0.18

0.34

1.46

1.86

3.53

1.07

1.47

3.17

2.66

2.67

4.19

1.65

1.80

3.07

2.19

2.36

3.66

0.63

0.81

1.47

0.78

1.00

1.58

1.14

1.38

2.48

R50

(day)

SSP1-2.6

SSP2-4.5

SSP5-8.5

0.003

0.004

0.01

0.05

0.06

0.14

0.09

0.16

0.37

0.23

0.27

0.52

0.10

0.13

0.25

0.24

0.31

0.53

0.04

0.06

0.10

0.08

0.11

0.21

0.14

0.20

0.41
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  Scenario NWC SWC2 SWC1 SC CC EC NC NEC China

RX1D

(%)

SSP1-2.6

SSP2-4.5

SSP5-8.5

11.31

14.62

22.43

15.31

18.48

32.30

12.79

18.48

33.80

14.92

16.55

26.57

14.46

16.66

27.69

12.24

15.11

24.12

11.58

14.00

23.43

13.56

16.76

26.35

11.88

15.06

24.56

RX5D

(%)

SSP1-2.6

SSP2-4.5

SSP5-8.5

13.17

16.94

26.99

11.73

14.71

25.88

12.56

18.40

34.13

10.56

11.40

20.25

9.52

10.67

19.10

8.51

10.70

16.81

12.29

13.83

24.11

11.51

13.35

20.75

10.82

13.67

22.45

SDII

(%)

SSP1-2.6

SSP2-4.5

SSP5-8.5

6.15

7.90

12.93

5.15

6.10

10.93

7.85

10.93

20.47

5.69

6.27

10.15

5.51

6.64

11.29

5.98

7.05

11.01

5.98

7.26

13.11
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Figure 10 depicts the temporal evolution of the national regional extreme high temperature indices estimated by MME under
three emissions scenarios. The indices, namely, TXX, T35, TX90P, and HWD, all exhibited an increasing trend as time
progressed. Moreover, as radiative forcing scenarios intensi�ed, the magnitudes of these increases also escalated. By 2100,
under the SSP1-2.6 scenario, the TXX, T35, TX90P, and HWD indices experienced respective augmentations of 1.83°C, 9.3
days, 18.62°C, and 62.07 days. Correspondingly, in the SSP2-4.5 scenario, these indices exhibited increases of 2.87℃, 16.32
days, 32.98%, and 115.53 days, respectively. In the SSP5-8.5 scenario, the same indices underwent more substantial
ampli�cations of 6.37°C, 48.22 days, 59.37%, and 225.52 days. The HWF index demonstrated a growth trajectory with time
under the low and medium emissions scenarios, albeit with a slower pace after 2060. However, a declining trend became
noticeable beyond 2060 under the high emissions scenario, possibly attributable to an increase in the duration of individual
heatwaves. Across these three scenarios, the HWF index experienced respective increments of 7.92 times, 11.9 times, and
11.43 times by the year 2100. From Fig. 10, it became apparent that most extreme high temperature indices continuously
intensi�ed with the ampli�cation of emissions scenarios and the passage of time. Furthermore, higher emissions scenarios
contributed to increased uncertainty among the models.

Figure 11 illustrates the spatial distribution characteristics of extreme precipitation events in the late 21st century under three
emission scenarios. The CDD index was generally consistent among the three scenarios. It increased in southeastern China
but decreased in other regions. In the southern part of the northwest region, the low-value center expanded with increasing
emission scenarios. The distribution pattern of the CWD index was also similar under the three emission scenarios, showing
an increasing trend nationwide. The high-value center around the southern side of the SWC1 region expanded with
increasing emission scenarios. The simulation of these two indices by the model exhibited signi�cant discrepancies, with
scattered regions of only consistent signs in northern China. Under the low emission scenario, the PTOT index increased
nationwide, with a high-value center appearing near the Kunlun Mountains, exceeding 20%. The regions of consistent sign
deviation from the model climatology were in the SWC1, CC, and NEC regions. Under the moderate emission scenario, the
high-value center near the Kunlun Mountains exceeded 30% and expanded further, with the region of consistent sign
deviation moving northward. Under the high emission scenario, the range of the high-value center continued to expand,
extending to the entire SWC1 region, and the region of consistent sign deviation in the NEC and NC regions also increased. In
all three emission scenarios, the high-value center for the R20 index appeared in the SC region. With increasing emission
scenarios, the values in this region continuously increased, and the range expanded. The highest value exceeded 5 days.
Additionally, under the SSP5-8.5 scenario, a high-value center appeared south of the Qinghai-Tibet Plateau. Except for the
NWC region, the region of consistent sign deviation increased in the other areas. The R50 index also increased with
increasing emission scenarios, although the increase was relatively small. The high-value center appeared in the
southeastern coastal region, while the change in other areas was minimal. The region of consistent sign deviation expanded
with higher emission scenarios. The variations in the RX1D, RX5D, and SDII indices were relatively similar. These three
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indices consistently increased nationwide under the low and moderate emission scenarios. Under the moderate emission
scenario, high-value centers appeared near the Kunlun Mountains and on the eastern side of the NWC region. Under the high
emission scenario, the values further increased, and the high-value center expanded to the entire SWC1 region, while the
region of consistent sign deviation also expanded. Overall, except for the projected CDD index, which showed a distribution
of fewer occurrences in the north and more in the south, the other precipitation indices consistently increased. The R20 and
R50 indices showed signi�cant increases in the southeastern coastal region, while the PTOT, RX1D, RX5D, and SDII indices
primarily experienced signi�cant increases in the western region. The CDD and CWD indices simulated by the MME exhibited
signi�cant inconsistencies among the models, whereas the PTOT index demonstrated high consistency in terms of sign only
in the northern region of China, with substantial uncertainty persisting in the southern region. For the remaining indices, their
consistency in terms of anomalies expanded continually as emission scenarios escalated.

Figure 12 illustrates the temporal variations in extreme precipitation indices estimated by the models. The CDD index
exhibited a declining trend, with minimal differences in their long-term trends among the three emission scenarios. By 2100,
the CDDs were projected to decrease nationwide by 0.8 days, 1.84 days, and 2.86 days under the three emission scenarios,
respectively. Conversely, the CWD index showed a weak upward trend, with similarly small long-term trends across different
emission scenarios. The CWD was projected to increase by 1.13 days, 1.21 days, and 2.34 days under the three emission
scenarios, respectively. The R50 index also exhibited a minimal upward trend across the emission scenarios, although the
long-term changes in the high emission scenario still surpassed those in the low and moderate emission scenarios. By 2100,
the R50 index was projected to increase by 0.13 days, 0.22 days, and 0.58 days under the three scenarios, respectively. In the
high emission scenario, starting from 2060, the values of the remaining extreme precipitation indices were signi�cantly
higher than those in the low and moderate emission scenarios. Under the high emission scenario, the PTOT, R20, RX1D,
RX5D, and SDII indices increased by 24.93%, 3.21 days, 32.85%, 30.2 days, and 17.6%, respectively. The analysis above
indicated that, except for the CDD and CWD indices, the other extreme precipitation indices exhibited clear increases under
the high emission scenario, emphasizing the urgency of greenhouse gas mitigation.

The changes in the regional mean values of extreme indices over the period 2081–2100, compared to 1995–2014, are
presented in Table 5. To illustrate, let us consider TXX in the extreme temperature index and PTOT in the extreme
precipitation index.

Regarding the TXX index, the analysis revealed the following: In all three emission scenarios, the TXX index increased across
all regions. In the low emission scenario, the most signi�cant increase was observed in the NC region, with a value of 2.37℃.
In the moderate emission scenario, the NWC and NC regions showed the most pronounced increase, with values of 3.45℃.
In the high emission scenario, the NWC region exhibited the most signi�cant increase, with a value of 6.01°C. The SC region
experienced the smallest magnitude of increase among all regions. In the three emission scenarios, this region’s values
increased by 1.73℃, 2.55℃, and 4.65℃.

In addition, for the HWF index, the SWC2, SWC1, and SC regions showed a decrease in the change magnitude under the high
emission scenario compared to the emission scenarios. However, the HWD index increased, suggesting an increase in the
duration of individual heatwaves. In the high emission scenario, the NWC, SC, SWC1, NC, and SWC1 regions showed the
most signi�cant increases in the TXX, T35, TX90P, HWF, and HWD indices, respectively. These regions exhibited increases of
6.01 days, 74.07 days, 64.91%, 16.05 times, and 245.93 days, respectively. Overall, extreme heat events demonstrated an
increasing trend in intensity as emission scenarios escalated.

Regarding the PTOT index, the analysis indicates the following: In general, these regions exhibited an increasing trend.
However, under the moderate emission scenario, the values in the SWC2, SC, CC, and EC regions decreased compared to the
low emission scenario. The NWC region showed the largest increase under the low and moderate emission scenarios, with
values of 14.31% and 20.66%, respectively. In the high emission scenario, the greatest increase occurred in the SWC1 region.
Under the low and moderate emission scenarios, the SWC2 region experienced the smallest increase, with increases of 7.84%
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and 5.75%, respectively. In the high emission scenario, the SC region demonstrated the smallest increase, with an increase of
8.86%.

The changes in the CDD and CWD indices were inconsistent with other precipitation indices. The CDD index increased in the
SWC2, SC, and EC regions as emission scenarios intensi�ed, while the remaining regions exhibited the opposite pattern. The
changes in the CWD index were more complex. The NWC and NC regions showed an increase in the CWD index as emission
scenarios escalated. For the other regions, the CWD index initially decreased and then increased with increasing emission
scenarios. Under the high emission scenario, the SC region exhibited the most signi�cant increases in the CDD and R20
indices, while the SWC1 region experienced the most notable increases in the CWD, PTOT, RX1D, RX5D, and SDII indices, and
the EC region showed the most signi�cant increase in the R50 index. These indices increased by 3.49 days, 4.19 days, 3.02
days, 34.68%, 33.8%, 34.13%, 20.47%, and 0.53 days, respectively. In general, most extreme precipitation events in different
regions of China increased with higher emission scenarios. These �ndings elucidated the potential implications of climate
change in these speci�c regions. The intensi�cation of such extreme climate indices under the SSP5-8.5 scenario
underscored the urgency to mitigate greenhouse gas emissions and implement effective adaptation strategies to avert or
minimize adverse impacts on local ecosystems, human societies, and vulnerability to climate risks.

4. Conclusion and discussion
We �rst evaluated the performances of the NEX-GDDP-CMIP6 models in simulating extreme climate indices over China and
its 8 subregions and then investigated the future projections of these indices during 2081–2100 under the three scenarios.
The results showed that the spatial patterns of absolute indices of extreme temperature events can be reasonably
reproduced, while the percentile indices were di�cult to simulate well. The models exhibited larger model spreads for TX90P,
HWF and HWD. Except for TXX, the NEX-GDDP-CMIP6 MME could reasonably capture the trends of extreme temperature
indices. The NEX-GDDP-CMIP6 models showed good abilities to capture the climatological distributions of extreme
precipitation indices, except for the CWD and R50 indices. There are large intermodel uncertainties for simulating the two
indices. The MME can simulate the trends of extreme precipitation indices, but it is di�cult to simulate their interannual and
decadal variabilities. MME exhibited diverse modeling capabilities across various regions and extreme indices. MME
performs the best in simulating the spatial pattern of extreme climate indices in the NEC region among all subregions. In
contrast to the CMIP6 models, NEX-GDDP-CMIP6 demonstrates an advanced capacity to simulate the spatial distributions of
extreme climate events, showcasing superior spatial correlation coe�cients and an enhanced level of model consensus.

The future changes in temperature and precipitation extremes under the three scenarios over China were further explored
during the long period of the 21st century. Consistency among different models was found to be high for temperature
extremes. Notably, the NWC, SC, SWC1, NC, and SWC1 subregions are projected to experience the most signi�cant increase
in extreme high temperature indices in the future. Speci�cally, for the entire country, the TXX, T35, TX90P, HWF, and HWD
indices are projected to increase by 5.57 days, 41.12 days, 51.18%, 11.45 times, and 190.96 days, respectively, under the
SSP5-8.5 scenario. In terms of precipitation extremes, there is a projected increase in indices such as CWD, PTOT, R20, R50,
RX1D, RX5D, and SDII, while the CDD index is expected to decrease. On a national scale, during the long-term period of the
21st century, the CWD, PTOT, R20, R50, RX1D, RX5D, and SDII indices are projected to increase by 1.57 days, 21.99%, 2.48
days, 0.41 days, 24.56%, 22.45%, and 12.59%, respectively, while the CDD index is projected to decrease by 2 days.
Considerable inconsistencies are observed among different models for the CDD and CWD indices in China. Additionally,
great inconsistencies are also found for the PTOT index in southern China. With increasing emission scenarios, the
consistency among models improves for other precipitation indices as well. Under the SSP5-8.5 scenario, the most
pronounced increase is observed in the CDD and R20 indices in the SC region, the CWD, PTOT, RX1D, RX5D, and SDII indices
in the SWC1 region, and the R50 index in the EC region. Importantly, limitations in the accuracy of the observational data
used and de�ciencies in the NEX-GDDP-CMIP6 models contribute to considerable uncertainty in estimating future extreme
events in China. Therefore, continued efforts are necessary to address these limitations and improve the reliability of future
projections. Moreover, in the forthcoming years, the probability of compound extreme events transpiring in China will surge,
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demanding heightened research scrutiny and comprehensive investigation. Our �ndings indicate the necessity of
implementing effective mitigation strategies to reduce greenhouse gas emissions and adapt to climate change.
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Figure 1

Spatial distributions of TXX (a, b), T35 (c, d), TX90P (e, f), HWF (g, h) and HWD (i, j) from the observation (a, c, e, g, i) and
multimodel ensemble (MME) mean of 26 NEX-GDDP-CMIP6 models (b, d, f, h, j) over China during 1995-2014
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Figure 2

Taylor diagrams of the NEX-GDDP-CMIP6-simulated climatic means (1995-2014) for �ve extreme temperature indices over
China. The azimuthal position represents the pattern spatial correlation, and the radial distance from the origin represents
the spatial variability



Page 23/32

Figure 3

Taylor skill scores of 26 CMIP6 models and their ensemble mean in simulating extreme temperature over China
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Figure 4

Time series of �ve extreme temperature indices over China during 1961–2100 relative to the period 1995–2014. The black
and red lines indicate the corresponding results from the observations and MME of 26 model simulations. The top and
bottom bounds of the shaded area are the maximum and minimum values of 26 CMIP6 model simulations.
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Figure 5

As in Fig. 1 but for eight precipitation indices
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Figure 6

As in Fig. 2 but for eight precipitation indices
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Figure 7

As in Fig. 3 but for eight precipitation indices
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Figure 8

As in Fig. 4 but for eight precipitation indices
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Figure 9

Spatial patterns of the projected changes in TXX, T35, TX90P, HWF and HWD for the NEX-GDDP-CMIP6 MME over China
under the SSP1-2.6, SSP2-4.5, and SSP5-8.5 scenarios by the end of the 21st century (2081-2100) relative to the period from
1995 to 2014. The stippling is present in regions where more than 90% of the models are consistent with the signs of MME
changes
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Figure 10

Temporal evolution of the projected changes in (a) TXX, (b) T35, (c) TX90P, (d) HWF, and (e) HWD for the NEX-GDDP-CMIP6
MME over China under the SSP1-2.6, SSP2-4.5 and SSP5-8.5 scenarios for 2015-2100 relative to the reference period 1995-
2014. The shading indicates the minimum and maximum values.
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Figure 11

As in Fig. 9 but for eight precipitation indices
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Figure 12

As in Fig. 10 but for eight precipitation indices


