In this paper a firefly algorithm based hybrid algorithm through retaining global convergence of firefly algorithm and ability of generating connected topologies of optimality criteria (OC) method is proposed as an alternative method to solve stress-based topology optimization problems. Lower and upper limit of design variables (0 and 1) were used to find initial material distribution to initialize firefly algorithm based section of the hybrid algorithm. Input parameters, number of fireflies and number function evaluations were determined before implementation of firefly algorithm to solve formulated problems. Since direct application of firefly algorithm cannot generate connected topologies, outputs from firefly algorithm were used as an initial input material distribution for OC method. The proposed method was validated using two-dimensional benchmark problems and the results were compared with results using OC method. Weight percentage reduction, maximum stress induced, optimal material distribution and compliance were used to compare results. Results from the proposed method showed that the proposed method can generate connected topologies and generated topologies are free from interference of end users, which only dependence on boundary conditions or the design variables. From the results, the objective function (weight of the design domain) can be further reduced in the range of 5% to 15% compared to OC method.