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Abstract
Diosgenin is a neurosteroid derived from the plants and has been previously reported for its numerous
health beneficial properties, such as anti-arrhythmic, hypolipidemic, and antiproliferative effects.
Although several studies conducted earlier suggested cognition enhancement actions of diosgenin
against neurodegenerative disorders, but the molecular mechanisms underlying are not clearly
understood. In the present study, we investigated the neuroprotective effect of diosgenin in the wistar rats
that received an intracerebroventricular injection of Amyloid-β (1–42) peptides, representing a rodent
model of Alzheimer’s disease (AD). Animals were treated with 100 and 200 mg/kg/p.o of diosgenin for 28
days, followed by Amyloid-β (1–42) peptides infusion. Animals were assessed for the spatial learning
and memory by using radial arm maze and passive avoidance task. Subsequently, animals were
euthanized and brains were collected for biochemical estimations and histopathological studies. Our
results revealed that, diosgenin administration dose dependently improved the spatial learning and
memory and protected the animals from Amyloid-β (1–42) peptides induced disrupted cognitive
functions. Further, biochemical analysis showed that diosgenin successfully attenuated Amyloid-β (1–
42) mediated plaque load, oxidative stress, neuroinflammation and elevated acetylcholinesterase activity.
In addition, histopathological evaluation also supported neuroprotective effects of diosgenin in
hippocampus of rat brain when assessed using hematoxylin-eosin and Cresyl Violet staining. Thus, the
aforementioned effects suggested protective action of diosgenin against Aβ (1–42) induced neuronal
damage and thereby can serve as a potential therapeutic candidate for AD.  

Introduction
Alzheimer’s disease (AD) is the most prevalent, complex and devastating neurodegenerative disorder in
the aging population and clinically characterized by gradual erosion of cognitive functions, particularly
decline in perception and language ability, personality disturbance, inability of self-care and death from
opportunistic infections (Souza et al. 2016).

Basal forebrain cholinergic neurons (BFCNs) are considered to be prime neurons responsible for learning,
memory, and attention, through acetylcholine (ACh) innervation (Baxter et al. 1999). Abnormal formation
of intracellular neurofibrillary tangles and extracellular deposition of amyloid beta (Aβ) peptides in the AD
brain displayed neuritic atrophy and loss of synapses in BFCNs. Degeneration of BFCNs act as one of the
major pathological diagnostic hallmark of AD and is severely affected due to disruption of
communication with target neurons in the hippocampus and cortex (Fahnestock et al. 2019). With the
age, these affects gets worsen leading to the cascade of pathogenic events causing neuroinflammation,
glutamate excitotoxicity, metal dyshomeostasis, oxidative stress and mitochondrial dysfunction in
specific parts of the brain (Souza et al. 2016; Lian et al. 2017). BFCNs are essentially dependent on
neurotrophic factor, nerve growth factor (NGF), belonging to the neurotrophin family, for their neuronal
growth, survival, maintenance, and plasticity by binding with tyrosine kinase A receptor (TrkA) and the
p75 pan neurotrophin receptor (p75NTR) (Seiler et al. 1984; Lad et al. 2003). Growing evidence conveys
that altered expression of TrkA/ p75 results in basal forebrain cholinergic metabolic dysfunction due to
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defective NGF processing and supports accumulation of Aβ (Iulita and Cuello 2014). Interestingly,
accumulated Aβ, in AD pathology, in turn causes degeneration of BFCNs and enhances Aβ production by
regulating p75NTR over-expression, NGF-induced signalling transduction and internalization of NGF
receptors (Zhang et al. 2013).

In recent decades, a number of herbal derived drug compounds, used in traditional medicine, found to
improve brain functions by reconstructing neuronal networks and remodelling the atrophic neurites by
upregulating NGF expression. For instance, Huperazine A, a novel alkaloid, specific and reversible
acetylcholinesterase (AChE) inhibitor, isolated from the Chinese herb Huperzia serrate, elevated NGF
levels and thus ameliorated cognitive deficits in AD (Wang et al. 2006). Diosgenin is a one such herbal
derived neurosteroid and a promising bioactive biomolecule which has a high industrial value and is the
principal precursor compound in the production of therapeutically useful steroidal drugs, including sex
hormones and corticosteroids (Masilamoni et al. 2008). It is a natural antioxidant usually derived from
Dioscorea rhizome and other herbal drugs, such as Trigonella spp., Polygonatum spp. and Smilax spp
with multiple medicinal properties, such as, hypolipidemic (Son et al. 2007), anti-inflammatory (Yang et
al. 2017), anti-proliferative (Sethi et al. 2018), anti-arrhythmic (Chen et al. 2015), anti-diabetic (Hua et al.
2016), neuroprotective (Lee et al. 2018), and found to have protective effect against cardiovascular
disease (Kalailingam et al. 2014) and skin aging (Kim et al. 2016). Diosgenin, was reported earlier as a
potential NGF which efficiently regulates the expression of TrkA and p75 and activates the intracellular
signaling cascades involving pathways that are dependent on extracellular signal-regulated kinase (ERK)
and phosphatidylinositol 3-kinase (PI3K), which act to prevent nuclear and mitochondrial cell death
programs, resulting in neuronal survival and differentiation. In addition, diosgenin boosted memory and
exhibited protection and regrowth of axons in Aβ-treated neurons by stimulating 1,25D3 -membrane-
associated, rapid response steroid-binding protein (1,25D3 -MARRS) in 5XFAD mice (Koh et al. 2016;
Tohda et al. 2012). Similarly, diosgenin produced cellular protection against oxidative stress by inhibiting
ROS production in neuronal cells in D-galactose induced aging model (Choi et al. 2010; Chiu et al. 2011).
All these aforementioned reports provided strong evidences of cognition enhancement property of
diosgenin and thus convinced us that diosgenin might be able to attenuate cognitive impairment in the
animal model of AD.

Multiple molecular pathogenesis such as tau hyperphosphorylation, Aβ deposition, metal
dyshomeostasis, cholinergic hypofunction, glutamate excitotoxicity, neuroinflammation, oxidative stress,
and mitochondrial dysfunction act together in complex way in AD progression. Hence there is a need of a
broader ‘‘one-compound-multi-targets’’ neuroprotective approach which can collectively target these
pathological processes (Pi et al., 2012). In this regard, current study was designed to evaluate the
neuroprotective effect of diosgenin on AD related complications in Aβ (1-42) induced wistar rats,
representing sporadic AD model. Based on satisfactory results from our studies we can say that
diosgenin could be a promising neuroprotectant and therapeutic solution for AD rescue.

Materials And Methods
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Drugs and chemicals

Diosgenin and amyloid beta (1–42) peptides were obtained from Sigma-Aldrich, Inc. (St. Louis, MO, USA).
Aβ (1–42), Tumour necrosis factor- α (TNF- α) and Interleukin-1β (IL-1β) Mouse enzyme-linked
immunosorbent assay (ELISA) kits were procured from GenxBio Health Sciences Pvt. Ltd. (Delhi, India).
All other chemicals and reagents purchased were of analytical grade only.

Animal procurement

Forty adult male wistar rats, aged 3 months, weighing 250-300 g were provided by central animal facility
of JSS College of Pharmacy, Ooty, Tamilnadu, India. The study was carried out in accordance with the
National Institutes of Health Guide for the Care and Use of Laboratory Animals (National Research
Council (US)) and was approved by the Institutional Animal Ethics Committee (IAEC)
(JSSCP/IAEC/PhD/Pharmacy Practice/01/2018-19). In order to adapt the environmental conditions of
12- hour light/dark cycle, animals were acclimatized for ten days to the laboratory conditions in
polypropylene cages with pellet diet and water ad libitum prior to the commencement of the experiment.
All animals were housed five per cage and were maintained under a controlled room temperature of 25 ±
2 °C and relative humidity of 60 ± 5% degree.

Drug preparation

Diosgenin (100 mg/kg and 200 mg/kg) was dissolved in 0.5% carboxymethyl cellulose (CMC) for its oral
administration. Aβ (1–42) was firstly dissolved in artificial cerebrospinal fluid (aCSF) at a concentration
of 5 μg/μl and incubated at 37 °C for 4 days to allow aggregation before intracerebroventricular (i.c.v.)
injection.

Surgical procedure

Rats were anesthetized with ketamine hydrochloride (91 mg/kg, i.p.) and xylazine (9.1 mg/kg, i.p.). After
fixing the animals into a stereotaxic apparatus, a burr hole was drilled through the skull above the
bilateral hippocampal coordinates (anterior–posterior (AP) = −3.5 mm, medial-lateral (ML) = ± 2.0 mm
from the bregma and dorsal-ventral (DV) = 2.7 mm from the skull surface) after midline sagittal incision
according to stereotaxic atlas. 2 μl containing 10 μg of Aβ (1–42) was subsequently injected as a single
dose over 5 min through a microsyringe into the hole (Rahman et al. 2019). To prevent infection, animals
were provided with post-operative care by applying antiseptic over the wound and then transferred to a
thermo-regulated chamber to maintain normal body temperature until recovery.

Experimental protocol and drug treatment

Animals were randomly divided into 4 groups, containing 10 rats each. Rats from sham operated (SO)
and negative control (NC) groups received 0.5% CMC orally, and were bilaterally infused with 2 μl of aCSF
and 2 μl/10 μg of Aβ (1–42) peptides dissolved in aCSF respectively. Test animals received 100 mg/kg/d
(Dio 100) and 200 mg/kg/d (Dio 200) p.o. of diosgenin suspended in 0.5% CMC for 28 days followed by
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i.c.v. Aβ (1–42) infusion on 28th day. Before initiation of experiments, animals were housed in their
respective cages for a week for recovery (Fig. 1). The dose of the diosgenin selected in the present
investigation is based on studies conducted earlier (Zhang et al. 2017).

Behavioural cognitive assessments

Radial arm maze (RAM) task

RAM was used as a standard method to assess reference and working memory errors in the animals.
RAM apparatus consists of 8 identical arms originating from the centre of the elevated platform, height
of about 28 cm. Animals were kept in a food deprived condition overnight. During the experiment, four
arms (2, 3, 5, and 7) were randomly baited with food pellets, provided with a number of visual clues and
rats were allowed to explore the maze for 5 min. The number of entries into an unbaited arm referred as
Reference memory errors and number of re-entries into baited arm referred as working memory errors
within 5 min were recorded during the investigation. If the animal visited all the arms before 5 min then
the trial was said to be accomplished (Sehgal et al. 2012). After each trial the arms were cleaned with
70% of alcohol.

Passive avoidance test

Passive avoidance test was used to examine the long term memory based on negative reinforcement.
The test apparatus consists of a small chamber (illuminated with a 50 W bulb) connected to a dark
chamber separated by a guillotine door. All the animals were placed in the bright compartment with
opened guillotine door. As the rats entered the dark chamber, door was closed and provided with a low
intense foot shock (1 Hz, 5 seconds, 1/5 MA). The total time taken by the animal to transfer from the
bright to dark compartment was recorded as step‐through latency (STL). After 24 h, retention test was
conducted where animals were placed in the illuminated compartment and total time spent in the dark
chamber (TDC) was recorded. (Barkur and Bairy 2015).

Brain homogenate preparation

After completion of neurobehavioural assessment, animals were sacrificed under ether anaesthesia.
Brains were extracted and cleaned with ice saline. The cerebral hemispheres were separated and the left
hemisphere was fixed in neutral buffered formalin (10% v/v) for histological examination. The
hippocampus was dissected from the right hemisphere and 10 % (w/v) homogenate of brain sample
(0.03 M sodium phosphate buffer, ph-7.4) was prepared by using Teflon glass homogenizer. The
homogenate was centrifuged at 1000 rpm at 4°C for 3 min. Supernatant was separated and used for
biochemical studies. Hippocampal protein was measured by the method of Lowry et al. (1951) using
bovine serum albumin (1 mg/ml) as a standard.

Biochemical assessment

Determination of hippocampal AChE activity
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AChE activity was evaluated in rat hippocampus by using Ellman’s method (Ellman et al. 1961). The
assay mixture consisted of 0.05 ml of supernatant, 3 ml of 0.01M sodium phosphate buffer (pH 8), and
0.1 ml of 0.2 mM 5,5-dithio-bis-(2-nitrobenzoic acid) (DTNB, Ellman's reagent). About 0.1 ml of
acetylthiocholine iodide was added and the change in the absorbance was measured at the 30 s interval
for 5 min at 412 nm. The enzyme activity was expressed in micromoles of acetylthiocholine iodide
hydrolysed per min per g of protein. AChE activity was calculated using an extinction coefficient of
13.6mM−1 cm−1 (Khalil and Abass 2017).

Estimation of hippocampal Aβ (1-42), TNF-α and IL-1β levels

Aβ (1-42), IL-1 β and TNF-α levels in the hippocampal homogenate were estimated using commercial
ELISA kits as per the manufacturer’s instructions.

Estimation of superoxide dismutase (SOD) activity

The activity of SOD in brain hippocampus was analysed by the method suggested by Kakkar et al.
(1984). An assay mixture was prepared by adding 1.2 ml of 0.052 M sodium pyrophosphate buffer (pH
8.3), 0.1 ml of 186 μM phenazonium methosulphate, 0.3 ml of 300 μM nitroblue tetrazolium and 0.1 ml
brain homogenate. To the mixture, 0.2 ml of 780 μM nicotinamide adenine dinucleotide (NADH) was
added to begin the reaction. Reaction mixture was incubated for 90 sec at 30°C followed by addition of
0.1ml of glacial acetic acid to stop the reaction. 4 ml of n-butanol was added to the mixture and stirred
vigorously and centrifuged at 4000 rpm for 10 min. The absorbance of organic layer was read at 560 nm.
SOD activity was expressed as units/ min/mg protein.

Estimation of catalase (CAT) activity

Catalase activity was measured using spectrophotometric procedure according to the method of Aebi
(1984). A mixture of 0.1 ml of brain homogenate and 1.9 ml of 50 mM phosphate buffer was incubated
at 25 ºC for 30 min. To this 1.0 ml of freshly prepared 30 mM H2O2 was added to initiate the reaction. The
change in absorption was taken for 3 min at 240 nm at an interval of 30 sec. CAT activity was expressed
as μmol/min/g protein.

Estimation of glutathione reductase (GSR) activity

GSR activity was estimated by the method proposed by Carlberg and Mannervik (1975). The reaction
mixture was prepared by adding 0.1 ml of brain homogenate, 1.65 ml of 0.1 M phosphate buffer (pH 7.6),
0.1 ml of 0.1 mM nicotinamide adenine dinucleotide phosphate (NADPH), 0.05 ml of 1 mM oxidized
glutathione and 0.1 ml of 0.5 mM ethylenediamine tetraacetic acid (EDTA). The absorbance of each
sample was noted at 340 nm. The GSR activity was expressed as nmol/min/mg protein.

Histopathological analysis of brain
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The whole brain was stored overnight in neutral buffered formalin (10% v/v) after scarification followed
by embedment in paraffin for 4 h. The hippocampus was sectioned at 5 μL thickness using a Leica RM
2135 microtome. Sections were mounted and washed in xylene for deparaffinization followed by
rehydration in graded ethanol and finally stained with hematoxylin-eosin (H & E). Another batch of
samples were stained with cresyl violet (CV) acetate. Hippocampal neurons morphology were observed
and captured at 40 X magnification under light microscopy.

Statistical analysis

The results were analysed using Graph Pad Prism 8.0.2 (263) and values were expressed as mean ±
standard deviation (SD). Statistical analysis between groups was measured using one way analysis of
variance (ANOVA) followed by Tukey's post hoc multiple comparisons. Values were considered to be
significant when p < 0.05.

Results
Effect of diosgenin on RAM task

In RAM task, animals from NC group showed poor ability in learning the task and made high number of
reference (p < 0.001, F (3, 36) =45.3) and working (p < 0.001, F (3, 36) =61.5) memory errors as compared
to SO group. These results showed a significant deficit in spatial cognition after i.c.v. infusion of Aβ (1-
42) peptides in NC animals, indicating successful induction of AD like pathology. In contrast,
administration of diosgenin significantly reduced reference memory errors at 100 mg/kg (p=0.004) and
200 mg/kg (p < 0.001) when compared to NC rats (Fig. 2A). Likewise, working memory errors was also
turned down remarkably in Dio 100 (p=0.003) and Dio 200 (p < 0.001) animals (Fig. 2 B). 

Effect of diosgenin on passive avoidance task

Results from passive avoidance task implicated compromised aversive associative learning in NC rats by
significantly reducing STL (p < 0.001, F (3, 36) =86) and increasing TDC (p < 0.001, F (3, 36) =38) when
compared to SO animals. However, rats administered with diosgenin at 100 mg/kg (p =0.007) and 200
mg/kg (p < 0.001) significantly enhanced the STL when compared with NC (Fig 3A). On the contrary, TDC
was dose dependently reduced in Dio100 (p =0.009) and Dio 200 (p < 0.001) animals (Fig. 3B). 

Effect of diosgenin on hippocampal AChE activity.

Effect of diosgenin on brain AChE activity is depicted in Table 1. Biochemical analysis of brain
hippocampus indicated high AChE activity in NC when compared to SO group (p < 0.001, F (3, 36) =19.8).
Animals that received diosgenin at 100 mg/kg (p < 0.01) and 200 mg/kg (p < 0.01) manifested enhanced
nootropic effect by exhibiting significant decline in AChE activity as compared to NC rats.

Effect of diosgenin on hippocampal Aβ (1-42) and TNF-α and IL-1β levels.
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Significant increase in Aβ (1–42) level in NC rats (p < 0.001, F (3, 36)= 85.3) when compared to SO
indicated development of animal model of AD. The elevated level of Aβ (1–42) was significantly
counteracted by Dio 100 (p= 0.027) and Dio 200 (p =0.007) animals as compared to NC (Table 1).

Levels of TNF-α (p< 0.001, F (3,36)= 42.1) and IL-1β (p< 0.001, F (3,36)= 36.3) in the hippocampus were
significantly high after Aβ (1–42) infusion in the NC animals as compared to SO group, suggesting AD
mediated neuroinflammation. Administration of diosgenin for 28 days improved the inflammatory
condition dose dependently by reducing the elevated cytokine levels. At 100 mg/kg, levels of IL-1β (p=
0.010) and TNF-α (p=0.43) were significantly lowered. Likewise, animals from Dios 200 demonstrated
significant reduction in IL-1β (p=0.005) and TNF-α (p=0.011) levels as compared to NC. The anti-
inflammatory effect of diosgenin is represented in Table 1.

Effect of diosgenin on SOD, CAT and GSR activities in hippocampus

As evident from our results, oxidative stress was induced in NC animals after Aβ (1-42) peptide injection,
marked by significant reduction in the activities of SOD (p <0.001, F (3,36)= 55.1), GSR (p <0.001, F
(3,36)= 143) and CAT (p <0.001, F (3,36)= 31) enzymes when compared to SO. Diosgenin at 100 mg/kg,
significantly enhanced the antioxidant activities of SOD (p <0.001), GSR (p= 0.002) and CAT (p<0.001),
comparable with the NC. Likewise, at 200 mg/kg, diosgenin improved the SOD (p <0.001), GSR (p <0.001)
and CAT (p <0.001) activities more efficiently than 100 mg/kg (Table 2).

Histology of Hippocampus

H&E and CV staining were used to examine the neuroprotective activity of the diosgenin in rat
hippocampus. In the current study, H& E staining in SO rats displayed intact neurons with prominent
nucleoli in CA1 region of hippocampus. Aβ (1–42) peptides infusion in NC animals resulted in significant
(p < 0.001, F (3,36)= 53.1) increase in protruding eosinophilic cytoplasm, swelling of neurons, pyknotic
nuclei, pyramidal cells shrinkage and dispersed vacuolization identified from H& E staining as compared
to SO group (Fig. 4). Diosgenin led to the significant reversal of the condition with mild neuronal toxicity,
reduced pyknotic nuclei with lesser number of eosinophilic stained neurons and vacuolization at 100
mg/kg (p= 0.001) and 200 mg/kg (p < 0.001) when compared to NC. Similarly, on comparison with SO
group, extensive neurodegeneration in the hippocampus of NC rats was observed as number of Nissl
bodies with blue staining was reduced drastically when assayed by using CV stain, indicating disrupted
cell viability (p < 0.001, F (3,36)= 22.9). CV positive neurons were dense and easily detected with more
blue-stained Nissl bodies in CA1 region of SO hippocampus. Hence, from our experiment, we can convey
that neuronal integrity and the number of CV-positive neurons in diosgenin treated groups were
significantly improved at 100 mg/kg (p =0.014) and 200 mg/kg (p < 0.001) as compared to NC (Fig.5).

Discussion
One of the biggest challenge in the world is how to minimize and control the number of patients suffering
from AD which is raising day by day (Mahdy et al. 2012). On this context, in the past decades, several
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clinical trials were carried out in the hunt of new alternative therapeutics but were failed due to serious
adverse effects or no significant therapeutic efficacy (Rahman et al. 2019). As complications associated
with AD have complexed the development of the new curative, hence, it is crucial to search for the other
strategies. Present study aimed to investigate the neuroprotective effects of diosgenin on Aβ (1–42)
peptide induced oxidative stress, plaque accumulation, neuroinflammation and cholinergic dysfunction.

Intracerebroventricular injection of aggregated Aβ (1–42) in rat brain is a conventional AD animal model.
Incubation of Aβ (1–42) peptides in aCSF for several days resulted in aggregation of peptides due to
conformational transformation from random coil to β-sheet causing enhanced peptide neurotoxic
potency (Nakamura et al. 2001). Earlier it was reported that single acute i.c.v injection of aggregated Aβ
(1–42) in the rat mimics amyloid load as observed in the brains of AD patients, in both biochemical and
histopathological studies. In addition, it also manifested memory dysfunction along with long-lasting
disruption of both spatial and contextual fear memories, as well as short-term working memory leading to
the neuronal death in rodents (Wang et al. 2014; Fu et al. 2006). Based on these observations, in the
present study, we employed aggregated Aβ (1–42) infusion in rat brain as sporadic AD model.

In order to investigate the effect of diosgenin on Aβ (1–42) induced cognition impairment, we performed
RAM and passive avoidance task, two behavioural paradigm in the present study. RAM task was used to
evaluate learning ability and memory in the rats by measuring the number of spatial memory errors made
during specified period. Likewise, passive avoidance task was conducted in order to learn the effect of
diosgenin on memory functions by measuring avoidance response of diosgenin treated rats on
unpleasant stimulus. Reports from the earlier studies documented that Aβ (1–42) mediated hampered
ACh release ensues initiation of cognitive inadequacy in AD pathology, associated with altered memory
performances (Xu et al. 2016). Further, Aβ (1–42) peptides infusion in rat brain induces neurobehavioural
deficits and underpins the amyloid accumulation by degenerating BFCNs (Turnbull et al. 2018; Baker-Nigh
et al. 2015). Similar response was observed in our study. Animals injected with Aβ (1–42) peptides in the
brain exhibited deterioration in the short term and long term memory, as significant decline in right
choices and latency was observed in RAM and passive avoidance task respectively. These results are in
consistent with the former experiments (Yamada et al. 1999; Postu et al. 2018). Diosgenin administration
in rats contributed in improvement of spatial learning behaviour task, demonstrating intact learning and
memory functions. Few studies conducted earlier represented reversal of impaired learning and memory
capacity by diosgenin in D-galactose induced aging rats and in 5XFAD mice model of AD (Chiu et al.
2011; Wang et al. 2018; Tohda et al. 2012). Our results are in congruous with these earlier observations.
Previously, scientists have confirmed that increase in NGF biosynthesis initiates signalling cascades
accountable for cell survival, growth and release of ACh through the cortico-hippocampal projections
(Iulita and Cuello 2014, Mitra et al. 2019). As reported earlier, diosgenin being a potential NGF stimulator,
might have produced protective effect on behavioural performances of cognitive impaired rats by
improving ACh innervation to the cortex and hippocampus (Koh et al. 2016). In addition, decline in the Aβ
(1–42) levels, AChE activity, oxidative stress and neuroinflammatory cytokines by diosgenin treated
animals as seen in the current study might be collectively responsible for improved neurobehavioural
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deficits. To our knowledge, this is the first study to demonstrate the neuroprotective property of diosgenin
in Aβ (1-42) infused AD model.

Elevated brain levels of Aβ, majorly neurotoxic Aβ (1–42) is the primary reason of cognitive decline in AD
(Andreeva et al., 2017). Previous studies have demonstrated that direct administration of aggregated Aβ
(1–42) into the brains of rodents had caused memory deficits similar to that of AD patients by inducing
plaque load (Yamada et al. 1999; Rahman et al. 2019). Our results are in agreement with these reports.
Previously, after a series of experimentation, it was reported that Caprospinol, analog of diosgenin,
dramatically restored cognitive decline by reducing amyloid deposits in FAB (Fe2+, Aβ42 and Buthionic
sulfoxime) infused rat model (Lecanu et al. 2004; Lecanu et al. 2009; Lecanu et al. 2010; Papadopoulos
et al. 2012). Results from these studies support our findings as we noticed that diosgenin treated rats
showed reduced level of Aβ (1–42) when compared to negative control, proving neuroprotective role of
diosgenin against plaque load. In recent years, it has been clear that amyloid deposits in the AD brain
contributes to neurodegeneration by directly accelerating the membrane-associated oxidative stress and
inflammatory responses, leading to the abnormal energy metabolism and the loss of synaptic functions
(Tönnies and Trushina 2017). Hence, anti-amyloidogenic effect of diosgenin might be owed to the
reduced oxidative stress and neuroinflammation as observed in the current study. However, further
studies are needed to be conducted which can clarify the role of diosgenin on other major contributing
factors behind Aβ accumulation in brain such as β-secretase, γ-secretase, Aβ-accumulation inhibitors and
Aβ-degrading enzymes (Burg et al. 2013).

A large volume of evidence has described about the relationship between Aβ infusion and cholinergic
dysfunction in selected AD brain regions. Aβ (1–42) accumulation is associated with loss of cortical
synapse and atrophy of BFCNs which is responsible for hampered cholinergic transmission and
enhanced AChE activity due to altered NGF metabolism (Counts and Mufson 2005; Mufson et al. 1995;
Niewiadomska et al. 2011). Also, reports have confirmed that presence of aggregated Aβ (1-42) in the
brain enhances the AChE expression and forms a stable complex with Aβ (Aβ-AChE). These complexes
accelerate Aβ toxicity, Aβ deposition, neuronal cell loss, mitochondrial dysfunction and influences
astrocyte hypertrophy (Hu et al. 2003). Our study confirmed escalated AChE activity after i.c.v. infusion of
Aβ (1–42) in rats which is corresponding to a previous report (Rahman et al. 2019). However, from our
research we noticed that administration of diosgenin before AD induction in rats attenuated the elevation
of AChE activity dose dependently. Previous study by Koh et al. (2016) demonstrated that diosgenin
stimulated NGF biosynthesis via regulating TrkA mediated NGF signalling cascades, resulting in neuronal
survival and differentiation of cholinergic neurons. Thus, the probable reason behind diosgenin mediated
AChE activity inhibition could be due to enhanced NGF stimulation. Also, reduction in the levels of
oxidative stress and neuroinflammatory markers by diosgenin treated animals as observed in the current
study could be other contributing factors associated with decreased AChE activity. This is the first study
to demonstrate the direct effect of Diosgenin on AChE in an AD model.

Increased plaque load after Aβ (1–42) infusion in the AD brain activates microglial cells which generates
pro-inflammatory cytokines (including IL-1β and TNF-α), as well as reactive oxygen species (ROS) and
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produces neuroinflammation, causing detrimental effect on neurons (Calsolaro and Edison 2016; Shal et
al. 2018). Further, chronic neuroinflammation in turn exacerbate AD complication by providing neurotoxic
environment (Essawy et al. 2019). Our study indicated increase in pro-inflammatory cytokines levels (IL-
1β and TNF-α) after Aβ (1–42) infusion in the rat brain. Diosgenin treatment before induction of AD like
condition, provided a protective effect against Aβ (1–42) induced neuroinflammation by arresting the
cytokines levels (IL-1β and TNF-α), strengthening the evidence of anti-inflammatory property of diosgenin.
These results are comparable with the previous studies which displayed the ability of diosgenin and its
analog in suppressing microglia mediated neuroinflammation in different models by inhibiting the Toll-
like receptor (TLR)/nuclear factor kappa B (NF-κB) pathway (Hirai et al. 2010; Zhao et al. 2017; Li et al.
2018, Binesh et al. 2018) and phosphorylated‑p38 mitogen activated protein kinase (MAPK) signalling
pathways (Wang et al. 2017; Cai et al. 2019; Zhao et al. 2017). Hence, from these reports we can assume
that by acting on the similar pathways, diosgenin was able to attenuate elevated cytokines levels in AD
like pathogenesis. Moreover, modulation of ACh mediated cholinergic-anti-inflammatory pathway by
stimulating NGF biosynthesis by diosgenin as reported from previous studies might support the desired
activity (Mitra et al. 2019; Koh et al. 2016). Also, ROS scavenging property of diosgenin as illustrated in
this study could be the other possible molecular explanation. To the best of our knowledge, this is the first
study to demonstrate anti-inflammatory effect of diosgenin in Aβ (1–42) infused AD rats.

Amyloid accumulation along with the degenerated BFCNs after aggregated Aβ (1-42) infusion in rodents
promotes free radical release causing oxidative stress (Boyd-kimball et al. 2004). It is exhibited by
impairment in the functions of various endogenous antioxidant enzymes involved in maintenance of ion
homeostasis such as superoxide dismutase, glutathione reductase, thioredoxins, and catalase, leading to
neuropathological alterations (Feng and Wang 2012; Boyd-kimball et al. 2004). Although, the precise
mechanism by which such an oxidative effect occurs is still unclear. It was proposed that senile plaques
has high levels of copper which promotes reduction of peptide-bound Cu2+ to Cu+ and form hydrogen
peroxide (H2O2) and further reacts with H2O2 to form highly reactive hydroxyl free radicals (Butterfield et
al. 2013). Generated oxidative stress triggers apoptosis of neuronal cells and hinders the brain functions,
resulting in impaired learning and memory deficits (Lennon et al. 1991; Alzoubi et al. 2013; Serrano and
Klann 2004; Tuzcu and Baydas 2006). As the brain cells are vulnerable to oxidative stress because of its
high oxygen consumption and impaired antioxidant enzymes activities, therefore, regulation of
antioxidant enzymatic activities is crucial for developing new therapeutics for the management of
neurodegenerative diseases (Bayrakdar et al. 2014). In the present study, reduced activities of antioxidant
enzymes such as SOD, GSR and CAT was noticed in negative control rats. Our results are in consistent
with the earlier reports (Ledezma et al. 2021; Bayrakdar et al. 2014) and indicates successful induction of
oxidative stress after Aβ (1-42) infusion. Known for potent anti-oxidant effect (Son et al. 2007;
Jagadeesan et al. 2012), diosgenin ameliorated toxic effect of Aβ on hippocampal SOD, CAT, and GSR
activities in diseased rats. Several reports from previous studies stated that NGF attenuates oxidative
stress by regulating PI3K, Akt, MAPK-JNK, p53, and NF-κB signalling pathways (Salinas et al. 2003; Chiu
et al. 2011; Kaplan and Miller 2000). As diosgenin was earlier reported as a potential NGF regulator (Koh
et al. 2016), hence, regulation of these signalling pathways by diosgenin could be the possible
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explanation behind its antioxidant potential. Besides, brain inflammatory response to the deposition of
extracellular amyloid plaques mediated activated microglia is another source of ROS production (Tönnies
and Trushina 2017). As evident from the present study, diosgenin has produced protective effect against
Aβ (1-42) induced neuroinflammation, which could be another reason behind the radical scavenging
property of diosgenin. This is the first study to demonstrate the antioxidant property of diosgenin against
Aβ (1-42) peptides mediated oxidative stress.

Furthermore, neuroprotective role of diosgenin was further supported by histopathological analysis. H & E
staining revealed Aβ mediated neuronal damage in CA1 region of the hippocampus of Aβ (1-42) induced
AD rats and demonstrated pyknotic nuclei, disorganization of neurons, nuclei swelling and neuronal
shrinkage which is in accordant with the previous report (Rahman et al. 2019). Additionally, cresyl violet
staining displayed significant morphological changes in CA1 region of the hippocampus of negative
control rats with neuron swelling, vacuolization and apoptotic cells upon Aβ (1-42) induction. Diosgenin
dose dependently protected the neuronal cells from the deteriorating effect of Aβ (1-42) and intensified
the number of healthy neurons with prominent nuclei. This is the first study to demonstrate the
histopathological effects of diosgenin in Aβ (1–42) induced AD rats. These improved histopathology
outcomes by diosgenin are in consistent with our behavioural and biochemical assessments.

Conclusion
The present work strongly suggests neuroprotective property of diosgenin which was in accordance with
the available evidences against AD. The i.c.v. infusion of Aβ (1-42) peptides in wistar rats, demonstrated
behavioural disturbance together with plaque load, neuroinflammation, oxidative stress and cholinergic
dysfunction. After behavioural, biochemical and histopathological evaluation, our study indicated that
oral administration of diosgenin has improved the neurobehavioural performances of Aβ (1-42) peptides
infused AD rats. Likewise, diosgenin also attenuated the Aβ (1-42) peptides induced elevated AChE
activity and produced protective effect against plaque load, oxidative stress and neuroinflammation
mediated neuronal damage. NGF stimulation along with cumulative defensive effects against different
AD pathologies by diosgenin could possibly be responsible for its effectiveness against memory
impairment in AD rats. However, possibility of introducing diosgenin for the management of AD and its
related complications demands further investigation to elucidate the impact of diosgenin on the other
neurochemicals involved in AD and identification of molecular mechanism behind its neuroprotective
effects.
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Tables
Table 1. Effect of diosgenin on hippocampal AChE activity and TNF-α, IL-1β and Aβ (1-42) levels in Aβ
(1–42) peptides infused rats.

Groups AChE activity (μM/min/g protein) TNF-α

(pg/ml)

IL-1β

(pg/ml)

Aβ (1-42)

(pg/ml)

SO 4.36±1.93 7.70±0.94 13.8±1.69 5.70±1.89

NC 9.1±2.24### 18.5±1.84### 26.9±3.54### 24.8±3.43###

Dio 100 6.19±1.71** 15.2±2.97* 23.3±2.91* 21.0±2.31*

Dio 200 3.37±1.05*** 14.9±2.56** 22.6±3.20* 20.3±3.53**

The values were expressed as mean ± SD (n=10) and were tested by one-way ANOVA (df1 = 3, df2 = 36)
followed by Tukey post hoc test.  Significant change was reported at ###p < 0.001 vs. SO, *p < 0.05, **p <
0.01 and ***p < 0.001 vs. NC group.

Table 2. Effect of diosgenin on hippocampal SOD, CAT and GSR activities in Aβ (1–42) peptides infused
rats.
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Groups GSR

(nmol /min/mg protein)

CAT

(μmol/min/g protein)

SOD

(units/ min/mg protein)

SO 33.9±1.86 244±43.3 3.14±0.508

NC 20.2±1.33### 194.7±19.6### 0.781±0.33###

Dio 100 22.9±1.61** 171±40.0*** 1.79±0.44***

Dio 200 26.6±1.53*** 177±31.2*** 2.09±0.352***

The values were expressed as mean ± SD (n=10) and were tested by one-way ANOVA (df1 = 3, df2 = 36)
followed by Tukey post hoc test. Significant change was reported at ###p < 0.001 vs. SO, **p < 0.01 and
***p < 0.001 vs. NC group.

Figures

Figure 1

Diagrammatic scheme of experimental procedure
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Figure 2

Effect of diosgenin on passive avoidance task in Aβ (1-42) infused rats. (A) step-through latency, (B) total
time spent in the dark compartment. The values were expressed as mean ± SD (n=10) and were tested by
one-way ANOVA (df1 = 3, df2 = 36) followed by Tukey post hoc test. Significant change was reported at
###p < 0.001 vs. SO, **p < 0.01 and ***p < 0.001 vs. NC group.
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Figure 3

Effect of diosgenin on passive avoidance task in Aβ (1-42) infused rats. (A) step-through latency, (B) total
time spent in the dark compartment. The values were expressed as mean ± SD (n=10) and were tested by
one-way ANOVA (df1 = 3, df2 = 36) followed by Tukey post hoc test. Significant change was reported at
###p < 0.001 vs. SO, **p < 0.01 and ***p < 0.001 vs. NC group.

Figure 4
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Histopathological examination of CA1 region of hippocampus stained with H & E (40X). (A) SO
represents healthy neurons with prominent nuclei, (B) NC group representing neuronal damage,
eosinophilic stained cytoplasm, vacuolization and neuronal shrinkage, (C) diosgenin (100 mg/kg) and (D)
diosgenin (200 mg/kg) treated groups representing mild neuronal injury with lesser number of
eosinophilic stained neurons, (E) quantitative assessment of number of degenerated neurons in CA1
hippocampal section of rat brain. The values were expressed as mean ± SD (n=10) and were tested by
one-way ANOVA (df1 = 3, df2 = 36) followed by Tukey post hoc test. Significant change was reported at
###p < 0.001 vs. SO, **p < 0.01 and ***p < 0.001 vs. NC group.

Figure 5

Histopathological examination of CA1 region of hippocampus stained with Cresyl Violet (40X). (A) SO
represents healthy neurons with prominent nuclei and densely stained, (B) NC infused group representing
neuronal damage with lesser number of stained neuron indicating less viable neurons (C) diosgenin (100
mg/kg) and (D) diosgenin (200 mg/kg) treated groups representing mild neuronal injury with higher
number of stained neurons, (E) quantitative assessment of number of healthy neurons in hippocampal
sections of rats brain. The values were expressed as mean ± SD (n=10) and were tested by one-way
ANOVA (df1 = 3, df2 = 36) followed by Tukey post hoc test. Significant change was reported at ###p <
0.001 vs. SO, *p < 0.05 and ***p < 0.001 vs. NC group.


