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Deep learning model to predict Ki-67 expression of
breast cancer using digital breast tomosynthesis
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Abstract
Background:

To develop a deep learning (DL) model for digital breast tomosynthesis (DBT) image to predict Ki-67
expression.

Methods:

The institutional review board approved this retrospective study and waived the requisite to obtain the
informed consent from the patients. Initially, 499 patients (mean age of 50.5 years, ranging from 29 to 90
years) who were referred to our hospital suggestive of breast cancer were initially enrolled in this study.
We selected 126 patients with pathologically con�rmed breast cancer and measured Ki-67. Xception
architecture was used for the DL model to predict Ki-67 expression. Diagnostic performance of the DL
model was assessed by accuracy, sensitivity, speci�city, and areas under the receiver operating
characteristic curve (AUC). The diagnostic performance was also assessed with sub-datasets divided by
radiological characteristics of breast cancer.

Results:

The average accuracy, sensitivity, speci�city, and AUC were 0.856, 0.860, 0.654, 0.933, respectively. The
AUC of the four sub-groups separated by radiological �ndings for the mass, calci�cation, distortion, and
focal asymmetric density sub-dataset were 0.890, 0.750, 0.870, and 0.660, respectively.

Conclusions:

Our results suggest potential application of the DL model to predict the expression of Ki-67 using DBT,
which may be useful in determining the treatment strategy for breast cancer preoperatively.

Introduction
Breast cancer is the most common cancer that affects women, and its incidence and mortality rates are
expected to increase [1]. Determining the molecular subtype of breast cancer is crucial for its treatment
[2]. Although subtypes are originally classi�ed by gene expression, genetic testing is not clinically
practical in all cases. As a result, subtypes are often classi�ed based on an immunohistochemical (IHC)
assessment of biomarkers in the clinical situation: estrogen receptor (ER); progesterone receptor (PR);
human epidermal growth factor receptor 2 (HER2) [3]. Surrogate subtypes do not always correspond to
molecular subtypes. Ki-67 is also a routinely-used molecular biomarker and is considered as an
independent prognostic factor for breast cancer patients, which is expressed as the percentage of
positively stained nuclei [4]. Ki-67 is referred to as a reference value in determining indications for
chemotherapy, especially in ER-positive HER2-negative breast cancer [5, 6]. Ki-67 is typically assessed
through needle biopsy specimens, which is obtained with invasive procedures [4].
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Several studies investigated radiological �ndings associated with the expression of Ki-67 in breast cancer
[7–10]. Several studies reported the application of radiomics analysis in predicting Ki-67 expression from
radiological images [10–12]. Currently, many researches have emphasized the potential usefulness of
applying deep learning (DL) model, especially using convolutional neural networks (CNN), for clinical
imaging, such as benign and malignant classi�cation of breast lesions using MR imaging [13].

The purpose of this study is to develop a DL model for digital breast tomosynthesis (DBT) image to
predict Ki-67 expression.

Materials and Methods
The institutional review board approved this retrospective study and waived the requirement for written
informed consent.

Data Collection
A total of 499 patients (mean age of 50.5 years, ranging from 29 to 90 years) who were referred to our
hospital suggestive of breast cancer, admitted, and performed DBT between March 1, 2019, and August
31, 2019 were initially enrolled in this study. We reviewed clinical and pathological information on each
patient from our electronic medical record system. The exclusion criteria were (a) patients who had only
unilateral breast imaging, (b) male patients, (c) postoperative patients, (d) patients with metal clips after
biopsy, and (e) patients whose lesions could not be detected by DBT (Fig. 1). Out of the 425 patients, we
selected 126 patients with pathologically con�rmed breast cancer and measured Ki-67.

Pathological evaluation and measurement of Ki-67 index
Table 1 shows the characteristics of the tumors. The pathological results and Ki-67 proliferation index
were determined using the results of the preoperative biopsy. The pathological results of these 126
patients with breast cancer yielded diagnosis of invasive ductal carcinoma in 100 patients, mucinous
carcinoma in 5 patients, invasive micropapillary carcinoma in 1 patient, invasive lobular carcinoma in 12
patients, microinvasive carcinoma in 2 patients, ductal carcinoma in situ (DCIS) in 10 patients.
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Table 1
Patients and tumor characteristics

  High-Ki67 Low-i67

Ki-67 index

Mean (%) ± SD (Min-Max)

48.42

± 12.61 (31–74)

14.90

± 7.80 (1–29)

Breasts (n) 35 95

Patients (n) 35 91

Histopathology *    

IDC, n (%) 30 (86) 70 (74)

Mucinous Carcinoma, n (%) 1 (3) 4 (4)

Invasive micropapillary carcinoma, n (%) 0 (0) 1 (1)

ILC, n (%) 1 (3) 11 (12)

Microinvasive carcinoma, n (%) 1 (3) 1 (1)

DCIS, n (%) 2 (6) 8 (8)

High-Ki67: high Ki-67 lesion, Low-Ki67: low Ki-67 lesion, Abbreviations: IDC invasive ductal carcinoma,
ILC invasive lobular carcinoma, DCIS ductal carcinoma in situ

* No signi�cant difference.

The Ki-67 proliferation index was evaluated by manual counting with a counter. Each lesion was
classi�ed into two groups: high Ki-67 lesion (High-Ki67) that showed Ki-67 proliferation index over 30%
(35 lesions) and low Ki-67 lesion (Low-Ki67) that showed Ki-67 proliferation less than 30% (95 lesions).

DBT Examinations
All DBT images were acquired on 3Dimentions Mammography System (Hologic, Inc., Bedford, MA).
Scanning parameters of DBT images are as follows: kilovoltage peak ranges of 25–34 kV; current ranges
of 10–180 mA; exposed time ranges of 51–368 msec; force ranges of 48.9-142.7 N; thick ranges of 16–
92 mm; and absorbed dose ranges of 6.10–4.70 mGy. The total tomographic angler range was 15° (-7.5°
− 7.5°), consisting of 15 projection views taken at 1° increments. Interslice interval was 1 mm, and
resolution was 70 µm × 70 µm per pixel. This study used images from the mediolateral oblique (MLO)
view.

Two radiologists with 5 and 30 years of experience annotated the lesions and classi�ed the radiological
�ndings into four categories: calci�cation, masse, distortion, and focal asymmetric density (FAD). All
breasts’ lesions were cropped at the center of the lesion and then resized to a grayscale image of 256 x
256 pixels.
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DL model
The DL model was constructed using the Xception architecture [14], with pre-training and initialization of
the CNN architecture using ImageNet [15]. RAdam was used for optimization, and binary cross-entropy
was used as the loss function, with a total of 10,000 steps, a warmup proportion of 0.1, and a minimum
learning rate of 1e-5 [16]. The batch size and number of epochs was set to 200 and 400, respectively.

Our computing system consisted of an Intel Core i7-7800X CPU with six cores (Intel, Santa Clara, CA,
USA) and an NVIDIA Quadro RTX 8000 GPU with 48 GB of memory (Nvidia, Santa Clara, CA, USA). The
operating system was Ubuntu 18.04.5 long term support (LTS): Xenial Xerus. Python 3.8.2 was used, and
Keras 2.2.0 with TensorFlow 1.9.0 was used as the deep learning framework.

Statistical analysis
The student’s t-test was used to analyze quantitative continuous variables of clinical factors, while the
chi-square test was used for discrete variables. The statistical signi�cance was set at p < 0.05.

To assess the performance of our DL model, 7-fold cross validation was used, where 80% of the data was
used for training and 20% for validation. In cross validation assessment, the validation accuracy was
calculated 7 times by changing the DBT images included in the train and validation datasets. All data
were separated by patient in the cross-validation process to avoid including DBT images of the same
patient in both the training and validation sets.

The performance of our DL model was assessed by accuracy, sensitivity, speci�city, and the area under
the curve (AUC) of the receiver operating characteristic (ROC) curve. In this study, true positive (TP)
lesions were de�ned as the correct classi�cation of High-Ki67, while true negative (TN) lesions were
de�ned as the correct classi�cation of Low-Ki67. False positive (FP) lesions were de�ned as the incorrect
classi�cation of Low-Ki67 as High-Ki67, and false negative (FN) lesions were de�ned as the incorrect
classi�cation of High-Ki67 as Low-Ki67. Sensitivity and speci�city values are for a 0.5 probability cut line.
Each is calculated as follows:

accuracy = (TP + TN) / (TP + FP + FN + TN)

sensitivity = TP / (TP + FN)

speci�city = TN / (TN + FP)

To evaluate the diagnostic accuracy of each radiological �ndings, the datasets were divided into four
sub-datasets: calci�cation dataset, mass dataset, distortion dataset, and FAD dataset. The diagnostic
accuracy of our DL model for each sub-dataset was independently evaluated to examine the relationship
between diagnostic performance and radiological �ndings.

Results
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Table 1 presents the clinical characteristics of the patients included in the study. The mean age of the
High-Ki67 and Low-Ki67 groups were 50.29 ± 10.53 years (range 36–81) and 54.39 ± 12.96 (range 32–
88) years, respectively. There was no signi�cant difference in age between the two groups.

Figure 2 shows the ROC curve of our DL model using 7-fold cross-validation. The AUC value for our DL
model was 0.856. The accuracy, sensitivity and speci�city of our DL model were 0.860, 0.654, 0.933,
respectively. Table 2 shows the diagnostic accuracies performance of the four sub-groups separated by
radiological �ndings: 0.890 for the mass sub-dataset, 0.750 for the calci�cation sub-dataset, 0.870 for
the distortion sub-dataset, and 0.660 for the FAD sub-dataset. Figure 3 illustrates representative images
of TP, TN, FP and FN lesions.

Table 2
Diagnostic accuracies of 4 groups

  Accuracy Sensitivity Speci�city

Mass 0.89 0.72 0.95

Calci�cation 0.75 0.64 0.82

Distortion 0.87 0.64 0.94

FAD 0.66 - 0.66

Abbreviations: FAD focal asymmetric density

Discussion
Our research indicates potential clinical application of DL model to predict expression of Ki-67 using
breast cancer imaging before surgery. As Ki-67 expression is an important indicator, which also in�uences
breast cancer subtype classi�cation, early prediction of the Ki-67 expression through clinical images
before obtaining biopsy results may have potential bene�ts by enabling early decision-making to
determine initial treatment strategy.

Previous research reported the usefulness of radiomics analysis to predict Ki67 values of breast cancer
[12, 17]. In spite of the different setting of the cut-off values for positive Ki-67 status, our DL model
showed higher AUC values than previous radiomics analyses [12, 17]. Previous radiomics studies
suggested that the results of radiomics analysis may vary signi�cantly depending on the setting of the
ROI due to tumor heterogeneity of breast cancer, such as the periphery or inside of the tumor [12, 17] and
the robustness of radiomics analysis is highly affected by the ROI setting [17]. Whereas, DL model using
CNN, as a process to convolute morphological information of image, allows to capture comprehensive
information throughout the entire tumor. Therefore, our DL model inherently offers potentially more
consistent and reliable insights.



Page 8/14

Although image-based prediction of Ki-67 expression is also investigated by various imaging modalities
such as MRI [10], our DL model used DBP for the imaging modality. DBT, as an advanced imaging
modality of FFDM, has become a widely used and commonly employed breast imaging technique. Our
DL models using widely available DBP imaging have potential advantage of clinical application when
compared to MRI. In addition, as DBT provides more detailed information about morphological
information of tumor when compared to FFDM, this may accurately re�ect tumor heterogeneity 19.

Our result suggested that the predictive accuracy of Ki-67 expression varies among sub-dataset of
radiological characteristics of breast cancer. The accuracy in the mass sub-dataset was higher compared
to the other sub-datasets, whereas that in the calci�cation sub-dataset was lower compared to the other
sub-datasets. This pattern is consistent with the prior research, where a lower accuracy of calci�cation
compared to other �ndings was observed to predict the presence of stromal invasion of breast cancer
[20]. In the paper, they suggested that the DL model did not represent the relationship between
calci�cation and invasion because of the donwnsampling image processing for DBT image. We assumed
the same reason for the lower accuracy to predict Ki-67 expression in the calci�cation sub-dataset. The
accuracy in the distortion sub-dataset was lower than that in the mass sub-dataset, and lower than that in
the calci�cation sub-dataset. Although image interpretation is sometimes di�cult, presence of distortion,
presence of distortion considered to be pathognomonic for malignancy, when once detected. Therefore, it
is reasonable that the accuracy for distortion would fall between that of mass and calci�cation. FAD sub-
dataset did not show any clear trends, which may be associated with the small number of cases.

The clinical utility of Ki-67 has undergone historical transitions. It was previously used for the
classi�cation of luminal breast cancer. Based on the St. Gallen International Consensus Guidelines [3]
previous radiomics studies set the threshold of Ki-67 expression 14% [21]. Recently, many studies
recommended clinically signi�cant threshold of Ki-67 expression as 30% in association with
determination of adjuvant chemotherapy in hormone-positive, HER2-negative early breast cancer 21. This
is the reason why 30% was used as the threshold for Ki-67 classi�cation in this research.

Our research has several limitations. First, this research conducted at a single institution using a single
vendor, has a small sample size. This could impact the accuracy of the predictions and limit the
generalizability of the �ndings. In the future, it will be necessary to conduct studies across multiple
institutions and with larger sample sizes to ensure the robustness of our DL model and its applicability to
broader populations. Second, we used cropped images of lesions for our DL model. For clinical
application, targeted breast lesions need to automatically detect targeted breast lesions. Third, the
expression of Ki-67 was obtained from a preoperative biopsy sample. Localized biopsy samples may not
represent the Ki-67 expression of entire tumors due to heterogeneity.

In conclusion, the DL model utilizing DBT has the potential to accurately predict the expression of Ki-67,
which can serve as a valuable non-invasive tool in determining the treatment strategy for breast cancer
preoperatively.
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Figures

Figure 1

Flowchart of inclusion and exclusion criteria.
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In total, 126 patients were analyzed in this study. DBT = digital breast tomosynthesis

Figure 2

Receiver operating characteristic curves (ROC) for testing, based on the Ki-67 cut-off value of 30%. (AUC:
area under the curve).
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Figure 3

Representative image from the dataset.

(A) DBT and cropped image (A’) of true positive case (TP).

A 46-year-old woman with high-Ki-67 expression (43%). Spiculated mass was observed in digital breast
tomosynthesis (DBT). The entire tumor is included in the area of interest. Our DL model accurately
classi�ed cases as High-Ki67.
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(B) DBT and cropped image (B’) of true negative case (TN).

A 75-year-old woman with low-Ki-67 expression (5%). Distortion is the only observable �nding in DBT, and
obvious calci�cation or mass cannot be identi�ed. Our DL model accurately classi�ed cases as Low-
Ki67.
(C) DBT and cropped image (C’) of false positive case (FP).

A 75-year-old woman with high-Ki-67 expression (22%). DBT shows high-density tumor with distortion on
the dorsal side. Our DL model mistakenly classi�ed cases as High-Ki67.

(D) DBT and cropped image (D’) of false positive case (FN).

A 50-year-old woman with high-Ki-67 expression (51%). DBT shows grouped �ne pleomorphic and
amorphous calci�cations spanning 3.0 cm. The cropped ROI does not contain some calci�cation. Our DL
model mistakenly classi�ed cases as Low-Ki67.


