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1Cin - Centro de Informática, Universidade Federal de Pernambuco, Av.
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Abstract

In numerous practical domains such as reliability and performance engineering,
finance, healthcare, and supply chain management, a common and formidable
challenge revolves around the accurate modeling of intricate time-based data
and event durations. The inherent complexities inherent to real-world systems
often render the effective application of conventional statistical distributions a
formidable task. Phase-type (PH) distributions emerge as a remarkably adapt-
able class of distributions ideally suited for modeling scenarios like failure times
or response times, thanks to their Markovian representation. These distributions
find utility in both analytical and simulation-driven approaches for system eval-
uation, and they are frequently employed to approximate empirical datasets.
This paper introduces an approach that leverages user-friendly tools, graphical
adjustment features, and integration with existing tools to streamline the pro-
cess of fitting PH distributions to empirical data. Simplifying this procedure
empowers domain experts to more accurately model complex systems, result-
ing in enhanced decision-making, more efficient resource allocation, improved
reliability assessments, and optimized system performance across an extensive
spectrum of practical domains where the analysis of time-based data remains
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pivotal. Furthermore, this study presents a method for the automated deter-
mination of parameters within a fitted Hyper-Erlang distribution. This method
utilizes the Bayesian Information Criterion (BIC) within a Bayesian optimization
framework integrated into an Expectation-Maximization (EM) algorithm. Con-
sequently, it enables the derivation of the probability density function (pdf) for a
given dataset through a combination of Hyper-Erlang distributions. Subsequently,
this pdf serves as a critical tool for the assessment of system performance.

Keywords: Phase-type Distributions, Expectation Maximization, Reliability,

Reliability Data Analysis, Fog Computing.

1 Introduction

Model-based benchmarking, an essential engineering field used to estimate attributes
such as system reliability, security, and performance, often employs Markov Chains for
the probabilistic description of state-based stochastic models. While mathematically
manageable, Markov Chains still necessitate efficient numerical methods to compute
large-scale systems’ stationary and transient metrics. When these models become non-
Markovian, classical analytical approaches may prove unfeasible due to including non-
exponential distributions.

There are three principal methodologies when evaluating performance: analytical mod-
eling, simulation, and measurement. Analytical modeling uses equations to predict
and analyze how computational systems behave. These equations are based on under-
standing and estimating system behavior within a finite period and can be enhanced
using Phase-type (PH) distributions. PH distributions are helpful for approximating
non-exponential stochastic models, which are essential for performance and reliability
engineering, and they densely populate the non-negative probability distribution space
Asmussen and Koole [1], which is crucial for generating approximate Markov models.
As a result, there has been an increase in research focusing on stochastic models using
both Markovian and non-Markovian methods. The maximum likelihood principle has
shown promise in adjusting PH distributions, highlighting the importance of explor-
ing methods for parameter approximation in contemporary research domains Reinecke
et al. [2], Horváth and Telek [3].

The Expectation Maximization (EM) method is pivotal in statistical analysis and
machine learning applications, significantly facilitating the maximum likelihood esti-
mation (MLE) in the presence of latent variables. This technique offers a direct
approach to MLE, known for its precision and adaptability. However, it faces challenges
when dealing with censored data that require tailored solutions for distributions that
diverge from the exponential model. In this context, the phase-type (PH) distributions
have emerged as a compelling tool, championing the creation of robust probabilistic
models adept at capturing the nuances of lifetime systems.

Hyper-Erlang distributions, a class of PH distributions, provide a significant con-
text for EM application. These distributions can model a wide range of behaviors in
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stochastic systems Buchholz et al. [4]. Applying the EM algorithm to hyper-Erlang
distributions allows for estimating phase numbers, phase-associated distributions,
and phase transition probabilities. This process, beginning with initial parameter
assumptions, iteratively updates them until convergence.

This work proposes an iterative algorithm to fit the empirical distribution using PH
distributions. Utilizing the established Expectation-Maximization algorithm, it pro-
vides the hyper-Erlang Phase-type parameters. After determining the parameters of
the fitted distributions, we define a function representing the fitted distribution. We
then use this function to study the system’s performance and reliability and simulate
other potential scenarios without additional data collection or modeling requirements.
The main aims of this paper are: (1) Proposing a methodology to automatically
find the parameters of a Hyper-Erlang distribution that accurately describes a sys-
tem’s distribution. (2) Integrating the Bayesian Information Criterion (BIC) into the
Expectation-Maximization (EM) algorithm for precisely determining the distribution
parameters. (3) Showing the algorithm’s usefulness and versatility by testing it on
various data sets by applying the methodology. (4) Derivating functions such as the
data set’s probability density and reliability functions.

This paper is structured as follows: Section 2 presents the knowledge required to obtain
such functions. Section 3 offers a list of related works. Section 6 briefly describes the
algorithm for fitting reliability using PH distributions. Section 5 introduces PhaseFit-
Pro, a tool implemented to support the proposed fitting process. In Sections 6.1 and
6.2, we apply the proposed methodology to an experiment for performance metrics.
Finally, Section 7 presents final considerations and potential future research directions.

2 Background

This section presents the fundamental concepts necessary for developing the present
text. One of the essential concepts in developing PH theory is the matrix analytical
methods developed by Neuts, in particular, Neuts [5, 6]. These papers introduced the
necessary mathematical tools to support the theory of PH distributions.

2.1 Exponential distributions

The exponential distribution, often used to model the time between events, provides
insight into understanding the intervals or waiting times for specific occurrences. A
defining characteristic of the exponential distribution is it’s memorylessness; past
events or waiting times do not influence future outcomes Bolch et al. [7]. Essentially,
each instance is a fresh start, uninfluenced by prior results. Suppose X represents
a continuous random variable with a single phase with parameter λ. The following
formulas are widely known:

fX =
dF (x)

dx
= λe−λx, ∀x > 0, F (x) = 1 − e−λx, E[X] =

1

λ
, and σ2

X =
1

λ2
. (1)
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However, the exponential distribution could better represent the studied distribution
in many practical situations. However, the combination of n exponential phases has
excellent flexibility and adjustment power. Fortunately, the computational advances
that have occurred in recent decades have made it possible to create algorithms that
determine the combination of exponential distributions that best represent the pdf
of a data set. Deciding on the infinitesimal matrix of the underlying Markov chain
is possible. Thus, we can determine the probability density function (PDF ) and the
cumulative distribution function (CDF ) of more general distributions.

2.2 Hyper-Erlang Distributions

Suppose we are analyzing a system that is a succession of exponential phases with a
parameter λ. In other words, consider a system with n exponential phases at the same
rate. Such distributions are called hyper-Erlang distributions. We have E(X) = n

λ
,

σ2
X = r

λ2 and the squared coefficient of variation C2
T = 1

n
. The density function and

its respective cumulative probability function are given by:

fX(x) =
λ(λx)n−1e−λx

(n− 1)!
, ∀x > 0,

FX(x) = 1− e−λx

n−1
∑

0

(λx)i

i!
, x ≥ 0, n = 1, 2, ... (2)

The distribution representing the mixture of n-distributions is given by

fT (x) =

n
∑

i=1

αifXi
. (3)

The results presented in Thummler et al. [8] showed that the fitting processes defined
by mixing Erlang-type distributions are as robust as those described by general PH’s
or acyclic PHs. Furthermore, they show that distributions with many states can be
fitted efficiently. The fitting algorithm is relatively stable due to the spatial structure
of the density function, which produces a fast and reliable likelihood maximization
method. In this work, Erlang-mixing structures will be used to model the frequency
distributions of the experiments. These generated functions will be used for data-driven
reliability analysis.

2.3 Continuous-time Markov Chains

An absorbing state Markov chain is a stochastic process characterized by a set of states
in which one or more states are absorbing, and the others are transient. If the chain
starts transient, it will eventually reach an absorbing state and remain in it forever.
The matrix Q is square n × n that describes the transition rates from one state to
another. The vector d1 is a vector n × 1 that contains the transition probabilities to
the absorbing state Stewart [9], Maciel [10, 11].
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Note that when the Markov chain reaches an absorbing state, it stays in that state
forever. The matrix M = (−Q)−1 is the fundamental matrix (also known as the
momentum matrix) of a continuous-time Markov chain with an absorbing state, and
each element (−Q)−1(i, j) gives us the average time required for the state j to be
absorbed given the initial state i. The transition probability matrix satisfies the Kol-

mogorov equation: dP (t)
dt

= QP (t). Thus, P (t) = ceQt. Using the Taylor series of the
exponential function, we write:

P (t) = eQt =

∞
∑

i=0

(Qt)i

i!
and,

dP (t)

dt
= QeQt. (4)

Using the initial probability vector π(0), will set the state 1 as the initial state (at
time t = 0) so that after time t, the process will still occupy one of the states 1, 2, ..., n,
with probability π(0) ·M · 1, where 1 is a column vector of 1′s. Thus, the absorption
time distribution function will be given by F (t) = 1 − π(0) · eQt · 1. Furthermore,
the probability density is defined by f(t) = π(0) · eQt · q where, q = −d1, and eQt is
an exponential matrix. Let S be a set of states, a continuous-time stochastic process

X∞
t≥0(t) is a Markov process with a state described in dP (t)

dt
= P (t)·Q, Π(0)·1 = 1.

With the solution of this system we obtain P (t) = P (0) eQt, where P (0) vector is the
initial probability vector, and Q infinitesimal generator. From that:

∑

∀j,j ̸=i

qij + qii = 0, and qii = −
∑

∀j,j ̸=i

qij , (5)

knowing that a state i is an absorbing state if qii = 0. The choice of the continuous-
time Markov chain over other modeling techniques was motivated by the fact that it
allows the development of analytical models to assess component availability, following
the principles presented in Pereira et al. [12], Ram [13], Maciel et al. [14].

2.4 Fitting Method

An expectation-maximization algorithm (EM) is an approach that performs the maxi-
mum likelihood estimation in the presence of latent variables. It does this by estimating
the values for the latent variables and optimizing the model until convergence. It is
a practical and commonly used approach to estimating densities with missing data.
The popularity of the EM algorithm stems from the fact that it can be simple to
implement and that the global maximum can be found reliably through stable and
increasing steps.
The fitting of PH’s typically requires defining parameters such as the number of phases
and clusters Bailey et al. [15]. However, considering the application of this analysis
technique in a production environment, it is crucial to devise a way to automate
this parameter determination process, thereby ensuring both accurate and reliable
models. Given this scenario, adopting Bayesian optimization tools emerges as a viable
and effective strategy to address this challenge Okamura et al. [16]. For hyper-Erlang
distributions, the EM algorithm can be used to estimate phase number and phase type
distributions, as well as phase transition probabilities. The algorithm starts with initial
guesses for these parameters and then iteratively updates them until convergence. The
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EM algorithm for Hyper-Erlang distributions is implemented using the Baum-Welch
algorithm, a particular case of the EM algorithm for hidden Markov models.

3 Related Works

This section reviews research on estimating probability density functions (PDFs) and
cumulative distribution functions (CDFs) for performance metrics. We also highlight
this article’s contributions compared to the cited works.

3.1 Fitting Methods for Phase-Types

The tutorial in Okamura and Dohi [17] offers a comprehensive guide to PH-fitting
techniques. It introduces the PH-fitting algorithm, EM-based PH estimation, and
standardization. Additionally, it presents the phase-type software reliability model
(PH-SRM) and its parameter estimation using the PH estimation algorithm. However,
the authors acknowledge that this method can be computationally intensive in some
scenarios.

In Prados-Garzon et al. [18], a generic mathematical model is proposed for open
queue systems, providing closed-form equations for estimating system response times.
This work stands out for its parameterization without assuming specific arrival distri-
butions. PHDs enhance flexibility and practicality in time-to-failure studies through
continuous-time Markov chains (CTMC).

Barde et al. [19] use PHDs to approximate non-Markov models, enabling the analysis
of complex systems under Markovian decay. The article includes numerical results and
adjustments for transition probabilities in maintenance optimization Markov decision
process models.

Zhang et al. [20] present an efficient algorithm for calculating the Fisher information
matrix in fitting History Dependent Renewal Processes using PHs. This algorithm
employs a smoothing technique in a continuous-time stochastic process (CTMC) to
compute crucial second derivatives of the log-likelihood function (LLF). A computa-
tional algorithm is developed to expedite the Fisher information matrix calculation
and compute LLF’s first and second derivatives for samples and probability density
functions.

Bladt and Rojas-Nandayapa [21] tackle statistical inference for univariate and indepen-
dent heavy-tailed data. They propose fitting methods for these data using Exponential
Mixture (EM) and phase-type distributions (NPH) scale mixture class distributions.
This work introduces a new class of heavy-tailed distributions and an EM algorithm
for maximum likelihood parameter estimation. The authors consider various data
types, including histograms, censored data, and theoretical distributions, and provide
numerical examples using simulated and reference reinsurance datasets.

Albrecher et al. [22] introduce scaling PH distributions with continuous scaling
components. They develop an EM algorithm for maximum likelihood estimation,
particularly useful with empirical data, including censored data. Unlike NPH distribu-
tions, closed-form formulas for mixed distributions can be evaluated using functional
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calculus tools, avoiding infinite series truncation. The article also investigates prod-
ucts between phase-type distributed random variables and independent, positive,
continuous random variables, establishing their asymptotic properties. Finally, an
expectation-maximization algorithm is derived and implemented for statistical infer-
ence of these mixed distributions using real-world datasets, often exhibiting heavy
tails and retaining phase-type distribution properties.

3.2 Reliability

Alkaff and Qomarudin [23] propose a straightforward method for functional reliability
analysis of systems with general structures using the PH distribution. They present
algorithms for system reliability modeling and analysis, efficiently generating system
reliability functions for independent components and other reliability measures.

Wu et al. [24] extend PH distributions to cases with specific transition thresholds
and time spent thresholds in selected states. They develop three models using aggre-
gated stochastic processes theory and derive closed-form expressions for reliability
indices, such as availability and lifetime distributions. Numerical examples illustrate
the proposed formulas.

Wang et al. [25] introduce a new mathematical model for repairable systems with two
types of exponentially distributed components and a repairer. They analyze this model
using Markov process theory and the matrix analytical method, with an example of
solar power generation.

He et al. [26] proposes two random variable approximations using the ’Erlangiza-
tion’ technique, which is valuable for analyzing basic reliability structures. Li et
al. Li et al. [27] offer a PH-based method for time-dependent reliability analysis
of deteriorating structures. They use PH adjustment techniques to generate a sim-
ple reliability expression, considering progressive and shock deterioration. Numerical
examples demonstrate the method’s efficiency, with accuracy validated against Monte
Carlo simulations.

Pereira et al. [12] present closed-form equations for evaluating system performance and
capacity planning. They apply this methodology to assess how a web server in a fog
node is affected by unexpected workloads, using Markov chains for analysis. Similarly,
the articleWang et al. [25] provides an analytical approach for system description,
claiming time savings in system modeling.

Zheng et al. [28] propose an approach for estimating the performance and reliability
of a web service before deployment based on observed data. They use phase pro-
cess expansion to create an expanded continuous-time homogeneous Markov chain for
the web service, explicitly including failure and restart states. This approach enables
performance and reliability calculations using the PH tuning method based on obser-
vations of service execution times. Experimental results from web services demonstrate
the approach’s effectiveness.

Alkaff et al. [29] extend the state-space model and introduce a deceleration factor
for available waiting systems with multistate components. These components follow
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matrix-based phase-type (PH) distributions. The resulting model represents the sys-
tem lifetime distribution as a PH distribution, facilitating dynamic system reliability
analysis. Comparisons with other methods from previous publications are included.

Finally, Balali et al. [30] review approaches to degradation-based reliability estimation
models, focusing on their application in the Industrial Internet of Things (IIoT). They
provide a roadmap for adopting IIoT-based reliability estimation models, explain-
ing their application and advantages. The study underscores the importance of these
models in monitoring system conditions over time.

3.3 Fitting Tools

Efficient software tools for fitting phase-type distributions have been developed in
recent years. Notable examples include HyperStar - Reinecke et al. [2, 31] and BuTools
- Horváth and Telek [3, 32]. HyperStar is a modern tool tailored for fitting PH
distributions to diverse datasets.

PH distributions are known for their versatility in approximating non-negative dis-
tributions, offering closed-form expressions for essential metrics and representation as
Markov chains. While HyperStar is user-friendly and supports various export formats,
it lacks streamlined distribution methods, and its source code remains proprietary,
limiting community refinement.

BuTools - is a comprehensive suite designed for traffic modeling and queue analysis.
It extensively supports PH distributions, including density function computations and
moment matching. BuTools also covers Markov.

4 Automatic PH Fitting Process

When applied to Hyper-Erlang distributions, the EM algorithm can be streamlined
using specific structural constraints Fang [33]. Hyper-Erlang distributions can approx-
imate any positive random variable distribution, with its parameters given as (π, λ),
and the Erlang branch orders represented as r. The algorithm for these Phase-type dis-
tributions is outlined in references. A unique feature of the Hyper-Erlang distribution
is the ability to fully describe a continuous time Markov process, generating a ran-
dom variable Xk through its initial state, sufficient for determining the selected Erlang
branch. Outlined below are the EM algorithm steps tailored for the Hyper-Erlang
distribution:

1. Initialization: Randomly define the initial values of the model parameters, Θ0.
They help generate a preliminary estimate of the data’s probability distribution.

2. Likelihood Differentiation: Determine the likelihood function for data using
present model parameters, represented as:

Q(θ, θ0) =

n
∑

i=1

r
∑

j=1

zij [(r − 1) lnλj − λjxi + (r − 1) lnxi − ln(r − 1)!],
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where zij signifies the posterior probability that data point i belongs to cluster j, xi

is sample i’s value, r indicates the required events in the Erlang-r distribution, and λj

represents the event occurrence rate in cluster j.
3. Posterior Probabilities Calculation: Determine the posterior probability distri-

bution based on revised data and parameters. The posterior distribution for each
Erlang-r cluster is expressed as:

p(zij = 1|xi, θ) =
θrjx

r−1
i e−θjxi

∑k

l=1 θ
r
l x

r−1
i e−θlxi

,

with k representing the cluster count.
4. Optimal Parameter Determination: Update the model parameters based on pos-

terior probabilities. Differentiate the likelihood function for each parameter, equate
the derivatives to zero, and deduce the parameters. The optimal value for every θi
parameter within Erlang-r distributions is:

θj =
r
∑n

i=1 zij
∑n

i=1 zijxi

.

5. Parameter Update: Use the revised parameters for recalculating the posterior
probability distribution and iterate until the parameters reach a stable solution.

The EM algorithm’s core lies in its iterative nature. Each change in parameter esti-
mates yields varied posterior probabilities, which, when recalculated in step 4, produce
distinct parameter estimates. The algorithm involves two main actions: determining
the posterior probability using current parameters and updating parameters based on
the prevailing posterior probability. The process described above provides the vector
π and matrix Q described in this section with the following structures:

π = (α1, α2, ..., αM−1, αM ),

Q =















T1 0 0 0 0
0 T2 0 0 0

. . .

0 0 0 TM−1 0
0 0 0 0 TM















,

where, each

Ti =















−λi λi 0 0 0
0 −λi λi 0 0

. . .

0 0 0 −λi λi
0 0 0 0 λi















.

Bayesian optimization requires the definition of value ranges to be tested and a met-
ric to be optimized. After a predetermined number of iterations with random values,
Bayesian optimization employs a surrogate model that estimates the objective func-
tion of the chosen metric. Each point on this function represents the probability of
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achieving a particular score for the evaluation metric, given a specific hyperparame-
ter. This sequential search technique, anchored on the principles of Bayes’ theorem,
guides the search for optimal points in an objective function by estimating the poste-
rior probability distribution of the model parameters based on the data and a prior
distribution. When dealing with a complex and multivariate parameter space, like in
calibrating Phase-Types (PH) with the Expectation-Maximization (EM) algorithm,
Bayesian optimization proves particularly efficient Zhang et al. [34].
In the context of the EM algorithm based on Hyper-Erlangs for determining the num-
ber of clusters and phases, Bayesian optimization will be employed to explore the
parameter space intelligently. Firstly, the prior distribution of the hyperparameters
will be defined, considering the boundaries and characteristics of each parameter.
Then, based on previous iterations and the objective function (BIC obtained from log-
likelihood), Bayesian optimization will suggest a new set of parameters to be tested.
This process will continue until the optimal number of clusters and phases are found,
thus allowing effective automation of PH fitting. The step-by-step process of this
automated hyperparameter optimization is presented in the algorithm 1

Algorithm 1: Automated Hyperparameter Search Algorithm

Result: Determine the best clusters and phases
1 Initialize best clusters and phases;
2

3 objective(arguments)

- Extract the number of clusters and phases from arguments
- Estimate initial parameters mu’s and probabilities based on the number of
clusters
- Optimize the parameters using the Expectation Maximization method
- Calculate the incomplete log-likelihood
- Compute the Bayesian Information Criterion (BIC),
BIC = −2 ∗ log − likelihood+ num− params ∗ np.log(n)
Return BIC;

4

5 Define the hyperparameter search space;
6

7 Perform hyperparameter optimization to find the best parameters;
8

9 Extract the best clusters and phases from the best parameters;
10 return best clusters, best phases

The illustrated algorithm provides a general approach to automated hyperparameter
optimization in the context of an Expectation Maximization (EM) algorithm based on
Hyper-Erlangs. The goal is to determine the optimal number of clusters and phases,
two critical hyperparameters in this context.
The algorithm begins by initializing placeholders for the best hyperparameters. The
objective function, to be minimized, calculates the Bayesian Information Criterion
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(BIC), which is a statistical measure of model validity considering both the log-
likelihood of observed data given the current model parameters and the number of
parameters utilized in the model. The BIC is designed to penalize model complexity,
thereby helping to prevent overfitting.
Hyperparameter values are searched within a specified range using a specific algorithm
that selects a new set of hyperparameters to evaluate at each iteration, aiming to
minimize the objective function. The algorithm iteratively refines its hyperparameter
selections based on the results of previous evaluations, guided by the objective of
locating the global minimum of the objective function in the hyperparameter space.
Once the algorithm has concluded its search—either by exhausting the number of
permitted evaluations or meeting a specific stopping criterion—it retrieves the best
hyperparameters corresponding to the minimum value of the BIC obtained. These
hyperparameters, representing the optimal number of clusters and phases, are then
returned by the algorithm.
Hyper-Erlangs were selected for this study due to their flexibility and deference to
an analytical expression for the Probability Density Function PDF, the CDF, and
the derived functions utilized in reliability analysis. The generation of these functions
depends on Calculus techniques, thus necessitating the functions to be integrable and
preferably simple - meaning, a smaller number of parameters derived from the fitting
process is desirable. To yield such functions, the BIC was selected as the stopping
criterion for Bayesian optimization. This criterion imposes a penalty on models with
a more significant number of parameters, thus encouraging simpler models.
As outlined by Bladt [35], observing the negative log-likelihood when choosing fit-
ted dimensions and structures is advisable. While the authors concede that larger
matrices often result in better likelihoods, they also note that it is common for this
likelihood increase to plateau in practical scenarios. One can proceed to model selec-
tion regarding regression coefficients after determining dimension and structure. These
coefficients align with the conventional system, allowing the use of AIC or BIC criteria
for Comparison and selection among various proposed models.
This study’s approach focuses on achieving the fitting via log-likelihood. Additionally,
the Bayesian optimization process, with its objective function defined as BIC = −2×
log-likelihood + num-params× np.log(n), where num− params = num− clusters×
(phases + 1) and n = length of data. This method has shown effectiveness, yielding
promising results in automating selecting the number of phases and clusters for fitting
PH distributions.
Having obtained the parameters from the abovementioned process, we construct the
Probability Density Functions (PDFs) with mixture distributions. Following this, the
reliability evaluation methodology is carried out in a series of steps:

• The first step involves collecting data associated with the system’s behavior over
time. This data should include information about the various states of the system,
along with the time required for transitions between these states.

• Using the collected data, we estimate the parameters of a Phase-Type (PH) dis-
tribution. This estimation process utilizes the Expectation-Maximization (EM)
algorithm, and Bayesian optimization is employed to ascertain the optimal number
of clusters and phases.
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• Once the PH distribution has been fitted, it is then used to model the system’s
behavior. This provides us with the ability to predict the state of the system at a
given point in time. It also allows for calculating various reliability metrics, such
as the Probability Density Function (PDF), its complementary function, and other
metrics crucial for dependability analysis.

Through this process, we develop a model of the system’s behavior and gain the capac-
ity to predict its future state and assess its reliability using various established metrics.
While the flexibility of Hyper-Erlang distributions is a significant advantage, it is cru-
cial to emphasize that fitting through this mixture of distributions only sometimes
guarantees accuracy in real-world systems. Additional data treatment steps may be
necessary depending on the collected data’s peculiarities. Therefore, the direct appli-
cation of the proposed methodology without careful preliminary analysis of the data
can lead to inaccurate or misleading results. It is, then, essential to comprehensively
validate the model assumptions and precisely fit the data in question. This involves
pre-processing stages, such as data cleaning, handling missing values, and normaliza-
tion. It is also crucial to conduct exploratory data analysis identifying trends, patterns,
variable relationships, and outliers. These steps ensure the reliability and robustness
of the results obtained by applying the proposed methodology.

5 PhaseFitPro Tool

This section introduces PhaseFitPro (PhaseFitPro - Phase-type Fitting Process tool),
a tool to automate the evaluation process.

We aim to provide a user-friendly interface for those seeking a hassle-free, automatic
fitting experience and a more detailed, customizable version for enthusiasts and experts
who prefer finer control via manual fitting (Figure 1). This balance between simplicity
and functionality not only broadens our tool’s accessibility to a broader range of users
but also ensures that every user can achieve their desired outcomes tailored to their
specific needs.

Fig. 1: Alpha version of AutoFitting Tool
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6 Case Studies

This section introduces two distinct case studies. The first case study aims to show-
case the algorithm’s versatility by applying automated fitting using the Hyper-Erlang
distribution to a variety of data sets. This evaluates its ability to manage intricate
scenarios and sets the stage for validation in computational analyses across diverse con-
texts. The second case study delves into characterizing the time to failure (TTF) and
time to restore (TTR) distributions within a fog computing environment. This high-
lights the utility of automated fitting with the Hyper-Erlang distribution in reliability
analysis.

6.1 Case Study 1: Automatic fitting in different scenarios

In this section, we conduct a case study applying automated Hyper-Erlang distribution
fitting to diverse datasets, assessing its ability to handle complexity and paving the
way for validation in various computational analysis scenarios.

The method described in Section 4 has been applied to several data sets. These data
sets are detailed in Tables 7.13, 7.20, 7.41, 7.42, 24.14, and 24.23, as referenced in
Maciel [10, 11]. These cited works are foundational in the realm of computational
system evaluations. They offer an extensive data set that captures a wide range
of dynamics essential for analyzing and modeling such systems. For our study, we
employed an automated fitting technique on these data sets and conducted an anal-
ysis using the Hyper-Erlang distribution. This section provides further details on the
parameters chosen and the outcomes of the fitting for each scenario.

Fig. 2: Algorithm applied in table 7.13, obtained parameters (0.1016, 0.2873), and
initial probability vector (0.3756, 0.6243).

Consider the data set in Figure 2, comprising eighty measures. This data has a coef-
ficient of variation (CoV) of 0.541 and an interquartile range (IQR) of 184.5. It is
evident from the observation that the data are divided into two distinct groups. By
employing automated fitting with the Hyper-Erlang distribution, we have identified
30 phases and two clusters. The fitting proved more efficient for the first data group
in the histogram.
The sample size depicted in Figure 3 is sixty. By analyzing the sample histogram, a
quick observation allows us to hypothesize that the sample comprises two or three
clusters. On the other hand, the fitting procedure determined the presence of 2 clusters
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Fig. 3: Algorithm applied in table 7.20, obtained parameters (0.0147, 0.1317), and
initial probability vector (0.8333, 0.1666)

and 13 phases on each. This configuration suggests a level of complexity lower than
what was previously observed. This can be attributed to the data being more densely
grouped, forming cohesive clusters.

Fig. 4: Algorithm applied in table 7.41, obtained parameters (0.0942, 0.3469), and
initial probability vector (0.9333, 0.0666)

In the fitting displayed in Figure 4, the algorithm successfully detected the two por-
tions into which the distribution divides, yielding a result of 2 clusters. However,
there was a substantial increase in the number of phases, totaling 31. This sug-
gests that the algorithm encountered challenges in converging due to the inherent
complexity of the data distribution. To deepen the analysis, we examined the empir-
ical moments (312.9055, 104366.9098, 36132253.8337) and contrasted them with the
moments of the adjusted distribution (312.9055, 6080.9833, 180569.4677). A more pro-
nounced discrepancy between the second and third moments becomes evident through
this comparison.
Due to the more dispersed nature of the data, the poorest result was recorded in the
dataset referenced in Figure 5. However, it is noteworthy that the peak present in
the PDF was detected. There was a need for 3 clusters, each comprising 11 phases.
This configuration was influenced by the frequency distribution having three distinct
concentration regions.
The histogram in Figure 6 displays multimodal data with a CoV of 0.51. Data sets of
this nature pose significant challenges when attempting fitting using traditional distri-
butions. However, with the algorithm discussed in this text, 3 clusters were required,
each consisting of 49 phases. Notably, the number of phases has considerably increased

14



Fig. 5: Algorithm applied in table 7.42, obtained parameters (0.0192, 0.0856, 0.7384),
and initial probability vector (0.5411, 0.3588, 0.09999).

Fig. 6: Algorithm applied in table 24.14, obtained parameters (0.1410, 0.2847, 0.5792),
and initial probability vector (0.2589, 0.4915, 0.2495)

compared to the other cases presented, underscoring the high complexity of the system
under consideration.

Fig. 7: Algorithm applied in Table 24.23, obtained parameters (0.2677, 0.2677, 0.2677,
0.5374, 2.7045), and initial probability vector (7.9441exp(-09), 0.0636, 0.2434, 0.6439,
0.0490).

Lastly, using another multimodal data set, the automated fitting using the Hyper-
Erlang distribution yielded a Phase-Type distribution (PH) with 4 clusters, each
comprising 53 phases. The fitting algorithm detected the first two groupings of data,
as illustrated in Figure 7. However, a good fit is achieved at the expense of high dimen-
sionality. Such scenarios illuminate the need for refinements in future iterations of the
algorithm.
Building upon the methodologies highlighted, the next section will apply this approach
to a real-world scenario. The plan is to integrate the fitting algorithm into experiments
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previously discussed in various works. Through this, we aim to validate its performance
across different systems and data sets. This implementation will bolster the algorithm’s
credibility and highlight its scalability in the dynamic landscape of computational
analysis. The second case study characterizes TTF and TTR distributions in a fault-
injected fog computing environment. It demonstrates automated fitting with Hyper-
Erlang distributions for reliability analysis in complex real-world systems.

6.2 Case Study 2: The fog computing environment

In this study, we seek to characterize the Time to Failure (TTF) and Time to Repair
(TTR) distributions within a fog computing environment, where the observed times
were expedited through a fault injector. Comprehensive insights on this approach are
provided in Pereira et al. [36, 37].
The system was exercised by injecting faults in the system infrastructure and mon-
itoring its availability during an observational period. After the experimental phase,
the TTFs and TTRs were obtained. Then, the maximum likelihood estimation algo-
rithm was executed to fit an Erlang-r distribution. Once the Erlang-r distribution was
fitted, the distribution function was determined.
After fitting, the PDF and CDF of the fitted distribution functions are determined
using equations 2. With these functions in hand, the system’s reliability study begins,
for instance, using the CDF F (t) to find the reliability, with relation F (t) +R(t) = 1.
The average time to absorption state is MTTA =

∫∞

0
R(t)dt.

However, despite the inherent flexibility of this approach, it is crucial to emphasize
that employing Hyper-Erlang distributions for fitting systems derived from real-world
scenarios often necessitates the use of a significant number of phases and clusters.
Such a trait might lead to less than optimal fitting results or yield intricate integra-
tion functions, jeopardizing the calculation procedure for reliability metrics outlined in
this study. Therefore, thoroughly validating underlying assumptions and adjusting the
model to the data becomes pivotal. Succinctly put, constructing an automated relia-
bility evaluator based on Hyper-Erlang distributions would encompass the following
stages:

1. Collect data on system behavior over a period, capturing state transitions and the
durations of each state.

2. Employ the gathered data to determine PH distribution parameters through the
EM algorithm.

3. Utilize the deduced PH function to establish analytical functions for reliability
metrics.

4. Derive other reliability metrics and generate their respective graphical representa-
tions.

5. Periodically refine the model with fresh data to improve its predictive accuracy.

The following section explores the automated fitting process for a fault injector infras-
tructure within a Fog Computing environment. Metrics and initial functions are
detailed, with specific functions omitted if deemed overly extensive.
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6.2.1 Enhanced System Modeling and Analysis

In the dynamic landscape of modern computing, cloud infrastructures have secured
a cornerstone position, offering scalable and proficient solutions to address a diverse
range of computational demands. As elucidated in 6, these infrastructures play a
foundational role in various applications, accentuating the need for comprehensive
reliability assessments. Simultaneously, there is a shift toward more intuitive mod-
els. While the traditional analytical model, defined by its mathematical blueprint of
systems and reliance on deductive processes, is esteemed for characterizing systems
through structured expressions Wang et al. [38], Acal et al. [39], it grapples with the
challenge of authentically mirroring prevailing effects and interactions. This lacuna
paves the way for functions that imbue flexibility, often eluding conventional modeling.
The significance of automated fitting becomes palpable when transitioning to the
framework delineated in Section 4. Championing a data-driven methodology, it equips
stakeholders to sculpt the stochastic behavior of systems grounded in empirical obser-
vations. Such a paradigm underscores the aptness of phase-type distributions, adept
at echoing the subtleties inherent to complex, tangible systems like the discussed cloud
infrastructure.
Utilizing this approach on the collected data, a phase-type distribution with 3 clusters,
each having 10 phases, was determined. The parameters (0.00338, 0.012433, 0.046129)
represent the Hyper-Erlang distribution parameters and the initial state probabili-
ties. This is further complemented by the initial probability vector (0.39, 0.45, 0.16).
This means that the PH is characterized by a mixture of these specific functions 6,
showcasing the inherent variability and stochastic nature of the underlying system’s
performance and behavior.

fT1(t) =
0.00338(0.00338t)9e−0.00338t

9!
,

fT2(t) =
0.012433(0.012433t)9e−0.012433t

9!
,

fT3(t) =
0.046129(0.046129t)9e−0.046129t

9!
. (6)

Through these equations, the analytical PDF can be ascertained, as referenced in
Equation 7. The corresponding Cumulative Distribution Function (CDF) is given by

F (t) = P (t) =
∫ t

0
f(x)dx. However, due to the extensive nature of the formula, it will

be omitted here. The graphical representations of these functions are showcased in
Figure 8.

f(t) = 1.90732exp(−20)t9e−0.0461298t

+ 1.10205exp(−25)t9e−0.01243t

+ 2.10596exp(−31)t9e−0.00338t. (7)

In the endeavor to assure the quality of the fitting process, the distribution obtained
from the automated fitting was compared against every distribution within the distfit
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Fig. 8: Fitted PDF and CDF.

library—a comprehensive repository for goodness-of-fit functions1. Among the con-
tenders, the log-Laplace distribution surfaced as the superior fit, with a Residual Sum
of Squares (RSS) registering at 6.0 × 10−7. Notably, the algorithm proposed in this
investigation outperformed with an RSS score of 2.39 × 10−7. Such a result endorses
the algorithm’s efficacy and resonates with the graphical evidence, as seen in Figure 9.

Fig. 9: Comparison between the algorithm and the goodness of fit

In the context of the infrastructure under examination, there is a pronounced pivot
towards a data-driven approach, steering clear of traditional modeling paradigms.
Given the intricate nature of contemporary systems, especially within cloud and fog
computing environments, there is an imperative to adopt frameworks that minimize
abstraction. The crux of this strategy is to derive models directly from empirical data,
positioning such data as the cornerstone of the analysis.
Leveraging the automated fitting method, this study emphasizes the derivation of PH
distributions with constrained phases. This constraint ensures the resulting functions
remain integrable, a crucial consideration for practical application. Fundamentally,
all metrics related to reliability modeling are sculpted from the pdf derived from the

1https://erdogant.github.io/distfit/pages/html/index.html
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fitting of the collected data. This approach negates the necessity to engage with more
conventional or external models, underlining the self-sufficiency and pertinence of the
proposed methodology.
In the system under consideration, the Time-to-Failure, T , represents a continuous
random variable, signifying the elapsed time from when the unit is first operationalized
to its inaugural failure. The pdf will be determined by leveraging the parameters from
the automated fitting process. Subsequently, various quantitative reliability measures:
the reliability function R(t), the hazard rate function h(t), and the Mean Residual
Life (MRL).
For any given time t > 0, the reliability function is mathematically described as R(t) =
1 − F (t) =

∫∞

t
f(x)dx. Furthermore, the approximate MTTF value is, MTTF =

∫∞

0
R(t)dt ≈ 1544.26h.

Fig. 10: Obtained Reliability Function

The hazard function provides a measure of the instantaneous failure rate of a system

unit. Mathematically, it is captured by h(t) = f(t)
R(t) . An insightful examination of the

graphical representation, derived from the fitted function and showcased in figure 11,
reveals distinct behavioral phases. Notably, there is a discernible decrease in the failure
rate between 1000 and 1500 hours. However, after this interval, the rate escalates
dramatically. This observation underscores the variable nature of system reliability
over time, highlighting critical periods of heightened vulnerability.
As we further examine the reliability of cloud and fog computing infrastructures, the
Mean Residual Life (MRL) stands out as a significant metric. Illustrated in figure 12,
the MRL at a particular time t conveys an expectation—it outlines the projected
remaining lifetime of a unit that has persisted beyond the interval (0, t]. This metric is
rooted in the formula MRL(t) = 1

R(t)

∫∞

t
R(x) dx. Importantly, at the outset, the MRL

matches the Mean Time To Failure, represented as MRL(0) = MTTF. From the data,
a discernible trend is an increase in the MRL between 1000 and 1500 hours, swiftly
followed by a marked decrease. This shift offers insights into the system’s reliability
patterns, signaling enhanced resilience or susceptibility phases.
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Fig. 11: Obtained Hazard Function

Fig. 12: Obtained MRL Function

In examining system reliability, both Time-To-Failure (TTF) and repair time, Time-
To-Repair (TTR) were analyzed using the same methodology. By converting U and D
values into TTFs and TTRs, approximately 60 sample points were generated.
It utilizes the fitting process on the repair time, resulting in a frequency distribution
highlighting two distinct clusters, each encompassing 12 phases. The characterization
of these clusters is defined by the parameters (1.47720, 3.35437). The initial probability
vector (0.48, 0.52) supports and enhances these parameters. In alignment with the TTF
(Time To Failure) methodology, the function epitomizing maintainability is inferred
by the mixture of distributions with the parameters ascertained from the TTR (Time
To Repair) fitting process.

fR1(t) =
1.47720(1.47720t)11e−1.47720t

11!
,

fR2(t) =
3.35437(3.35437t)11e−3.35437t

11!
.

(8)
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The derived pdf is presented in 9, and its corresponding graphical representation
can be observed in Figure 13.

fR(t) = 0.02648t11e−3.35460t

+ 1.30226exp(−6)t11e−1.47845t

+ 1.94651exp(−9)t11e−1.31540t. (9)

Fig. 13: Fitted Time to Repair

Following the methodology outlined, the cumulative function is determined as FR(t) =

M(t) =
∫ t

0
fR(x)dx, where fR(x) is the PDF of the repair time, represents func-

tion maintainability. This interpretation of maintainability provides insights into
how quickly and efficiently a system is restored after a failure by representing the
probability that a system is repaired by time t.

Fig. 14: Maintainability Graph.

We apply the same concepts to system repair times to determine maintainability
and the respective repair rate. Equations will be omitted, but graphs can be seen
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in figure 14. The MTTR of the system can be obtained by the following integral
MTTR =

∫∞

0
t · M(t)dt ≈ 5.73 h. Using the values obtained for the MTTF and

MTTR, it is possible to determine the system’s availability through the formula A =
MTTF

MTTF+MTTR
≈ 0.996296866948173.

In exploring cloud and fog computing infrastructures discussed throughout this
section, reliability and maintainability have been articulated through mathematical
functions, bypassing traditional models. The hazard function, MRL, and concepts
surrounding Time to Failure (TTF) and Time to Repair (TTR) were delved into, lay-
ing down a robust framework for grasping system dependability via functions. The
insights derived from these metrics present tangible perspectives on system behavior,
especially during stress periods or specific operational conditions.
Employing the fitting process for failure and repair times has brought valuable insights.
This approach illuminated patterns within the data and fostered a comprehensive
comprehension of the system’s reliability dynamics. The functions derived, especially
the one denoting maintainability, offer a detailed perspective into system resilience
following a failure.

6.2.2 Scenarios Evaluation

Decision-making and service pricing are often anchored in business operations by
diverse modeling and process evaluation techniques. This study aims to model the
incorporation of additional servers to scrutinize shifts in system reliability using the
functions obtained in the previous section. Previous sections validated the modeling
process with functions, and this section delves into scenarios where replicas of the mod-
eled system are examined under various configurations: serial, parallel, a combination
of serial and parallel, and k-out-n.
Utilizing the functions secured in Section 6.2.1, various scenarios can be modeled under
the assumption that a component’s failure remains independent and does not influence
the failure rates of its counterparts. Starting with a series connection of n components,
the system reliability, denoted as RS , equates to the product of the reliabilities of
the individual components, expressed as RS =

∏n

i=1 Ri. Conversely, when considering
these n components in a parallel configuration, the system reliability, RP , is deduced
from RP = 1−

∏n

i=1(1−Ri). For further exploration, let us examine a hybrid setup:
two components connected in series with a third in parallel; see Figure 15.
Drawing from the functions deduced in the context of the fitted phase-type distri-
bution, all the assumptions and subsequent analyses are grounded in a data-driven
process. Notably, the modeling is not confined to a specific number of components;
by integrating more components into the scenarios, analysts can delve deeper into the
system’s intricacies. This enriched perspective can empower them to pinpoint the opti-
mal cost-benefit ratio for the system in focus. The upcoming figure elucidates varied
configurations employing five components, offering a detailed lens into the system’s
potential behavior and outcomes.
Constructing a k-out-of-n configuration necessitates a minimum number (k) of func-
tioning components out of the total parallel components (n) for the system to operate
efficiently. The k-out-of-n design can be visualized as an extended version of parallel
systems. Specifically, as the value of k inches closer to n, the overarching behavior of
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Fig. 15: Different types of estimated scenarios with Reliability function

the system gravitates towards mirroring that of a serial setup. The reliability formula
for a k-out-of-n structure is expressed as Rkon(k, n,R) =

∑n

r=k

(

n
r

)

Rr(1−R)n−r.
Building upon this foundation and under the assumption that all components are
homogeneous, possessing a reliability function as depicted in 10, and setting n = 6,
the potential scenarios can be viewed in figure 16.

Fig. 16: Different scenarios.
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This section is dedicated to scenario evaluation, dissecting various configurations and
their implications on operational integrity. From simple serial and parallel configura-
tions to the more intricate k-out-of-n setups, the discourse shows the nuanced dynamics
of system interplay and the impact of each component on overall reliability. The data-
driven approach, rooted in previously obtained functions, has been pivotal in these
analyses. This methodology empowers analysts with detailed insights and offers a
robust framework for determining the optimal cost-benefit ratio for the system under
study.

7 Conclusion

Recent technological advancements have made analyzing stochastic models with non-
exponential time distributions increasingly efficient. PH distributions have risen to the
forefront in this scenario, buoyed by their adaptability and extensive generalization
capacity. This work unveiled a strategic approach to deduce an analytical function
that mirrors a given data set endowed with parameters and an algorithm proficient in
estimating the necessary number of phases for system automation and fine-tuning.
Traditionally, systems valuation exercises have leaned on numerical methodologies or
simulations to ascertain the Mean Time To Failure (MTTF). Such methods, though
effective, are typically more time-consuming. The technique introduced in this paper
curtails this time drastically, paving the way for a more streamlined and automated
system analysis. The horizon ahead is teeming with potential. The ambition is to
broaden the scope of research in this domain, introducing a more comprehensive array
of availability metrics like failure rate, repair rate, and mean time between failures.
Throughout this investigative journey, there were instances where the infinitesimal
generator matrix manifested in extremely high orders. Additionally, there were cases
where the algorithm’s stopping criterion for ascertaining the phase number faltered.
Such observations highlight the pressing need for in-depth research to fathom the
boundaries of this methodology and to navigate a course for its seamless adoption
across varied scenarios.
What stands out in this exploration is a palpable tilt towards function-based simu-
lations and methodologies anchored in the Monte Carlo Markov chain – a promising
avenue for future endeavors. Even though the deduced function primarily aligns with
the dataset under scrutiny in this study, the broader vision is to extend its applicability.
Moreover, the aspiration to incorporate control theory more intensely in subsequent
investigations is on the horizon.
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