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Abstract
One in ten SARS-CoV-2 infections result in prolonged symptoms termed long COVID, yet disease phenotypes and mechanisms
are poorly understood. We studied the blood proteome of 719 previously hospitalised adults with long COVID grouped by
symptoms. Elevated markers of myeloid in�ammation and complement activation were associated with long COVID; elevated
IL1R2, MATN2 and COLEC12 were associated with cardiorespiratory symptoms, fatigue, and anxiety/depression, while MATN2
and DPP10 were elevated in gastrointestinal (GI) symptoms, and C1QA in cognitive impairment. Proteins suggestive of
neurodegeneration were elevated in cognitive impairment, whilst SCG3 (indicative of brain-gut axis disturbance) was speci�c to
GI symptoms. Nasal in�ammation was apparent after COVID-19 but did not associate with symptoms. Although SARS-CoV-2
speci�c IgG was elevated with some long COVID symptoms, virus was not detected from sputum. Thus, systemic in�ammation
is evident in long COVID and could be targeted in therapeutic trials tailored to pathophysiological differences between symptom
groups.

Main
One in ten SARS-CoV-2 infections results in long COVID or Post-acute sequelae of COVID-19 (PASC) affecting 65 million
worlwide.1,2 SARS-CoV-2 continues to circulate and long COVID remains common, even after mild acute infection with recent
variants.3,4 It is likely long COVID will continue to cause substantial long-term ill health, requiring targeted management based on
an understanding of how disease phenotypes relate to underlying mechanisms.

There are reports of persistent in�ammation in adults with long COVID,5–9 but studies have been limited by size, timing of
samples or breadth of immune mediators measured, leading to inconsistent or absent associations with symptoms.10 Markers
of oxidative stress, metabolic disturbance, vasculoproliferative processes and IFN-, NF-kB- or monocyte-related in�ammation
have been suggested.5,7,11–13 The PHOSP-COVID study recently reported the plasma proteome of 626 adults with long COVID
(identi�ed through clustering and utilising measures of breathlessness, fatigue, mental health, cognitive impairment, and
physical performance). Elevated IL-6 and markers of mucosal in�ammation were observed in those with severe long COVID
compared to individuals with milder symptoms.14,15 Long COVID is a heterogenous condition, that is not well de�ned, and it
remains unclear if there are in�ammatory changes speci�c to symptom type, when compared to recovered controls.

Many long COVID symptoms have been described, most commonly breathlessness, fatigue, memory impairment and
gastrointestinal (GI) disturbance.16–18 There are reports of SLE-like autoantibodies in individuals with GI symptoms, whilst
Epstein-Barr Virus (EBV) reactivation has been associated with fatigue and neurological symptoms,6,19–21 suggesting that
distinct mechanisms might cause different symptom patterns and that these might be revealed by analysis of in�ammatory
markers. Con�rming whether common in�ammatory pathways underlie all cases of long COVID or if mechanisms differ
according to clinical presentation, is essential for developing effective therapeutic approaches and has been highlighted as a top
research priority by patients, clinicians and scientists.22 In this prospective multicentre study, we measured 368 plasma proteins
in 719 adults previously hospitalised for COVID-19, to understand in�ammatory processes underlying common long COVID
symptoms.

Results
We studied 719 adults from the PHOSP-COVID study, including the 626 patients previously reported.15 Individuals had been
hospitalised for COVID-19, 6 months prior (median 6.0; IQR 4.5–6.7 months; Range 1.4–8.3), con�rmed clinically or by PCR
(n=621). We included patients reporting symptoms from 4 weeks after acute COVID-19, per the National Institute for Health and
Care Excellence (NICE) and Centers for Disease Control and Prevention (CDC) de�nitions of long COVID (Fig. 1A).23,24 Analysing
cross-sectional clinical data, 250/719 (35%) felt fully recovered (“Recovered”) and the remaining 469 (65%) reported symptoms
consistent with long COVID (Fig. 1B; Table 1).

Using a multivariate penalised logistic regression model (PLR) to explore the associations between clinical covariates, immune
mediators and symptoms, we found women were more likely to experience all symptoms, and this effect was largest for GI
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(Odds Ratio; OR=1.13) and cardiorespiratory symptoms (OR=1.17; Fig. 1C–G). Con�dence intervals are not appropriately derived
from PLR analysis and are not reported, however repeated cross-validation was used to estimate uncertainty associated with
PLR outputs (Methods and Supplementary). Pre-existing conditions that might predispose to symptom outcomes (e.g., chronic
lung disease in the case of cardiorespiratory symptoms; Supplementary Table 1) were associated with all symptoms, except GI.
Age and acute disease severity were not associated with any symptom. We did not include ethnicity as a covariate because it is
not an independent risk factor in this cohort.16

Myeloid in�ammation and complement activation are common to all long COVID symptoms

To study the association of peripheral in�ammation with symptoms, 368 immune mediators were measured from plasma and
included as covariates. Mediators suggestive of myeloid in�ammation were associated with all symptoms (Fig. 1C–G). Elevated
IL1R2 and/or Matrilin-2 (MATN2) were consistently associated with the highest odds of all symptoms, except cognitive
impairment where the effect was smaller (cardiorespiratory IL1R2 OR=1.16; fatigue IL1R2 OR=1.53; anxiety/depression IL1R2
OR=1.13; GI MATN2 OR=1.08; cognitive MATN2 OR=1.03). IL1R2 is expressed by monocytes and macrophages, modulating IL-1
in�ammation.25 MATN2 is an extracellular matrix (ECM) protein which promotes in�ammation by activating toll-like receptors
and enhancing monocyte in�ltration into tissues.26,27 CSF3 (G-CSF, which promotes neutrophilic in�ammation), was elevated in
fatigue (OR=1.12), GI symptoms (OR=1.05) and anxiety/depression (OR=1.05; Fig. 1D–F).28 Increased levels of IL-6 were
associated with cardiorespiratory symptoms (OR=1.06) and fatigue (OR=1.09).

Elevated Collectin-12 (COLEC12) was also associated with cardiorespiratory symptoms (OR=1.12), anxiety/depression
(OR=1.06) and fatigue (OR=1.21; Fig. 1C–E). COLEC12 can initiate in�ammation in tissues by activating the alternative
complement pathway.29,30 Whilst COLEC12 was not associated with GI symptoms and only weakly associated with cognitive
impairment (OR=1.02), C1QA was associated with these symptoms (Fig. 1F&G). C1QA is a component of the complement
system, indicating activation via the classical pathway.31 Notably, C1QA was associated with the second highest odds of
cognitive impairment (OR=1.04), and has been implicated in the pathogenesis of chronic neuroin�ammation in Alzheimer’s
disease.32 Although subtle differences were observed between symptom groups, our �ndings demonstrate myeloid
in�ammation and complement activation in all long COVID phenotypes.

We used the CDC and NICE de�nition for long COVID (>4 weeks after acute COVID-19) in our analyses.23,24 However, the World
Health Organisation (WHO) de�nes long COVID as symptoms occurring 3 months post-infection.33 We therefore repeated our
analysis using samples and clinical data collected after 3 months (Median 6.1 months; IQR 5.1-6.8; Range 3.0-8.3; n=659;
recovered=233[35%]). In�ammatory associations with long COVID symptoms were consistent with our original analysis,
indicating that the pro�les identi�ed in our cohort were representative of long COVID after hospitalisation using three commonly
used de�nitions (Extended Data Fig. 1A-G).

To further validate the �ndings from PLR analysis, we examined the distribution of data, prioritising proteins that were
associated with the highest odds of each symptom (Fig. 1H–L and Extended Data Fig. 2). Each protein was signi�cantly
elevated in the symptom group compared to recovered, con�rming the patterns identi�ed by PLR. Unadjusted PLR models and
alternative regression approaches (Partial Least Squares; PLS) were also used to con�rm the validity of our �ndings
(Supplementary Table 2 and Extended Data Fig. 3,4). Results from these approaches con�rmed the relationship between female
sex and comorbidities on outcome, as well as the association between myeloid in�ammation, complement and symptoms.
Notably the standard errors of PLS estimates were wide, consistent with the literature, reporting PLR as the optimal method to
analyse multiple mediators which may correlate due to their combined effects.34 Since we aimed to understand how
in�ammatory proteins work together to mediate symptoms, we prioritised PLR results to draw conclusions.

Biomarker discovery was not our goal and the marked overlap in mediator levels when viewed unidimensionally, indicates these
markers are not useful on an individual basis for diagnosis (Fig. 1H–M). Importantly, we did not �nd differences in C-reactive
protein (CRP) levels between groups, measured contemporaneously by hospital laboratories (Table 1). Fibrinogen levels during
acute COVID-19 have recently been associated with cognitive de�cits post-COVID. 35,36 We similarly found that elevated
�brinogen was evident in long COVID (p=0.0077), suggesting that elevated �brinogen in both the acute and post-acute phase
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associates with long COVID symptoms (Extended Data Fig 1H). Given the interaction between complement activation and
thrombosis, elevated �brinogen supports our observation of complement pathway activation.37

GI symptoms and Cognitive impairment are associated with different patterns of in�ammation

Whilst the protein signatures of individuals with cardiorespiratory symptoms, fatigue and anxiety/depression (the most common
combination, n=88) were similar, speci�c proteins were raised in those with GI symptoms and cognitive impairment (Fig. 1F,G).
Elevated Dipeptidyl peptidase 10 (DDP10) and Secretogranin 3 (SCG3) was observed in the GI group (DPP10 OR=1.07; SCG3
OR=1.06). DDP10 can modulate tissue in�ammation, and increased DPP10 expression is associated with Ulcerative Colitis,
suggesting that GI symptoms may result from enteric, as well as systemic, in�ammation.38,39 Elevated SCG3 suggests
disturbance of the brain-gut axis, as observed in patients with irritable bowel syndrome.40

Cognitive impairment was associated with elevated Neurofascin (NFASC; OR=1.05), Spondin-1 (SPON-1; OR=1.03) and Iduronate
sulfatase (IDS; OR=1.04)(Fig. 1G,L). NFASC and SPON-1 regulate neural growth,41,42 whilst IDS is an ECM enzyme supporting
tissue turnover and enabling leucocyte in�ltration into tissues.43,44 The combination of these proteins with elevated C1QA,
suggest neuroin�ammation and alterations in nerve tissue repair (i.e., neurodegeneration). Taken together our �ndings indicate
that complement activation and myeloid in�ammation is common to all long COVID cases, but subtle differences in those with
GI and Cognitive symptoms may have mechanistic signi�cance.

Given our observations of elevated C1QA and the recent identi�cation of acute �brinogen as a biomarker of post-COVID
cognitive impairment,36 we analysed �brinogen speci�cally in this group. We found that median �brinogen levels were higher at
6 months in those with cognitive impairment (p=0.07), though this difference was not signi�cant (Extended Data Fig 1I).

To explore the relationship between in�ammatory mediators associated with different long COVID symptoms, we performed a
network analysis of those mediators highlighted by PLR within each symptom group. COLEC12 and MATN2 showed high
centrality compared to other mediators in the Cardiorespiratory, Fatigue and Anxiety/Depression groups (Fig. 2A–C & Extended
Data Fig. 5A–C). Both mediators correlated with pro-in�ammatory proteins (e.g., IL1R2, IL-12B [also known as IL-12/23p40], IL-6,
CD276, CD4, DPP10) and markers of endothelial and mucosal in�ammation (e.g., TGFA, TFF2, ISM1, ANGPTL2), suggesting
roles in tissue-speci�c long COVID in�ammation. Similarly, MATN2 and the pro-in�ammatory protein TNFRSF11B were central to
in�ammation in the GI group (Extended Data Fig. 5D). However, SCG3 correlated less closely with mediators in this group,
suggesting that alterations in the brain-gut axis may contribute separately to symptoms (Fig. 2D). SPON-1 was the most central
mediator in those with cognitive impairment, further highlighting the possibility that neurodegenerative processes may occur in
these individuals (Fig. 2E & Extended Data Fig. 5E). Taken together, these �ndings support the central role of complement and
myeloid in�ammation in long COVID but suggest additional processes may contribute towards GI symptoms and cognitive
impairment.

Elevated sCD58 is associated with recovery

Elevated sCD58 was associated with lower odds of all long COVID symptoms and this was most pronounced for
cardiorespiratory symptoms (OR=0.79; Fig. 1C,M). sCD58 is an immunoregulatory factor, known to suppress IL-1 and IL-6
dependent interactions between CD2+ monocytes and CD58+ (lymphocyte-function antigen 3) T/NK cells.45,46 Since we
observed markers of monocytic in�ammation in all symptom groups and elevated IL-6 in those with fatigue and
cardiorespiratory symptoms, the association of sCD58 and recovery supports the central role of myeloid in�ammation in long
COVID.

Elevated markers of tissue repair, including Delta/notch-like EGF repeat (DNER OR=0.82) were also associated with reduced risk
of all symptoms (Fig. 1C–G). Notably, elevated IDS was associated with recovery compared to all symptom groups, except
cognitive impairment where the inverse was true. IDS maintains tissues by preventing accumulation of ECM proteoglycans and
facilitating leucocyte entry.43,44 IDS may have divergent functions in different tissue environments, for example supporting lung
tissue repair to prevent respiratory symptoms, whilst promoting neuroin�ammation and thus cognitive impairment. Our data
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suggests immunosuppressive factors and a robust tissue repair response may prevent symptoms after COVID-19, supporting the
use of anti-in�ammatory agents in therapeutic trials.47

Women who experience long COVID have higher in�ammatory markers

We next sought to understand in�ammatory responses in women, who were more likely to experience long COVID, in keeping
with previous studies (Fig. 1C–G; Table 1).16,18 Since oestrogen can in�uence immunological responses,48 we compared protein
levels between men and women younger and older than 50 years to discriminate between pre- and post-menopausal women
(Fig. 3A–E). IL1R2 and MATN2 were signi�cantly higher in women >50 years, with cardiorespiratory symptoms (IL1R2 p=0.0002;
MATN2 p<0.0001), fatigue (IL1R2 p=0.0003; MATN2 p=0.012) and anxiety/depression (IL1R2 p=0.0003; MATN2 p=0.012).
Oestrogen-dependent differences would be expected to be most pronounced in pre-menopausal women,49 but this was not
observed. Women have been reported to have stronger innate immune responses to infection48,50 and are at greater risk of
autoimmunity,48 possibly explaining our �ndings.

Examining proteins associated with GI symptoms, there were no signi�cant differences seen between men and women
(Extended Data Fig. 6). In the cognitive impairment group IDS was signi�cantly higher in pre-menopausal women (p=0.02),
though this effect was lost in the post-menopausal group. IDS is X-linked, which may partially explain these differences.51

Overall, our analysis suggests non-hormonal differences in immune responses explain the increased likelihood of women to
experience long COVID. These �ndings require con�rmation in adequately powered studies but have potential clinical
implications, suggesting anti-in�ammatory therapies might be most bene�cial for women.

Systemic in�ammation in long COVID is not related to the upper respiratory tract

We next sought to understand mechanisms driving long COVID in�ammation, focussing on the cardiorespiratory group as the
most common phenotype. Given the correlations observed between MATN2 and markers of mucosal in�ammation in individuals
with cardiorespiratory symptoms (Fig. 2A), we considered local in�ammation in the respiratory tract as a possible cause. We
analysed nasosorption samples from 88 adults within our cohort and 25 healthy controls (Supplementary Table 3). Several
in�ammatory markers were elevated in the upper respiratory tract post-COVID, including IL-1α (Fig. 4A). However, there was no
difference between those recovered (n=31) and those not (n=33) (Fig. 4B). In adults with only cardiorespiratory symptoms
(n=29), in�ammatory mediators elevated in plasma were not elevated in the upper respiratory tract (Extended Data Fig. 7A–F).
Furthermore, there was no correlation between mediator levels at different sites (Extended Data Fig. 7G–L). This exploratory
analysis suggests that upper respiratory tract in�ammation is not associated with cardiorespiratory symptoms.

Long COVID is associated with stronger antibody responses but not persistent sputum antigen

We next considered that SARS-CoV-2 persistence in lung tissue, might explain the in�ammatory pro�les observed in those with
cardiorespiratory symptoms. We performed an exploratory analysis of SARS-CoV-2 antigens (S and N) in sputum from a
subgroup of 23 adults with cardiorespiratory symptoms at 6 months. Sputum from 17 recovered adults and pre-pandemic
bronchoalveolar lavage �uid were analysed as controls (Supplementary Table 3). Although low concentrations of N antigen were
detected in 4 samples, there was no difference between those with symptoms and those recovered (Fig. 4C). S antigen was
undetectable in all sputum samples.

Our �ndings do not exclude persistence, which is most likely evident from tissue samples.52,53 We therefore examined SARS-
CoV-2 speci�c antibody levels in a subgroup of unvaccinated individuals, which might respond to viral reservoirs. Consistent
with previous reports, we found stronger SARS-CoV-2-speci�c IgG responses in individuals with persistent symptoms (Fig. 4D–
H).52 Both anti-S and -N IgG responses were higher in the Cardiorespiratory (S p=0.0040, Fig. 4D; N p =0.023, Fig. 4E) and Fatigue
groups (S p=0.0030, Fig. 4F; N p=0.010, Fig. 4G), relative to Recovered. Anti-S (p=0.0098, Fig. 4H) but not -N (p=0.054, Fig. 4I) IgG
was elevated in the Anxiety/Depression group. We did not have su�cient data to assess responses in Cognitive impairment and
GI groups.
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Overall, we demonstrate complement and myeloid associated in�ammation in long COVID alongside elevated antibody titres,
providing insights into disease mechanisms and aetiology.

Discussion
In this study of 719 adults who survived hospitalisation for COVID-19, we demonstrate myeloid in�ammation and complement
activation in patients experiencing cardiorespiratory symptoms, fatigue, anxiety/depression, cognitive impairment and GI
symptoms. Our �ndings build on results of smaller studies12,35,54 and are consistent with a recent GWAS study identifying an
independent association between long COVID and FOXP4, which modulates neutrophilic in�ammation and immune cell
function.55,56 We identi�ed tissue-speci�c in�ammatory elements, indicating that ongoing myeloid disturbance may be occurring
in different tissues, resulting in distinct symptoms. This could re�ect persistent SARS-CoV-2 antigen within these tissues, or a
failure to resolve in�ammation and immune activation post-infection.

We highlight complement activation in long COVID, which has been suggested by one smaller proteomic study of mostly non-
hospitalised COVID cases.35 This is signi�cant since components of the complement system are known to have a short half-
life,57 suggesting symptoms result from active in�ammation and not passively from tissue damage incurred by acute infection,
as previously hypothesized.58,59 Although complement dysregulation and thrombosis are known to drive severe COVID-19,54,60

this has not been extensively con�rmed in long COVID and results from the HEAL-COVID study do not support the use of
anticoagulation to enhance recovery after hospitalisation.61

Multiple mechanisms for long COVID have been suggested including autoimmunity, thrombosis, vascular dysfunction, SARS-
CoV-2 persistence and latent virus reactivation.6,54,62 The protein signatures we observed are consistent with these mechanisms,
which can all result in myeloid in�ammation and complement activation.31,63 Given the heterogeneity of long COVID and the
possibility of co-existing or multiple aetiologies, our work demonstrates a possible �nal common pathway between symptom
groups that might be targetted by therapies and supports the rationale for several drugs which are currently under trial
(Supplementary Table 4). Speci�cally, steroids, IL-1 antagonists (e.g. Anakinra), JAK inhibitors, cannabinoids and colchicine can
suppress myeloid in�ammation and/or vascular in�ammation triggered by complement, and have acceptable safety pro�les
when used in other diseases.

Our �ndings of elevated anti-S and -N IgG in long COVID individuals strengthen the possibility of viral persistence, providing
further rationale for current trials such as RECOVERY-VITAL using long courses of Paxlovid (Supplementary Table 4). However, it
should be considered that combination antivirals may be required to successfully clear chronic SARS-CoV-2 infection.

This is the �rst study to identify protective mediators, �nding an association between sCD58 and recovery. Given the role of
sCD58 in supressing monocyte-lymphocyte interactions,46,64 this �nding adds strength to our conclusions that myeloid
in�ammation is central to the biology of long COVID. However, although the effect size of sCD58 estimated by PLR was
substantial, this was variable when applying univariate and PLS analyses. Therefore, the protective role of sCD58 after COVID-19
requires con�rmation in further studies.

We found differences in the proteome of adults with GI and cognitive symptoms. Our �ndings are supported by previous smaller
studies demonstrating inconsistent associations with different symptoms. Two studies have suggested distinct mechanisms
might underly neurological and cognitive symptoms,6,35 while another identi�ed autoantibodies speci�c to those with GI
symptoms.20  We did not measure autoantibodies but did identify markers of brain-gut axis disturbance associated with GI
symptoms. The brain-gut axis is mediated by autonomic pathways including the vagus nerve, dysfunction of which has been
implicated in autoimmune disease as well as long COVID.2,65,66 Monocyte in�ltration of the vagus nerve has been identi�ed in
acute COVID-19, and the myeloid signatures we observed might suggest this can also occur in long COVID.67 We found speci�c
signatures suggestive of neurodegeneration in those with cognitive impairment. This could support the previous suggestion of
EBV reactivation in neurological long COVID,6 since EBV infection has been shown to increase the risk of neurodegenerative
disease68 which could result from reactivation in the CNS. One recent study also found that patients with cognitive impairment
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exhibited distinct and ‘non-in�ammatory’ proteomic pro�les consistent with our �ndings that proteins such as NFASC and SPON-
1 were most strongly associated with cognitive symptoms.35 Finally, our observations in individuals with anxiety/depression
suggest that mechanisms for these symptoms are similar to those in non-COVID depression, also associated with IL-1 and
myeloid in�ammation.69,70  Overall, our �ndings suggest that multiple and diverse processes associate with different long COVID
symptoms and clinical trials may need to account for this when selecting patients.

Cardiorespiratory symptoms did not relate to upper respiratory tract in�ammation. Due to the di�culties inherent in lower airway
sampling, we measured nasal mediators, which can re�ect lower airway in�ammation in some scenarios.71 However, this
similarity between the upper and lower airway may not be true for long COVID, where isolated lung in�ammation could
contribute to symptoms.12 Better understanding of the source of long COVID in�ammation is important; systemic
immunosuppression can have adverse side-effects and localised treatments such as inhaled corticosteroids might be preferable,
if lung in�ammation is con�rmed.72

Not all immunological studies of long COVID support our �ndings. One proteomic study of 55 individuals did demonstrate IL-1
in�ammation but found that TNF and anti-viral signatures dominated.9 Notably, most individuals from that study experienced
mild (WHO 2-3) disease and mechanisms may differ in long COVID after hospitalisation. Other studies have suggested
vasculoproliferative processes and metabolic disturbance, but these studies used uninfected healthy controls for comparison
and cannot distinguish between long COVID-speci�c phenomena and residual post-COVID in�ammation.5,11 Importantly, one
study found no association between immune cell activation and long COVID.10 However, this study only examined 63 adults with
long COVID, 3 months after infection and did not measure IL-1 or monocyte function. Examining patients early after infection
may not identify subtle differences since residual in�ammation from the acute infection may dominate. A strength of our study
is the examination of a large cohort experiencing different symptoms, several months after hospitalisation.

Our study has limitations. By design, we sought to identify in�ammatory markers underlying long COVID symptom groups rather
than identify biomarkers or prognostic signatures. This led to our primary use of PLR, the accuracy of which was appropriate for
assessing associations between in�ammatory markers and outcome (Supplementary). PLS and univariate analyses were used
to support the reliability of PLR �ndings but were not used to draw conclusions. PLR enables relationships between mediators to
be accounted for without false discovery.73–75 In highly correlated data such as ours, PLR has been shown to consistently
outperform PLS, which tends to overestimate coe�cient variance.34,76  Cognitive Impairment was the smallest group (n=65)
resulting in a higher classi�cation error for this analysis, however the �nal sensitivity of the model was 98%. Nonetheless, given
the size of this group, larger studies would be useful to con�rm our �ndings.

We used the validated WHO clinical progression score to classify the severity of acute infection.77 Despite being a hospitalised
cohort, the WHO progression scores indicated that individuals experienced a range of COVID-19 severities, including those who
did not require oxygen (WHO class 3-4; Table 1). We did not �nd an association between acute COVID-19 severity and long
COVID symptoms, suggesting that this did not in�uence the in�ammatory pro�les observed and our �ndings are consistent with
those of a smaller study examining the proteome of 97 long COVID individuals, most of whom were not hospitalised during
acute infection, equivalent to WHO 2-3 severity.35 However, since we did not study non-hospitalised cases or cases of WHO 2
severity, our �ndings may only apply to a subset of long COVID cases. Many develop long COVID without requiring
hospitalisation for acute infection, and given the heterogeneity of long COVID,2 it is important that our �ndings are further
validated in large cohorts of this type.

It is challenging to distinguish between long COVID and ‘post-hospital syndrome’ in our cohort. Whilst, the proteome of
individuals with persistent symptoms after hospitalisation has not been well-characterised, the patterns of in�ammation we
observed were not similar to the typical ‘immunosuppressive’ pro�les seen after severe sepsis or the antiviral pro�les seen in
post-ebola syndrome, suggesting our �ndings are speci�c to long COVID.78–80   

The odds ratios we report are small, but the relationships identi�ed were consistent across alternative methods of analysis and
when using different long COVID de�nitions. The small effect sizes can be partly explained by the model used, which shrinks
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correlated mediator coe�cients towards each other to account for combined effects and prevent colinear in�ation.75 Thus, the
effect sizes do not necessarily diminish the potential mechanistic signi�cance of our �ndings since in�ammatory proteins are
expected to mediate effects in combination. The small effect sizes may also result from measurement of plasma mediators
which likely underestimates the degree of in�ammation in tissues.

The Olink platform has been extensively validated against other immunoassays; 81 we were able to compare measurements
against alternative immunoassays for some mediators (Extended Data Fig. 8).  In these instances, we saw good correlations
between alternative methodologies but acknowledge that our analysis is largely reliant on the Olink platform.

Long COVID is poorly de�ned and presentations are heterogenous, making mechanistic studies challenging.18 There is no gold
standard tool for diagnosis and we aimed to use objective and validated measures of symptoms where feasible. A strength of
this study is the mapping of in�ammatory pro�les onto common symptoms, which may support phenotyping. However, we were
not able to encompass all long COVID symptoms (over 200 have been described)2,18 and the use of MoCA scores to de�ne
cognitive impairment does not account for individuals with subjective ‘brain fog’. We did not identify any patients who were
unrecovered but were not assigned to a symptom group, indicating that no long COVID cases were excluded or misclassi�ed.

Our �ndings of higher SARS-CoV-2-speci�c antibody responses in individuals with persistent symptoms support those of several
studies.13,20,35,52 Though we did not �nd direct evidence of SARS-CoV-2 in sputum, we were not able to exclude persistence of
the type shown in studies of tissue from the GI tract or lung.52,53 We were also not able to replicate observations of circulating S
antigen in patients with long COVID.82 Alternatively, dysregulation of the adaptive immune compartment, including
autoimmunity might explain our �ndings in the absence of persistent virus, suggested by one recent report.35 This is further
supported by one study �nding no difference in the early adaptive immune response to SARS-CoV-2 in those who later develop
long COVID, making viral persistence through immune escape less plausible.83 Notably, cohorts from both studies included
mostly mild cases of acute COVID-19 (57/97[59%] WHO 2-3 and 76/136[56%] WHO 1-3 respectively). These varied reports
highlight the diversity of mechanisms associated with long COVID, which may underpin the heterogeneity of long COVID
symptoms. Our cohort of patients after hospital discharge may not fully represent this spectrum of disease.

In conclusion, we found markers of myeloid in�ammation and complement activation associated with long COVID symptoms in
a large cohort of individuals who were previously hospitalised for COVID-19 (Fig. 5). However, distinctive in�ammatory patterns
were seen in those with cognitive impairment and GI symptoms. Our �ndings support the use of immunomodulatory agents in
therapeutic trials but demonstrate the need to consider the distinct in�ammatory phenotypes between long COVID symptom
groups.

Methods (Online)
Study design and Ethics

After hospitalisation for COVID-19, adults who had no co-morbidity resulting in a prognosis of less than 6 months were recruited
to the PHOSP-COVID study. Patients that had been hospitalised between February 2020 and January 2021 were recruited. Both
sexes were recruited and gender was self-reported. Written informed consent was obtained from all patients. Ethical approvals
for the PHOSP-COVID study were given by Leeds West Research Ethics Committee (20/YH/0225).

Symptom data and samples were prospectively collected from individuals approximately 6 months after hospitalisation (Fig.
1A), via the PHOSP-COVID multicentre UK study.16 Data relating to patient demographics and acute admission were collected via
the International Severe Acute Respiratory and Emerging Infection Consortium World Health Organization Clinical
Characterisation Protocol UK (ISARIC4C study; IRAS260007/IRAS126600).84 Adults hospitalised during the SARS-CoV-2
pandemic were systematically recruited into ISARIC4C. Written informed consent was obtained from all patients. Ethical
approval was given by the South Central–Oxford C Research Ethics Committee in England (reference: 13/SC/0149), Scotland A
Research Ethics Committee (20/SS/0028) and World Health Organization Ethics Review Committee (RPC571 and RPC572l; 25
April 2013).
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Data were collected to account for variables affecting symptom outcome, via hospital records and self-reporting. Acute disease
severity was classi�ed according to the WHO Clinical Progression score: Class 3-4 required no oxygen, Class 5 required oxygen
therapy, Class 6 required non-invasive ventilation or high-�ow nasal oxygen), Class 7-9 were managed in critical care.77 Clinical
data were used to place patients into 6 categories: ‘Recovered’, ‘GI’, ‘Cardiorespiratory’, ‘Fatigue’, ‘Cognitive impairment’ and
‘Anxiety/depression’ (Supplementary Table 5). Patient reported symptoms and validated clinical scores were used including:
MRC breathlessness score, dyspnoea-12 score, FACIT score, PHQ-9 and GAD-7. Responses to symptom questionnaires about
chest pain and palpitations were also used. Cognitive impairment was de�ned as a Montreal Cognitive Assessment (MoCA)
score <26. GI symptoms were de�ned as answering ‘Yes’ to the presence of at least two of the listed symptoms. ‘Recovered’ was
de�ned by self-reporting. Patients were placed in multiple groups if they experienced a combination of symptoms.

Matched nasal �uid and sputum samples were prospectively collected from a subgroup of convalescent patients approximately
6 months after hospitalisation via the PHOSP-COVID study. Nasal and bronchoalveolar lavage �uid (BALF) collected from
healthy volunteers prior to the COVID-19 pandemic were used as controls (Supplementary Table 3). Written consent was
obtained for all individuals and ethical approvals were given by London-Harrow Research Ethics Committee (13/LO/1899) for
the collection of nasal samples and the Health Research Authority London–Fulham Research Ethics Committee (IRAS Project ID
154109; references 14/LO/1023, 10/H0711/94, and 11/LO/1826) for BALF samples.

Procedures

EDTA plasma was collected from whole blood taken by venepuncture and frozen at -80°C as previously described.14,15 Nasal
�uid was collected using a NasosorptionTM FX·I device (Hunt Developments UK Ltd), which uses a synthetic absorptive matrix
to collect concentrated nasal �uid. Samples were eluted and stored as previously described.85 Sputum samples were collected
via passive expectoration and frozen at -80°C without addition of buffers. Sputum samples from convalescent individuals were
compared to BALF from healthy SARS-CoV-2 naïve controls, collected before the pandemic. BALF samples were used to act as a
comparison for lower respiratory tract samples since passively expectorated sputum from healthy SARS-CoV-2 naïve individuals
was not available. BALF samples were obtained by instillation and recovery of up to 240 ml of normal saline via a �breoptic
bronchoscope. BALF was �ltered through 100µM strainers into sterile 50ml Falcon tubes, then centrifuged for 10 minutes at
400g at 4°C. The resulting supernatant was transferred into sterile 50ml Falcon tubes and frozen at -80°C until use. The full
methods for BALF collection and processing have been described.86,87

Immunoassays

To determine in�ammatory signatures which associated with symptom outcomes, plasma samples were analysed on an Olink
Explore 384 In�ammation panel (Uppsala, Sweden)15. Supplementary Table 6 (Appendix 1) lists all analytes measured. To
ensure the validity of results, samples were run in a single batch with use of negative controls, plate controls in triplicate, and
repeated measurement of patient samples between plates in duplicate. Samples were randomized between plates according to
site and sample collection date. Randomization between plates was blind to long COVID/ Recovered outcome. Data were �rst
normalized to an internal extension control that was included in each sample well. Plates were standardized by normalizing to
inter-plate controls, run in triplicate on each plate. Each plate contained a minimum of 4 patient samples which were duplicates
on another plate, these duplicate pairs allowed any plate to be linked to any other through the duplicates. Data were then
intensity normalized across all cohort samples. Finally, Olink results underwent QC processing and samples or analytes that did
not reach QC standards were excluded. Final normalized relative protein quantities were reported as log2 normalized protein
expression (NPX) values.

To further validate our �ndings, we have compared our results to data previously generated from contemporaneously collected
plasma from a subset of participants included in our study, using conventional electrochemiluminescence (ECL; MSD) or bead-
based multiplex assays. Selecting analytes that were measured by both assays, we found good agreement between the methods
(Extended Data Fig. 8). Notably, like most -omics platforms Olink measures relative quantities so perfect agreement with
conventional assays that measure absolute concentrations is not expected.
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Sputum samples were thawed prior to analysis and sputum plugs were extracted with the addition of 0.1% DTT creating a 1 in 2
sample dilution, as previously described.88 SARS-CoV-2 Spike (S) and Nucleocapsid (N) proteins were measured by
electrochemiluminescence S-plex assay at a �xed dilution of 1 in 2 (Mesoscale Diagnostics, Rockville, Maryland, USA), as per the
manufacturers protocol.89 Control BALF samples were thawed and measured on the same plate, neat. The S-plex assay is highly
sensitive in detecting viral antigen in respiratory tract samples.90

Nasal cytokines were measured by ECL (MSD) and Luminex bead multiplex assays (Biotechne, Minneapolis, United States). The
V-plex pro-in�ammatory 1 kit (MSD), R-plex custom kit (MSD) and Human Premixed Multi-analyte custom kit (Biotechne) were
used. Nasal samples were analysed at a �xed dilution of 1 in 2 using the R-plex and Luminex assays, and neat using the
proin�ammatory panel 1 kit. MSD plates were measured on a MESO QuickPlex SQ 120 Reader (MSD) and Luminex plates on a
BioPlex200 instrument (Bio-Rad, UK). Cytokine concentrations were calculated using a reference standard and assigned pg/mL.
All values at or below the lower limit of detection (LLOD) were replaced with LLOD. All values at or above the upper limit of
detection (ULOD) were replaced with ULOD. The full methods and list of analytes are detailed in the Supplementary Materials.

Statistics

To determine protein signatures which associated with each symptom outcome, a ridge penalised logistic regression (PLR) was
used. PLR shrinks coe�cients to account for combined effects within high dimensional data, preventing false discovery whilst
managing multicollinearity.34 Thus, PLR was chosen a priori as the most appropriate model to assess associations between a
large number of explanatory variables (which may work together to mediate effects) and symptom outcome.34,74,75,91 In keeping
with our aim to perform an unbiased exploration of in�ammatory process, the model alpha was set to zero, facilitating
regularisation without complete penalisation of any mediator. This enabled review of all possible mediators that might associate
with long COVID.75

A 50 repeats 10-fold nested cross-validation was used to select the models with lowest classi�cation error and optimal lambda
(Extended Data Fig. 9). The cognitive impairment model had the lowest AUC and highest classi�cation error due to the size of
this group (n=65) relative to recovered (n=250). Thus, the model was weighted to account for this imbalance and preventing bias
towards classi�cation as the majority class. The weighted model had a sensitivity of 0.98 indicating its validity. The metrics of
the model are discussed in the Supplementary Materials.

Age, sex, acute disease severity and pre-existing comorbidities were included as covariates in the PLR analysis (Supplementary
Table 1,2). Covariates were selected a priori using features reported to in�uence the risk of long COVID and in�ammatory
responses.2,16,48,92 Ethnicity was not included since it has been shown not to predict symptom outcome in this cohort.16

Individuals with missing data were excluded from the regression analysis. Each symptom group was compared to the
‘Recovered’ group. The model coe�cients of each covariate were converted into odds ratios for each outcome and visualised in
a forest plot, after removing variables associated with regularised Odds Ratios (OR) between 0.98 and 1.02 and in cases where
most variables fell outside of this range, using mediators associated with the highest decile of coe�cients either side of this
range. This enabled exclusion of mediators with effect sizes that were unlikely to have clinical or mechanistic signi�cance since
the ridge PLR shrinks and orders coe�cients according to their relative importance rather than making estimates with standard
error. Thus, con�dence intervals cannot be appropriately derived from PLR and forest plot error bars were calculated using the
median accuracy of the model generated by the nested cross-validation. To verify observations made through PLR analysis we
also performed an unadjusted PLR, an unadjusted logistic regression and a Partial Least Squares (PLS) analysis. Univariate
analyses using Wilcoxon signed rank test was also performed (Supplementary Table 6; Appendix 1). Analyses were performed in
R version 4.2.0 using ‘lme4’, ‘caret’, ‘glmnet’, ‘mdatools’ and ‘ggplot2’ packages.

To further investigate the relationship between proteins elevated in each symptom group, we performed a correlation network
analysis using Spearman’s rank correlation coe�cient and false discovery rate thresholding. The mediators visualised in the PLR
forest plots, which were associated with Cardiorespiratory symptoms, Fatigue, Anxiety/Depression GI symptoms and Cognitive
impairment were used respectively. Analyses were performed in R version 4.2.0 using ‘bootnet’ and ‘qgraph’ packages.



Page 13/25

To determine if differences in protein levels between men and women related to hormonal differences, we divided each symptom
group into pre-menopausal and post-menopausal groups using an age cut-off of 50 years old. Differences between sexes in
each group were determined using the Wilcoxon-signed rank test. To understand if antigen persistence contributed to
in�ammation in adults with long COVID, the median viral antigen concentration from sputum/BALF samples and cytokine
concentrations from nasal samples were compared using the Wilcoxon signed rank test. All tests were two-tailed and statistical
signi�cance was de�ned as a p-value<0.05 after adjustment for false discovery rate (q-value=0.05). Analyses were performed in
R version 4.2.0 using ‘ggpubr’ and ‘ggplot2’ packages.
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Table
Table 1. Cohort demographics. The demographics of each symptom group and recovered controls are shown. The WHO clinical
progression scale was used to classify acute COVID-19 severity: Class 3-4=no oxygen requirement, Class 5=oxygen therapy,
Class 6=non-invasive ventilation or high-�ow nasal oxygen and Class 7-9=Organ support. Differences between groups were
compared using chi-squared, Kruskal-Wallis or ANOVA as appropriate. Data are n (%) or mean (SD). C-Reactive Protein (CRP)
levels represent those measured contemporaneously with clinical data collected in this study.
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    GI  Fatigue  Cardio-
respiratory 

Anxiety/

depression 

Cognitive 

impairment

Recovered  p 

Age at
admission

Years (SD) 57.72
(11.48)

56.57 

(11.07)

57.08

(11.37)

56.36 

(10.84)

59.24 

(12.82)

58.92 

(13.72)

p=0.046

*

Sex Female N
(%)

68
(53%)

143
(47%)

161 (43%) 89 (45%) 24 (42%) 55 (27%) p<0.001

****

Ethnicity White 110 300 331 193 50 197 p=0.09

NSSouth Asian 14 26 38 16 7 46

Black 8 16 25 11 7 10

Mixed/Other 8 24 22 16 7 17

WHO Clinical
Progression
Scale

Class 3-4 41 83 88 45 18 45 p=0.28

NS

 

Class 5 45 107 124 74 21 115

Class 6 27 78 89 55 11 57

Class 7-9 27 98 115 62 21 50

CRP  Mean (SD) 5.33
(5.42)

5.47
(7.17)

5.17 (6.82) 5.79 (8.12) 4.58 (5.78) 4.75
(10.38)

p=0.76

NS

Length of
hospitalization

Days (SD) 12.04
(14.3)

14.59
(18.41)

15.39
(19.96)

14.57
(17.76)

14.95
(16.01)

12.5
(15.73)

p=0.0047
 **

Steroid†  % Yes  34% 35% 37% 38% 33% 29% p=0.294

NS

Remdesivir†  % Yes 4% 3% 4% 2% 3% 3% p=0.725
 NS

Comorbidities Mean (SD) 2.9
(2.62)

2.675
(2.3)

2.553
(2.24)

2.911
(2.47)

2.493
(2.17)

1.554
(1.67)

 

p=
<0.0001

****

†Denotes treatment given during acute illness.

Figures
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Figure 1

Long COVID symptoms and associated protein signature. Clinical data and samples were collected from 719 patients; the
average time between hospital discharge and sample collection was 6 months. The full distribution of dates is shown for all
patients used in the primary analysis (A), using the CDC and NICE criteria for long COVID (>4 weeks after COVID-19). Patients
were grouped according symptoms reported (B). The horizontal, coloured bars represent the number of patients in each
symptom group. The vertical black bars represent the number of patients in each symptom combination group. To prevent
patient identi�cation, where less than 5 patients belong to a combination group, this has been represented as ‘<5’. Within the
cohort 250 patients reported feeling recovered and were used as controls (“Recovered”, grey horizontal bar). Forest plots of
protein signatures associated with Cardiorespiratory symptoms (C), Fatigue (D), Anxiety/depression (E), GI symptoms (F) and
Cognitive impairment (G). Odds ratios were derived from PLR coe�cients adjusted for sex, age, acute disease severity and
comorbidities. Con�dence intervals cannot be derived from PLR and error bars represent the median accuracy of the model. The
distribution of in�ammatory proteins associated with the highest odds of each outcome and compared to protein levels in the
recovered group are shown (H–L). The association between sCD58 and recovery compared to cardiorespiratory symptoms is
shown (M). Median values were compared between groups using the Wilcoxon signed-rank test. * = p<0·05, ** = p<0·01, *** =
p<0·001, ****= p<0·0001.
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Figure 2

Relationship between mediators in each symptom group. A network analysis was performed using mediators associated with
Cardiorespiratory symptoms (A), Fatigue (B), Anxiety/Depression (C), GI symptoms (D) and Cognitive Impairment (E). Each node
corresponds to a protein mediator identi�ed by the PLR. Edges (blue lines) were weighted according to the size of Spearman’s
rank correlation coe�cient between proteins. All edges represent positive and signi�cant correlations (p<0.05) after FDR
adjustment.



Page 23/25

Figure 3

In�ammatory responses in men and women with long COVID. Patients were divided by age group and sex to understand
differences between men and women with long COVID. Individuals were grouped according to the approximate age of
menopause in women (50 years) to determine if oestrogen in�uences in�ammation in long COVID. Levels of MATN2 (A) and IL-
1R2 (B) in individuals with Cardiorespiratory symptoms are shown. Levels of MATN2 (C) and IL-1R2 (D) in individuals with
Fatigue are shown. Levels of IL-1R2 within the Anxiety/Depression group are shown (E). Median values were compared between
men and women using the Wilcoxon signed-rank test. * = p<0·05, ** = p<0·01, *** = p<0·001, ****= p<0·0001.
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Figure 4

Sources of long COVID in�ammation. Volcano plots showing the log2-fold change in nasal cytokine concentration between 88
post-COVID patients and 25 pre-pandemic healthy control samples (A) and between long COVID patients (n=33) experiencing
Cardiorespiratory symptoms, and post-COVID patients who felt recovered (n=31) (B). The red values indicate increased cytokine
levels between groups and a signi�cant change after FDR adjustment (p<0.05). The blue values denote depressed cytokine
levels and a signi�cant change after FDR adjustment (p<0.05). Sputum was analysed for evidence of SARS-CoV-2 Nucleocapsid
antigen (C) and compared to pre-pandemic BALF samples. The horizontal dashed line indicates the LLOD of the assay. Plasma
Anti-S (D) and anti-N (E) IgG responses were measured in those with cardiorespiratory symptoms compared to recovered
controls. Anti-S (F) and anti-N IgG (G) responses were compared in those with Fatigue and those recovered. Anti-S (H) and anti-N
IgG (I) responses measured in those with Anxiety/Depression, compared to recovered controls. Median values were compared
using the Wilcoxon signed-rank test. * = p<0·05, ** = p<0·01, *** = p<0·001, ****=p<0·0001.
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Figure 5

Graphical Abstract. Protein signatures associated with each long COVID subtype are shown. The blood proteome of 719 patients
was analysed, 6 months after COVID-19 hospitalisation. For all markers shown, elevated levels were associated with each
symptom outcome. Elevated sCD58 was associated with feeling recovered.
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