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Abstract 

Flow-vegetation interactions modify the instream roughness and flow characteristics in the 

river and estuaries. This study proposes a new quasi three-dimensional hydrodynamic 

framework to compute the vertical velocity profile in an open channel having submerged 

flexible vegetation. A modified form of two-dimensional depth-averaged shallow water 

equations coupled with vegetal drag forces is derived and applied in the simulation. The 

explicit second-order accurate TVD McCormack predictor-corrector finite difference method 

with operator splitting technique is used to solve the governing equations in MATLAB. The 

TVD approach is robust and gives accurate results free from numerical oscillations. The 

bending profile of the flexible stems under various flow events is calculated from the 

cantilever beam theory. The vertical velocity profile in the vegetation layer and the free water 

layer is estimated from Reynold's stress equation and Shannon's entropy theory. The present 

model is used to replicate some popular experimental test cases. Results indicate a 

conservative and robust model performance under different flow conditions and patch 

density. Quantitative analysis of the predicted results is carried out using two statistical 

indices and found satisfactory. 

Keywords: Flexible vegetation, Shanon'sEntropy, Shallow water equation, Cantilever beam 

theory. 
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Introduction 

     The floodplains and the riparian vegetations modify the land use-land cover pattern, 

channel roughness, turbulence intensity, shear stress characteristics, and water quality of a 

river system (McBride et al. 2007). These alterations, in turn, affect the flow velocity, solute, 

and sediment transport processes (Salama and Bakry 1992; Wang et al. 2018). The presence 

of vegetation also impacts the habitat richness and biodiversity in the river ecosystem 

(Verschoren et al. 2016). Thus, a precise understanding of flow dynamics under the vegetated 

environment is essential for implementing habitat restoration and conservation strategies in 

any natural domain (Jalonen and Jarvela 2014; Verschoren et al. 2016). 

Based on stem flexibility, vegetations are classified as flexible and rigid vegetation 

(Aberle and Järvelä 2013). Flexible canopies are ubiquitous and occupy a more extensive 

section of the flow area in a vegetated terrain than the rigid stems (Armanini et al. 2005). In 

recent years, flexible vegetation has gained a lot of research interest because of its potential 

impact on the flow and velocity structure (Huai et al. 2019; van Veelen et al. 2020). Unlike 

the rigid vegetation, the stem of the flexible vegetations bends to various degrees depending 

upon the velocity of flow, height, and flexural rigidity(Wilson 2007; She et al. 2014). The 

different degrees of bending also have a distinctive impact on the flow resistance(Luhar and 

Nepf 2011). For instance, with the increase in velocity, the flexible vegetation's flow 

resistance reduces, leading to further reconfiguration of the plants and the vegetation 

drag(Wu 2008; Shields Jr et al. 2017). Thus, the flow characteristics with flexible vegetations 

are more complex to deal with as compared to the case of rigid vegetation. 

The presence of flexible vegetation, especially under submerged conditions, modifies 

the flow domain's velocity profile (Nepf 2012). For the non-vegetation channels, the 

logarithmic expressions are well accepted in defining the vertical velocity profile (Tang 

2019). However, with submerged vegetation, the velocity profile becomes more 
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complex(Nepf 2012). In those conditions,two-layer or three-layer methods are adopted for 

velocity distribution above and below the vegetation layer (Keramaris et al. 2015). These 

methods divided the total water depth into a vegetated region and a free water region and 

distributed the velocity profiles using different approximations methods (Afzalimehr et al. 

2019). For instance, the study carried out by Pu et al. (2019) divided the flow region into 

multiple layers and predicts the velocity profile in those layers from mixing length models 

and eddy viscosity models. Klopstra et al. (1997) proposed a two-layer analytical model to 

distribute the velocity profile in a vegetated open channel. The model calculates the turbulent 

stresses in the vegetation region from the Boussinesq hypothesis. Huai et al. (2013) divide the 

flow regime into a free surface layer, an outer layer, and an inner vegetated layer. Yang and 

Choi (2010) distributed the velocity profile using a two-layer model in an open channel with 

immersed vegetation. A large number of studies that attempted to predict the vertical velocity 

distributions using similar approaches can be found in the literature (Huai et al. 2014; Wang 

et al. 2015). Though these methods are simple to apply, they have their shortcomings. The 

eddy viscosity and mixing length models mentioned above fail to capture the anomaly in the 

flow structure. For instance, near the flow separation regions in a river, the mixing length 

models fail to predict the velocity dip (Chin and Murray 1992), which is often the case, 

especially in natural flow domains. These models also require seven to eight parameters, viz 

shear velocity, energy slope, hydraulic radius, etc., for velocity computation. The difficulties 

associated with measuring these parameters are another shortcoming of the analytical 

formulations for field application (Chen and Kao 2011). 

 The probabilistic approach can tackle these difficulties to obtain the vertical velocity 

distribution in open channels. Following Chiu and Said (1995), considering the time-average 

velocity as a probabilistic variable, the velocity distribution may be obtained by maximizing 

the Shanon's entropy.  The velocity distribution obtained from this method has an advantage 
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as it required few input parameters and able to describe the velocity distribution in all 

circumstances. The entropy model distributes the vertical velocity profile at a particular 

location primarily from the depth-averaged velocity information in a channel cross-section 

(Kubrak et al. 2008). With this method, the location of maximum velocity can also be 

obtained. A dimensionless entropy parameter M can be derived from the mean and maximum 

velocity information at a channel crossection (Baruah and Sarma 2020). This parameter  M 

represents the channel cross-section, slope, bedform, geometric shape and can characterize 

the velocity distribution in an open channel flow (Kumbhakar and Ghoshal 2017). The 

methodology section of this paper provides further details about this method.  

The measurement of depth-averaged velocity, particularly in a natural domain, is a 

tedious task. However, two-dimensional shallow water models are excellent numerical tools 

to predict the streamwise and transverse velocities even under worst flow events (Blanckaert 

2001). The ease of getting the depth-averaged velocity from the shallow water models makes 

the authors proposing an integrated formulation by linking the entropy formulation with the 

2D hydrodynamic models. A full quasi three-dimensional numerical framework can be 

developed for vertical profile estimation in open channels evidently under a vegetated 

environment by coupling these two approaches. As per the author's knowledge, no such study 

has been reported by linking the entropy theory with the shallow water model to compute the 

vegetated channel flow's vertical velocity profile. 

  In this work, the authors developed a semi-coupled approach to compute the three-

dimensional flow structure in a vegetated channel with submerged flexible vegetations at 

different degrees of submergence and vegetation density. The governing equations are 

transformed into boundary-fitted coordinates to make the model applicable in complex 

channel geometry and unsteady flow. TVD Mc-Cormack predictor-corrector finite difference 

scheme with operator splitting technique is employed here to solve the hyperbolic equations. 
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The configuration of the flexible stems under different streamflow is evaluated from the large 

deflection cantilever beam theory. The main advantage of applying the beam theory in the 

present work is that it can effectively capture different degrees of stem deflection under high 

and low flow events. The computed hydraulic parameters from the shallow water model are 

used in Shannon's entropy theory and Reynolds's stress equation to calculate the vertical 

velocity in the free water layer and within the vegetation region.  The computed outputs are 

compared with the published experimental results. 

2) Numerical model 

2.1.Derivation of the governing equation and numerical scheme 

In this work, full Saint Venant equations (continuity and momentum equation) are solved in 

boundary-fitted coordinates. A modified form of the shallow water equation is derived and 

applied to compute the flow domain's hydrodynamic parameters. The deviatoric form of two-

dimensional depth-averaged shallow water equation presented by  Liang and Borthwick 

(2009) 

 

 

 

 

Where hu and hv are the momentum fluxes in x and y direction,
𝑑𝑍𝑏𝑑𝑥  and  

𝑑𝑍𝑏𝑑𝑦  are the bed slope 

in x and y direction, η is the water surface elevation,Sfx and Sfyare friction slope in x and y 

direction, 𝑍𝑏 is the bed level elevation.  

  Under the steady-state condition, this formulation is further modified, hereby balancing the 

flux gradient and the source term in the x-direction momentum equation (equation-1)    

U = { ηhuhv}  F = { huhu2 + .5 ∗ 𝑔 ∗ (𝜂2 − 2𝜂𝑍𝑏)huv } G = { hvhuv. 5 ∗ g ∗ (η2 − 2η𝑍𝑏) + hv2} 
 
 S = {  

  0−gη(𝑑𝑍𝑏𝑑𝑥 − Sfx)−gη(𝑑𝑍𝑏𝑑𝑦 − Sfy)}  
  

 

 
 
 

                                                                                                                       (1) 
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=
𝑑𝑑𝑥 (.5 ∗ 𝑔 ∗ (𝜂2 − 2𝜂𝑍𝑏) ) = −gη(𝑑𝑍𝑏𝑑𝑥 )                                                                   

=
𝑔2(

𝑑𝑑𝑥 (𝜂2) − 𝑑𝑑𝑥 (2𝜂𝑍𝑏)) =  −gη(𝑑𝑍𝑏𝑑𝑥 )                                                                                    

= 2ƞ 𝑑ƞ𝑑𝑥 -2(ƞ𝑑𝑍𝑏𝑑𝑥 +𝑍𝑏 𝑑ƞ 𝑑𝑥) = -2 η(𝑑𝑍𝑏𝑑𝑥 )                                                                               

=ƞ 𝑑ƞ𝑑𝑥 - 𝑍𝑏 𝑑ƞ 𝑑𝑥  = 0                                                                                                          

=ƞ 𝑑ƞ𝑑𝑥 =  (ƞ − ℎ) 𝑑ƞ 𝑑𝑥  

= h
𝑑ƞ 𝑑𝑥                                            (2) 

The above simplification modifies the momentum equation and also the source terms. The 

expressions with the bed level elevations are omitted from the momentum equations. The 

inclusion of water surface slope in the gravitational force component provides more 

flexibility in the model to apply in undulating bed and smooth channel bed. 

    The governing equation is transformed into a boundary-fitted coordinate to handle the 

complex channel geometry in the next phase. The modified form of equation (1) is 

transformed from the physical domain (x, y) to the computational plane (Ɛ,ƞ) (Anderson and 

Wendt 1995). These grid conversions automatically capture the curvilinearity in the flow 

domain and make the model applicable in any channel geometry. The vegetation effect on the 

flow dynamics is incorporated by adding the drag force in the source term of the momentum 

equation  

 𝜕𝜕𝑡 [𝐽ƞ] + 𝜕𝜕𝜉 [𝐽ℎ𝑈] + 𝜕𝜕𝜂 [𝐽ℎ𝑉] =0 (3) 

 

 𝜕𝜕𝑡 [𝐽ℎ𝑢] + 𝜕𝜕𝜉 [𝐽{ℎ𝑢𝑈}] + 𝜕𝜕𝜂 [𝐽{ℎ𝑢𝑉}] = −𝐽𝑔ℎ (𝑑ƞ𝑑𝑥 − 𝑠𝑓𝑥)  − 𝐹𝐷𝑥𝜌  
(4) 
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 𝜕𝜕𝑡 [𝐽ℎ𝑣] + 𝜕𝜕𝜉 [𝐽{ℎ𝑈𝑣}] + 𝜕𝜕𝜂 [𝐽{ℎ𝑉𝑣}] = −𝐽𝑔ℎ (𝑑ƞ𝑑𝑦 − 𝑠𝑓𝑦)  - 
𝐹𝐷𝑦𝜌  

 

(5) 

     Where η is the water surface elevation (m), hu and hv are the unit discharges in x and y 

direction,  
𝑑𝜂𝜕𝑥  and

𝑑𝜂𝜕𝑦   water surface gradients, h is the flow depth (m) measured from the bed 

up to the free surface, 𝑠𝑓𝑥and 𝑠𝑓𝑦 are the bed friction components in the longitudinal and 

transverse direction,𝜌 is the density of water and  𝐹𝐷𝑥and 𝐹𝐷𝑦 are the drag force due to the 

vegetation. U and V transformed velocity in the computational domain in 𝜉, 𝜂 coordinate 

system and expressed as  

 

 

 

U=(𝜕𝜉𝜕𝑥 𝑢 + 𝜕𝜉𝜕𝑦 𝑣) 

 

 

 

V=(𝜕𝜂𝜕𝑥 𝑢 + 𝜕𝜂𝜕𝑦 𝑣) 

   

6(a,b) 

 

 

 

J=|xƐ xƞyƐ yƞ|=|xƐ yƐxƞ yƞ| 
  

sfx= n2 ∗ u ∗ sqrt(u2 + v2)h1/3  

  

sfy= n2 ∗ v ∗ sqrt(u)2 + v2)h1/3  

 

 

6(c,d,e,f) 

 

The drag force from the vegetation in the x and y direction is expressed as  

 𝐹𝐷𝑥=
12 * 𝐶𝐷* 𝜌* m* 𝐴𝑣 ∗ 𝑢𝑣 ∗ √𝑢𝑣2 + 𝑣𝑣2 7(a) 

 𝐹𝐷𝑦=
12 * 𝐶𝐷* 𝜌* m* 𝐴𝑣 ∗ 𝑣𝑣 ∗ √𝑢𝑣2 + 𝑣𝑣2                  

7(b) 
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In the above expression 𝐴𝑣= Projected or frontal area of vegetation,𝐶𝐷= Drag coefficient ,m 

=vegetation density, 𝑢𝑣 and 𝑣𝑣 are the apparent velocities in x and y-direction. The 

expression for  𝑢𝑣 and 𝑣𝑣proposed by Stone and Shen (2002) as 

  𝑢𝑣 =u(ℎ𝑣ℎ )12    ; 𝑣𝑣 = v(ℎ𝑣ℎ )12 
 

8(a,b) 

 

In the above expression ℎ𝑣 is the height of the flexible vegetation height. 

       In equation 6(c,d),the coefficients xƐ,xƞ , yƐ,yƞ are obtained during the grid 

transformation and calculated using the central finite difference scheme. Jacobean matrix (J) 

ensures the grid transformation in the domain. The unsteady governing flow equations (3-5) 

are hyperbolic partial differential equations and difficult to solve analytically. These 

equations are generally targeted to solve by employing numerical methods viz finite 

difference, finite volume, and finite element. In this work, the second order accurate explicit 

Mc-Cormack predictor-corrector scheme (McCormack, 2003) is used to solve the unsteady 

flow equations. Many researchers have used this method to solve unsteady flow under 

different situations (Bora and Kalita 2020). This method consists of two steps, namely 

predictor and corrector. Although the technique is simple for implementation, it often 

encounters dispersion error in the solution. To avoid that, TVD scheme is added after the 

corrector step(Kalita 2016).  

      A splitting algorithm is employed in the solution by dividing the two-dimensional 

equations into two one-dimensional equations and solved at each time step. Using the 

operator splitting techniques proposed by Strang(1968), equation (3),(4),(5) can be expressed 

in matrix form as  

 𝜕𝜔𝜕𝑡  + 𝜕€𝜕𝜉 = 𝑅 
                                   (9) 
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 𝜕𝜔𝜕𝑡  + 𝜕𝜆𝜕ƞ = 𝑄 
                                  (10) 

 

Where, 

 

         𝜔 = €=               𝜆=   

 

 

0 

−𝐽𝑔ℎ (𝑑ƞ𝑑𝑥 −  𝑠𝑓𝑥) – 𝐹𝐷𝑥𝜌  

   −𝐽𝑔ℎ(𝑑ƞ𝑑𝑦) 

 
 
  
 

0 

−𝐽𝑔ℎ (𝑑ƞ𝑑𝑥) 

−𝐽𝑔ℎ (𝑑ƞ𝑑𝑦 − 𝑠𝑓𝑦)  - 
𝐹𝐷𝑦𝜌  

 

       The equations are solved consecutively in four cycles. In the first sweep, the calculation 

starts with the prediction of primitive variables in 𝜉direction equations from the known initial 

value. The predicted values are corrected in the corrector step. In the second sweep, using the 

updated variables, the equations are solved in the ƞ direction following the predictor and 

corrector step. Again in the third sweep, the updated variables from the second sweep are 

used to calculate the new flow variables in ƞ direction. Finally, in the fourth sweep the 

updated variables from the previous cycle are used to compute the flow variables in the next 

time step. It is mandatory to mention that except for the incoming variables entire 

computational procedure is the same from sweep-1 to sweep-4. For instance, in 𝜉direction, 

sweep 1 uses the initial values, and in sweep -4, updated variables from the previous steps are 

used in the computation. The detailed procedure of the numerical scheme used in the first 

𝐽ƞ 𝐽ℎ𝑢  𝐽ℎ𝑣 

𝐽ℎ𝑈 𝐽{ℎ𝑢𝑈}  𝐽{ℎ𝑈𝑣} 
(10 a,b, c) 

(11 a, b) 

𝐽ℎ𝑉 𝐽{ℎ𝑢𝑉}  𝐽{ℎ𝑉𝑣} 

R  = Q  = 
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sweep in 𝜉direction is presented below. A similar process is adopted in the ƞ direction for the 

next sweep by changing the subscript to j. 

Predictor- 

 𝜔𝑖𝑝 = 𝜔𝑖𝑘-  
∆𝑡∆𝜉 (€𝑖 − €𝑖−1)𝑘+∆𝑡 ∗ 𝑅𝑖𝑘 

 

(12) 

Corrector- 

 𝜔𝑖𝑐     = 𝜔𝑖,𝑗𝑘-
∆𝑡   ∆𝜉 (€𝑖+1 − €𝑖,𝑗)𝑝 + ∆𝑡 ∗ 𝑅𝑖𝑝 (13) 

 

 𝜔𝑖,𝑗𝑘+1=
12(𝜔𝑖,𝑗𝑝 + 𝜔𝑖,𝑗𝑐)+𝑇𝑉𝐷𝑖 (14) 

 

Where 

 

     In the above equation, the superscript p and c indicate the predictor and corrector steps. 

The computed variables at the known time step are expressed with the superscript k. The 

variables at the unknown time step are evaluated by averaging the predicted and corrected 

variables and adding the TVD term (𝑇𝑉𝐷𝑖). The grid spacing and time interval is denoted by ∆𝜉 and ∆𝑡.In equation 15, 

 

 ri+= 
∆ƞ𝑖−1/2.𝛥ƞ𝑖+1/2+∆(ℎ𝑢)𝑖−1/2.𝛥(ℎ𝑢)𝑖+1/2+∆(ℎ𝑣)𝑖−1/2.𝛥(ℎ𝑣)𝑖+1/2∆ƞ𝑖+1/2.𝛥ƞ𝑖+1/2+∆(ℎ𝑢)𝑖+1/2.𝛥(ℎ𝑢)𝑖+1/2+∆(ℎ𝑣)𝑖+1/2.𝛥(ℎ𝑣)𝑖+1/2 

 
 (18) 

 

 𝑇𝑉𝐷𝑖 =[B(ri+)+B(ri+1−)].Δ𝜔𝑖+1/2𝑘 −[B(ri−1+)+B(ri−)].Δ𝜔𝑖−1/2𝑘 (15) 

Δ𝜔𝑖+1/2 = 𝜔𝑖+1-𝜔𝑖 (16) 

Δ𝜔𝑖−1/2 = 𝜔𝑖  -𝜔𝑖−1 (17) 
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 ri−= 
∆ƞ𝑖−1/2.𝛥ƞ𝑖+1/2+∆(ℎ𝑢)𝑖−1/2.𝛥(ℎ𝑢)𝑖+1/2+∆(ℎ𝑣)𝑖−1/2.𝛥(ℎ𝑣)𝑖+1/2∆ƞ𝑖−1/2.𝛥ƞ𝑖−1/2+∆(ℎ𝑢)𝑖−1/2.𝛥(ℎ𝑢)𝑖−1/2+∆(ℎ𝑣)𝑖−1/2.𝛥(ℎ𝑣)𝑖−1/2 

 
 (19) 

 

The function B () in equation (15) is defined as 

B(x) =0.5*C*[1-ϕ(x)] and super bee flux limiter function is given as                           

Φ(x) =max (0, min (2x, 1))                                                                                            

Where C = f (𝐶𝑟), 𝐶𝑟 is the courant number given as 𝐶𝑟= 
𝛥𝑡∗ ((𝑢∗𝑠𝑞𝑟𝑡(𝑢2+𝑣2)+√𝑔∗ℎ))𝛥𝑥             (20) 

2.2Deflection of the flexible vegetation 

The variation in the upstream water levels at different flow events influences the curve length 

of the flexible stems. Under high flow events the load on the stem increases leading to the 

higher degree of reconfiguration and vice versa. The projected deflection height of the 

flexible stem is estimated from the larger deflection cantilever beam approach by assuming 

that vegetation gravity and buoyant force due to water is negligible(Whittaker et al. 2015). In 

figure 1,z coordinates represent the distance from the bed to the top of the vegetation; L is 

flexible vegetation height before bending and ℎ𝑣 is the projected deflection height. The 

representative vertical velocity profile in an open channel with submerged flexible vegetation 

is shown in figure-2. 

Imposedaverage load P on flexible stems due to the upstream water head is expressed as  

(Huai et al. 2013) 

 P = 
𝜌𝑔sf𝐻𝑚  (21) 

 

Where m is the vegetation density per unit area, sfis the energy slope, ρ is the density of 

water(KN/𝑚3), H is the total flow depth (m), θ is the angle of rotation after bending,EI is the 
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flexural rigidity (N. m2)and g is the acceleration due to gravity. The curve length(S)of the 

element after bending is found from (Huai et al. 2013) 

 

 

Where hv= height of the vegetation (m) and z=any depth along the vertical(m) 

2.3 Velocity distribution in the vegetated layer  

      In the vegetation layer velocity profile is estimated from the momentum equation by 

applying the force balancing between the Reynolds shear stress, vegetation roughness and 

vegetation roughness  

Net Resultant force (𝐹𝑥)on the bending vegetation is evaluated from the drag force and the 

friction force component, and finally the velocity profile in the vegetation layer is expressed 

as (Huai et al. 2013) 

 𝛼 = √ 𝐶𝑑𝑚𝐷0.3(𝐻 − ℎ𝑣) (24) 

 

𝑼
= 𝟐𝒈𝑺𝒇{𝜶 ∗ 𝒉 ∗ 𝒆𝒙𝒑(𝜶 ∗ (𝒛 − 𝒉𝒗)) + 𝟏}
√𝒎𝑫{𝑪𝒅 [𝟏 − ( 𝑷𝟐𝑬𝑰)𝟐 ( 𝒛𝟑𝟑𝒉𝒗 − 𝒛𝟐 + 𝒛𝒉𝒗)𝟐] + 𝑪𝒇 ∗ 𝑪𝒑 (( 𝑷𝟐𝑬𝑰) ( 𝒛𝟑𝟑𝒉𝒗 − 𝒛𝟐 + 𝒛𝒉𝒗)𝟑) √𝟏 − [( 𝑷𝟐𝑬𝑰) ( 𝒛𝟑𝟑𝒉𝒗 − 𝒛𝟐 + 𝒛𝒉𝒗)𝟐]⁄ } 

             

(25) 

 
S =   ∫ √ 𝑑𝑧1−[( 𝑃2𝐸𝐼)∗( 𝑧33ℎ𝑣−𝑧2+𝑧ℎ𝑣)]2

ℎ𝑣0  
(22) 

 𝑑𝜏𝑑𝑧 +  𝜌𝑔𝑆𝑓 − 𝑑𝐹𝑥𝑑𝑧 = 0 

 

(23) 
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At 𝑧 = ℎ𝑣 

 𝐮𝐯 = 𝟐𝐠𝐒𝐟(𝛂𝐡 + 𝟏)
√𝐦𝐃{𝐂𝐝 [𝟏 − (𝐏𝐡𝐯𝟔𝐄𝐈)𝟐] + 𝐂𝐟𝐂𝐩 ((𝐏𝐡𝐯𝟐𝟔𝐄𝐈 )𝟑) √𝟏 − [(𝐏𝐡𝐯𝟐𝟔𝐄𝐈 )𝟐]⁄ } 

 

 (26) 

   𝐶𝑑 = Drag coefficient, 𝐶𝑝=perimeter of the stem cross-section and 𝐶𝑓 = friction coefficient, α = Constant relating the hydraulic and vegetation characteristic. 

2.4 Shannon's entropy theory for velocity distribution in the free water layer 

The average and maximum velocity in a channel cross-section can be related to the entropy 

model as  

 𝜙(𝑀) = ( 𝑒𝑀𝑒𝑀 − 1 − 1𝑀) = 𝑢𝑎𝑣𝑔𝑢𝑚𝑎𝑥 (27) 

 

   Where, 𝑀 = Dimensionless entropy parameter, 𝑢𝑚𝑎𝑥 =maximum velocity in the velocity 

profile, 𝑢𝑎𝑣𝑔 =depth averaged velocity, 𝑦𝑚𝑎𝑥 =Location of maximum velocity in the vertical 

sample above the vegetation,𝑦0=water depth from bottom to the top of the vegetation, and 𝜙(𝑀)is a function of entropy parameter.  

      Chiu C L (1989) applied the principle of maximum entropy to the Shannon entropy 

(Shannon 1948) to obtain the following expression for vertical velocity distribution.   

 
𝑢𝑢𝑚𝑎𝑥 = 1𝑀 ln [1 + (𝑒𝑀 − 1) 𝛽 − 𝛽𝜊𝛽𝑚𝑎𝑥 − 𝛽𝜊] (28) 

  Where 𝑢 is the velocity at any point in a vertical, 𝑢𝑚𝑎𝑥 is the maximum velocity occurring 

in that vertical, and 𝑀 is the entropic parameter. For the convenience of representing the 

flow, a special coordinate system was defined such that the velocity is dependent on 𝛽. The 

velocity is assumed to increase from zero (𝛽 = 𝛽𝜊) to a maximum value 𝑢𝑚𝑎𝑥 (𝛽𝑚𝑎𝑥 = 𝛽𝜊). 

Therefore, 𝑢 is a function of 𝛽. 
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2.5 Initial and Boundary condition 

The initial and boundary conditions are essential for the smooth functioning of the numerical 

model. In the hydrodynamic simulation, a discharge value is provided as the initial condition. 

The solid walls are simulated as a no-slip boundary (Anderson and Wendt 1995) viz both the 

streamwise and transverse velocity components are assigned with a zero value. At the 

upstream boundary, constant discharge and the flow depth corresponding to that discharge 

are set at the downstream boundary. 

2.6 Semi coupled approach 

The present study used the Semi-Coupled approach to link the vertical velocity distribution 

model and the 2-D hydrodynamic model presented in the earlier section.  A full quasi three-

dimensional numerical model was developed by coupling these two, which is used for 

estimation of vertical profile in open channels having submerged flexible vegetation. Figure 3 

shows the flowchart of the author's proposed model. 

     Before running the model, the flow domain is discretized into finite-difference grid points 

both in the lateral and longitudinal direction by solving a set of elliptic partial differential 

equations. With these grid points, the model begins by setting an initial value of the primitive 

variable to the generated grids. The present model incorporates the vegetation drag force term 

explicitly within the hydrodynamic model to evaluate the flow dynamics' vegetation effect. 

With these initial conditions, the momentum fluxes along the longitudinal and transverse 

directions are computed at the next time step. The vegetation drag force calculation is 

exempted from the momentum equation in the non-vegetation regions. The hydrodynamic 

model runs till steady-state. The model stability criteria are checked from the Courant 

number. According to this criterion, if the Courant number is less or equal to one, then the 
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model is considered to be stable. If this criterion is not satisfied, the time step is readjusted, 

and the preceding iterations are repeated.  

     In the second phase, the computed flow outputs from the hydrodynamic model are used in 

the velocity distribution equations to estimate the vegetated flow region's vertical velocity 

profile. In order to do that, the entire flow region is divided into two flow layers, viz. the 

vegetation layer and the free water layer. The steady-state flow depth from the hydrodynamic 

model is substituted in equation-21 for imposed load calculation over the flexible stem. Once 

the load is calculated, the curve length (𝑆) of the stem is calculated iteratively from equation-

22. For validation purposes, the model computed bending profile of the flexible stem is 

compared with the measured data. A small amount of error (φ=.00001) is assigned during the 

calculation, and the iteration continues till it satisfies the criteria. Then the vegetation 

characteristics such as patch density (m), stem diameter(D), drag coefficient (𝐶𝐷), bend 

vegetation height (ℎ𝑣) and flexural rigidity (EI) are substituted in equation (25) and (26) to 

compute the velocity profile within the vegetation zone and at the crown of the vegetation. 

Further, the calculated velocity at the crown is used in the free layer's velocity distribution. 

Whereas for the top free water layer, the entropy parameter for the channel cross section is 

calculated from the depth-averaged velocity and the maximum velocity. The depth-averaged 

velocity is obtained from the shallow water model and used in equation (27) to calculate Ø 

(M) and the entropy parameter (M) in the channel cross-section. The velocity profile (u) at 

different depths (z) above the vegetation region to the free water surface is obtained from 

equation-28. 

3) Application of the numerical model 

   The performance of the present model is assessed by setting up the model with series of 

experimental test cases carried out by Amreeva and Kurbak (2007). The model computed 



16 

 

output is then compared with the experimental outputs reported in their laboratory flume 

experiment. Amreeva and Kurbak (2007) conducted the experiments in the hydraulic 

laboratory containing vegetation without foliage in the department of Hydraulic structure, 

Warsaw Agricultural University. The experiment was performed in a glass-walled flume of 

16m length, 0.58m wide, and 0.6m depth. In their experiment, the cylindrical stems of 

elliptical cross-sections having diameter d1=.00095m and d2=.0007m were placed in a 

removal plate of 3m length, .58 m wide made of PVC. The longitudinal and transverse 

velocity profiles were measured using a programmable electromagnetic liquid velocity meter. 

The schematic diagram of the experimental channel is available in  (Amreeva and Kurbak 

2007). The details of the different test runs of the experimental flume are enlisted in Table-1.  

     In the present study, for numerical simulation, the entire domain is discretized into 191 

finite-difference grid points. The grid spacing in the channel is taken as Δx=0.5m and 

Δy=0.1m. However, in the vegetated region, the stems are placed at a more refined grid 

spacing. The Mannings or Chezy's roughness coefficient is an essential parameter for shallow 

water simulations. These coefficients are generally estimated from the mean diameter of the 

bed material. Amreeva and Kurbak (2007) expressed the bed roughness in terms of 

equivalent sand grain roughness in his experimental work. Thus, following Marriott and 

Jayratne (2010), the given equivalent sand grain roughness (𝑘𝑠=.0001, .0018, .0150) are 

converted to manning's roughness parameter (n), and it ranges between .008-.018.The 

discharge in the channel varies from .0333-.0751 𝑚3/sec . These flowrates are provided as 

the upstream boundary condition. The time step is considered as 0.35 second, which gives a 

courant number of 0.93. The volume fraction of vegetation (Neph) is incorporated in the drag 

force calculation, which ranges between 0.32-1.558. The grids point having no vegetation are 

exempted from the drag force computation.  
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         The hydrodynamic simulation provides the flow and velocity information at different 

discharge and at different locations in the channel .The computed velocity profiles from the 

shallow water model for the experiment number 1.2.1 and 4.1.1 is shown in Figure 4. The 

velocity profile from the above figures indicates that the maximum velocity lies between .09-

.14 m/sec for the discharges 0.0422 𝑚3/sec and 0.0693 𝑚3/sec. The velocity within the 

vegetation area is found as 0.01m/sec to 0.03 m/sec. The drag force influence on the flow 

profiles is clearly observed in the vegetation region. The velocity within the vegetation region 

progressively reduces at a higher density (m=10000) compared to the lower vegetation 

density(m=2500). The imposed load on the flexible stem is computed for different flow 

events. The bending profile of the flexible stem under the influence of different loads is 

calculated and compared with the measured results. Figure-5 shows the correlation 

coefficient between the computed and measured bending profiles of the flexible stems and 

found satisfactory. The vertical velocity within the vegetation layer and at the crown of the 

stem is calculated using the procedure mentioned in section 2.5.However, in the free water 

layer, the velocity profile is estimated from the entropy theory. As mentioned before, the 

integration of entropy theory with the shallow water model provides a simplified approach 

for vertical velocity distribution in open channels. The channel entropy parameter is 

calculated from the computed depth-averaged velocities obtained from the numerical model 

and the maximum velocity information from the experimental study. The experimental 

outputs show that maximum velocity appears at the free surface in all the cases 

     .For illustrating the velocity distribution model, we are considering experiment no 4.1.1. 

The depth-averaged velocities from the hydrodynamic simulation are found between .01-.015 

m/sec, and the maximum velocity is 0.92m/ sec. From these two values, Ø (M) and the 

entropy parameter (M) are calculated. The velocity at the crown of the stem is found as 

0.67m/sec. The free water depth is calculated by subtracting the vegetation height from the 



18 

 

total water column depth. From the known M value, the velocity at the crown of the flexible 

stem and the maximum velocity, the vertical profile is distributed in the free water layer. 

       The computed vertical velocity profiles at the vegetated portions for different 

experiments are presented in figure-6. The figure shows that the present model excellently 

predicts the velocity profiles under different flow events. The discrepancy in the observed 

and computed results is checked using two statistical performance measures Viz. Root mean 

square error (RMSE) and mean square error (MSE).   

 

 

RMSE= √∑(𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑  𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦𝑖 −𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦𝑖)2𝑁𝑛
𝑖=1  

 

(30) 

The results obtained based on these measures are shown in Table 2. The values indicate that 

the proposed model can be used for estimation of the vertical velocity profile in an open 

channel having submerged flexible vegetations. 

These results also indirectly signify the validation of the hydrodynamic model. The entropy 

model performance depends on the accuracy of the hydrodynamic model's flow parameter. 

As explained in the earlier section, the depth-average velocity obtained from the shallow 

water models is fed as an input into the entropy model to predict the velocity profile. With 

this input, it is observed that the entropy model accurately predicts the velocity profile, which 

could only be possible if the output flow parameters from the hydrodynamic model are 

accurate. With this argument, we can say with conviction that the hydrodynamic model is 

also successfully validated. 

 

MSE= 

∑(𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦𝑖 −𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦𝑖)2𝑁𝑛
𝑖=1  

 

(29) 
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4) Conclusion 

The integration of entropy theory with the shallow water model provides a simplified yet 

effective approach for vertical velocity distribution in open channels as it requires only the 

depth averaged velocity value which is precisely predicted from the shallow water 

equations.This study presents a quasi-three-dimensionalunsteady model framework for 

vertical velocity distribution in vegetated environment. The model is developed by coupling 

the vegetation drag force with the modified form of two-dimensional shallow water 

equations. The governing equations are solved by efficient TVD Mac-Cormack predictor 

corrector scheme with operator splitting technique in boundary fitted coordinate.The 

computed depth averaged velocities from the shallow water model is used in the vertical 

profiles computation at different flow events. In this study, the entropy theory and the 

Reynolds's stress equation is employed in the computation of vertical flow structure. The 

applicability of the present semi coupled model is checked in a rectangular channel with 

submerged flexible vegetations. The vertical velocity profiles from the experimental results 

are reported by Kurbak et al. (2008). The results indicate that the present model precisely 

estimate the vertical velocity profile in the vegetated region. This present approach can 

effectively integrate into river restoration projects, habitat modelling, and river ecology 

studies to provide useful insight into the determination of velocity profile under vegetated 

channel flow. However, the flow-vegetation-sediment nexus is beyond the scope of the 

present work. The model can be further improved by incorporating the morphological 

influences in the hydrodynamic simulations under the vegetated environment. 
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Table 1: Flow and vegetation parameters for simulation 

 

 

 

 

 

 

 

 

Experiment 

number 

1.2.1 1.1.3 2.1.1 2.2.1 3.1.1 3.2.1 4.2.1 

Flow rate, 

Q(𝒎𝟑/𝐬𝐞𝐜 ) .0422 .0333 .0525 .0751 .0605 .0693 .0693 

Water depth, 

H(m) 

.2236 .2475 .2386 .2131 .2386 .1962 .2077 

Vegetation 

height, 𝒉𝒗(m) 

.161 .164 .153 .132 .151 .132 .138 

Bottom slope 

(S) (%) 

8.7 8.7 8.7 17.4 8.7 17.4 17.4 

Drag coefficient 

(𝑪𝒅) 1.4 1.4 1.4 1.4 1.4 1.4 1.4 

Equivalent sand 

grain roughness 

(𝒌𝒔) (m) 

.0001 .0001 .0001 .0001 .0018 .0018 .0150 

Friction 

coefficient 

(𝑪𝒇) .4 .4 .4 .4 .4 .4 .4 

Vegetation 

density 

(𝒎−𝟐) 

10000 10000 2500 2500 2500 2500 2500 

Flexural rigidity 

(EI) 

(N𝒎−𝟐) 

5.81 

x10−5 

5.81 

x10−5 

5.81 

x10−5 

5.81 

x10−5 

5.81 

x10−5 

5.81 

x10−5 

5.81 

x10−5 
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Table-2: RMSE and MSE of the computed and observed results 

Experiment number Statistical Index 

RMSE MSE 

1.2.1 0.0367 0.0013 

1.1.3 0.0335 0.0011 

2.1.1 0.0567 0.0031 

2.2.1 0.0479 0.0022 

3.1.1 0.0052 0.0026 

3.2.1 0.0159 0.0002 

4.1.1 0.028 0.0008 
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Figure 1: Deflection of Flexible Vegetation (Huai et al. 2013) 

 

 

 

Figure 2: Velocity profile in an open channel with submerged flexible vegetation 
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Figure 3 : Flowchart of the model 
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Figure-4 Computed depth averaged velocity profile for experiment (a) 1.2.1 (b) 4.1.1 
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Figure-5: Correlation coefficient between the measured and predicted curve length of the flexible 

stem 
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Figure 6: Computed and Measured vertical velocity profile 
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