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Abstract

Many neural computations emerge from self-sustained patterns of activity in recurrent neural circuits,

which rely on balanced excitation and inhibition. Neuromorphic electronic circuits that use the physics

of silicon to emulate neuronal dynamics represent a promising approach for implementing the brain’s

computational primitives, including self-sustained neural activity. However, achieving the same robustness

of biological networks in neuromorphic computing systems remains a challenge, due to the high degree of

heterogeneity and variability of their analog components. Inspired by the strategies used by real cortical

networks, we apply a biologically-plausible cross-homeostatic learning rule to balance excitation and inhibition

in neuromorphic implementations of spiking neural networks. We demonstrate how this learning rule allows

the neuromorphic system to overcome device mismatch and to autonomously tune the spiking network to

produce robust, self-sustained attractor dynamics in an inhibition-stabilized regime. We also show that this

rule can implement a stable working memory, and that the electronic circuits can reproduce biologically

relevant emergent neural dynamics, including the so-called łparadoxical effectž. In addition to validating

neuroscience models on a substrate that shares many similar properties and limitations with biological systems,

this work enables the construction of ultra-low power, mixed-signal neuromorphic technologies that can be

automatically conőgured to compute reliably, despite the large on-chip and chip-to-chip variability of their

analog components.

Introduction

Animal brains can perform complex computations including sensory processing, motor control, and working

memory, as well as higher cognitive functions, such as decision-making and reasoning, in an efficient and reliable

manner. At the neural network level, these processes are implemented using a variety of computational primitives

that rely on neural dynamics within recurrent neocortical microcircuits [1ś6]. Translating the computational

primitives observed in the brain into novel technologies can potentially lead to radical innovations in artiőcial

intelligence and edge-computing applications. A promising technology that can implement these primitives

with compact and low-power devices is that of mixed-signal neuromorphic systems, which employ analog

electronic circuits to emulate the biophysics of real neurons [7ś9]. As opposed to software simulations, the

direct emulation performed by these electronic circuits relies on the use of the physics of the silicon substrate to

faithfully reproduce the dynamics of neurons and synapses asynchronously in real time. While systems designed

following this approach have the advantage of ultra-low power consumption, they have limitations and constraints

similar to those found in biology. These include a high degree of variability, heterogeneity, and sensitivity to

noise [10, 11]. Due to these constraints, implementing recurrent networks in silicon with the same stability and

robustness observed in biological circuits remains an open challenge.

Previous studies have already demonstrated neuromorphic implementations of recurrent computational

primitives such as winner-take-all or state-dependent networks [12ś15]. However, these systems required
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manual tuning and exhibited dynamics that would not always produce stable self-sustained regimes. Manually

tuning on-chip recurrent networks with large numbers of parameters is challenging, tedious, and not scalable.

Furthermore, because of cross-chip variability, this process requires re-tuning for each individual chip. Even

when a stable regime is achieved with manual tuning, changes in the network conditions (e.g., due to temperature

variations, increase or decrease of input signals, etc.) would require re-tuning. Therefore, mixed-signal

neuromorphic technology can greatly beneőt from automatic stabilizing and tuning mechanisms that can

overcome the challenges imposed by the analog substrate.

Neocortical computations rely heavily on positive feedback imposed by recurrent connections between

excitatory neurons, which allows networks to perform complex time-dependent computations and actively

maintain information about past events. Recurrent excitation, however, also makes neocortical circuits vulnerable

to łrunaway excitationž and epileptic activity [16, 17]. In order to harness the computational power of recurrent

excitation and avoid pathological regimes, the neocortical circuits operate in an inhibition-stabilized regime,

in which positive feedback is held in check by recurrent inhibition [18ś21]. Indeed, there is evidence that

the default awake cortical dynamic regime may be inhibition-stabilized [20, 22]. It is generally accepted that

neocortical microcircuits have synaptic learning rules in place to homeostatically balance excitation and inhibition

in order to generate dynamic regimes capable of self-sustained activity [23ś26]. Recently, a family of synaptic

learning rules that differentially operate at excitatory and inhibitory synapses has been proposed, which can drive

simulated neural networks to self-sustained and inhibition-stabilized regimes in a self-organizing manner [27].

This family of learning rules is referred to as being łcross-homeostaticž because synaptic plasticity at excitatory

and inhibitory synapses is dependent on both the inhibitory and excitatory setpoints.

Taking inspiration from self-calibration principles in cortical networks, we use these cross-homeostatic

plasticity rules to guide neuromorphic circuits to balanced excitatory-inhibitory regimes in a self-organizing

manner.

We show that these rules can be successfully employed to autonomously calibrate analog spiking recurrent

networks in silicon. Speciőcally, by automatically tuning all synaptic weight classes in parallel, the networks of

silicon neurons converge to fully self-sustained attractor dynamics, and conőgure themselves into the inhibition-

stabilized regime. In addition, the emergent neural dynamics obtained in this way express the łparadoxical effectž,

a signature of inhibition-stabilized networks, which is observed in cortical circuits [18, 20]. The plasticity rules

proposed prove resilient to hardware variability and noise, also across different chips, as well as to different

parameter initializations. Importantly, we demonstrate that inhibitory plasticity (often neglected in neuromorphic

electronic systems) is necessary for successful convergence. Finally, we also show that by using such plasticity

rules, long-term memories can be implemented without disrupting the learned dynamics, and that multiple such

networks can be implemented on a single chip robustly.

From a computational neuroscience perspective, these results validate the robustness of cross-homeostatic

plasticity in a physical substrate that presents similar challenges to those of biological networks, unlike idealized

digital simulations. From a neuromorphic perspective, this approach provides the community with a reliable

method to autonomously and robustly calibrate recurrent neural networks in future mixed-signal analog/digital

systems that are affected by device variability (also including memristive devices [28, 29]). This will open the

door to designing autonomous systems that can interact in real time with the environment, and compute reliably

with low-latency at extremely low-power using attractor dynamics, as observed in biological circuits.

Results

In the cortex, excitatory Pyramidal (Pyr) and inhibitory Parvalbumin-positive interneurons (PV) constitute the

main neuronal subtypes and are primarily responsible for excitatory/inhibitory (E/I) balance [32]. Pyr and PV

neurons have different intrinsic biophysical properties: in terms of excitability, PV cells have a higher threshold

and gain compared to Pyr neurons [33]. These properties, along with other neuronal characteristics, such as

refractory period and membrane time constants, contribute to the characteristic regular-spiking patterns of

pyramidal cells and fast-spiking patterns of PV interneurons.

In our hardware experiments, we reproduce the properties of both Pyr and PV neuron types on a mixed-signal

analog/digital Dynamic Asynchronous Neuromorphic Processor, called DYNAP-SE2 [30] (see Fig. 1a), which

implements an adaptive exponential integrate-and-őre neuronal model. The dynamics of the different neuron
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Figure 1: (a) Image of the DYNAP-SE2 chip, showing the four cores. An E-I network is implemented on

chip. Excitatory (Pyr) and Inhibitory (PV) neurons occupy different cores, and are connected by four weight

classes, Pyr-to-Pyr (𝑤𝑒𝑒), Pyr-to-PV (𝑤𝑖𝑒), PV-to-PV (𝑤𝑖𝑖), and PV-to-Pyr (𝑤𝑒𝑖). (b) Circuit diagram depicting

a DPI neuron, with each component within the circuit replicating various sub-threshold characteristics (such

as adaptation, leakage, refractory period, etc.) inherent to an adaptive exponential neuron [30]. (c) Neuron

membrane potential traces over time as a response to DC injection. Blue traces show two example cells from the

excitatory chip core in response to four current levels. Red traces show two sample PV cells from the inhibitory

chip core. The relationship between the measured voltage and the internal current-mode circuit output that

represents the membrane potential is given by an exponential function that governs the subthreshold transistor

operation mode [31]. In each case, the bottom two traces show neuronal dynamics in the subthreshold range.

The top two traces show neuronal dynamics as the membrane potential surpasses the spike threshold (spike

added as grey line to indicate when the voltage surpasses threshold). DC injection values are indicated on every

trace. (d) Input-response curves for the resulting Pyr and PV neurons on-chip. Inset: zoomed-in view at low

őring rates. In (c), it is evident that a higher input current was required to elicit spikes in PV neurons. This

phenomenon can be attributed to the higher threshold of PV neurons.

classes were reproduced by tuning the refractory period, time constants, spiking threshold, and neuron gain

parameters (Fig. 1b) to match the corresponding biologically measured values. Since parameters are shared by

all neurons in a chip core, we assign each neuron population type to a different core (Fig. 1a). Even though all

neurons in a core share the same parameters, variations in their intrinsic characteristics arise as a result of analog

chip mismatch. For instance, one can observe differences between two excitatory or inhibitory neurons recorded

within the same core, as illustrated in Fig. 1c. Overall, the neural dynamics and Input-Frequency (FI) curve of
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recorded excitatory and inhibitory neurons on chip (Fig. 1c-d show that the choice of parameters used for the

silicon neurons is compatible with the behavior of biological PV and Pyr cells [33]. In the following section, we

employ cross-homeostatic plasticity [27] to self-tune the connections between PV and Pyr populations so that

spontaneous activity in the inhibition-stabilized regime emerges in the network.

The network converges to stable self-sustained dynamics

As an overview of the experimental paradigm, the training procedure begins with random initialization of

the network weights. Then, at each iteration, we record the resulting őring rates, calculate the weight update

following the cross-homeostatic equations for the four weight classes (𝑤𝑒𝑒, 𝑤𝑒𝑖, 𝑤𝑖𝑒, and 𝑤𝑖𝑖, equation 2, see

Methods) and apply the new weight values to the chip.

Fig. 2a illustrates an example of the evolution of őring activity during the course of training for Pyr and PV

cells. Starting from a random value determined by the initialization of weights, the average rates converge to

their target values. Fig. 2b plots the evolution of weights during training. On chip, the weights are controlled by

two parameters, a coarse 𝐶𝑤 and a őne 𝐹𝑤 value (See Methods, eq. 4). On most iterations, only the őne value 𝐹𝑤

is updated, but updates to the coarse value 𝐶𝑤 occur occasionally. Even though the coarse updates cause abrupt

jumps in the weight value (due to the nature of the bias-generator circuit implementation), the cross-homeostatic

rule is robust enough to guide the network to a stable regime. Fig. 2c shows a raster plot from the network in

Fig. 2a-b at a converged state. It should be emphasized that, while an initial łkickž was provided to the network

to engage recurrent activity (40 ms at 100 Hz), no further external input was introduced during the trial; hence,

any observed spiking activity originates entirely from internal mechanisms.

When repeating the training process from different initial conditions of randomly sampled weights, the

weights converge to different values, which however produce the same desired network average őring rate [27].

Fig. 2d illustrates the rate space with multiple initialization and convergence to respective target set-points

(dashed lines). The root mean square error from the target is 1.02 Hz for 𝐸̄ and 6.32 Hz for 𝐼.

The converged weight values are approximately aligned to a linear manifold (Fig. 2e), where the sets of

excitatory and inhibitory weights 𝑤𝑒𝑒, 𝑤𝑒𝑖 and 𝑤𝑖𝑒, 𝑤𝑖𝑖 , are correlated (correlation coefficients and p-values are

as follows: 𝑤𝑒𝑒 and 𝑤𝑒𝑖: 𝜌𝑔𝑟𝑒𝑒𝑛 = 0.81 and 𝑝 = 1.55 · 10−06; 𝜌𝑜𝑟𝑎𝑛𝑔𝑒 = 0.88, 𝑝 = 6.6 · 10−12; 𝑤𝑖𝑒 and 𝑤𝑖𝑖:

𝜌𝑔𝑟𝑒𝑒𝑛 = 0.63 𝑝 = 0.0009; 𝜌𝑜𝑟𝑎𝑛𝑔𝑒 = 0.75, 𝑝 = 3.9 · 10−07, where green and orange refer to two different chips).

This is well aligned with the theoretical solution derived for rate E-I networks at their set-points, when the neuron

transfer function is linear or threshold-linear [27, eqn. 4-5]. In our case, the linear transfer function assumption

does not hold, because the AdEx silicon neuron models saturate at a rate that is inversely proportional to the

refractory period parameter. However, the linear approximation holds well in the region of operation forced by

the learning rule, set at relatively low őring rates (see Fig. 1d).

The network is in an inhibition-stabilized asynchronous-irregular firing regime

Next we investigated the properties of the őnal network dynamics after learning. Fig. 2c shows a sample of

activity of the converged network, as recorded from the chip, in which the excitatory and inhibitory populations

exhibit asynchronous-irregular activity patterns. The minimal correlations among neurons (averages ⟨𝜌𝑝𝑦𝑟 ⟩ =

0.037, ⟨𝜌𝑝𝑣⟩ = 0.069) serve as evidence of their asynchronous activity (Fig. 2f, left). Irregularity is shown by the

coefficient of variation (CV2) of most neurons being close to 1 (averages ⟨𝐶𝑉2
𝑝𝑦𝑟 ⟩ = 0.949, ⟨𝐶𝑉2

𝑝𝑣⟩ = 0.945)

(Fig. 2f, right) . The CV2 is computed as the variance of the inter-spike interval divided by its squared mean, and

equals 0 for perfectly regular őring, and 1 for Poisson őring [34]. It is worth noting that during the 1-second

simulations, we do őnd instances of synchronization, which can be attributed to the small population size of the

network and increased őring rate in comparison to the baseline spontaneous activity. As an average however, we

conclude that cross-homeostatic plasticity brings the network to an asynchronous-irregular őring regime, what is

typical in realistic cortical networks [35].

As further evidence of the inhibition-stabilized regime of the network, we demonstrate the occurrence of

the łparadoxical effectž in our deployed network on chip [18, 20]. The paradoxical effect is a hallmark of

inhibition-stabilized networks that has been observed in cortical circuits. When inhibitory neurons are excited

(either optogenetically in vivo, or via an external current in computational models) their őring rates show a

paradoxical decrease in activity during the stimulation, providing clear evidence that that the network is in an
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Figure 2: (a) A representative experiment of the convergence of excitatory (red) and inhibitory (blue) őring rates

during learning. The gray dashed lines show the desired set-point targets. (b) A representative experiment (the

same as in panel a) of the convergence of weight values during learning. The plotted value is nominal, inferred

from eq. (1) (see Methods). (c) Raster plot exemplifying on-chip őring activity during a single emulation run at

the end of training. Both Pyr and PV neurons successfully converge to an asynchronous-irregular őring pattern at

the desired FRs. (d) Initial and őnal őring rates across different chips (n=57, across two chips) and different initial

conditions. For each initial condition, network connectivity was randomized. (e) Left: relationship between the

őnal 𝑤𝑒𝑒 and 𝑤𝑒𝑖 values across different iterations. Orange and green colors correspond to two different chips.

Right: same for 𝑤𝑖𝑖 and 𝑤𝑖𝑒. (f) Distributions for the 5 ms correlation coefficients between neurons (left) and

coefficient of variation (𝐶𝑉2) (right), demonstrating low regularity and low synchrony. The line indicates the

mean. Shaded region indicate standard deviation.
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inhibition-stabilized regime (Fig. 3a). Analogously, when we inject an external depolarizing pulse to all PV

neurons on chip for 0.2 s we observe a decrease in the őring rate of both cell populations for the duration of

the stimulus, returning back to the target FR when the stimulus ends (Fig. 3b). Across all 14 iterations we use

pairwise t-tests to assess the impact of stimulating PV neurons. For PV neurons, stimulation signiőcantly reduces

activity during stimulation compared to pre- and post-stimulation states (𝑝 < 10−18 in both cases). Conversely,

there is no signiőcant difference between pre- and post-stimulation activity, indicating recovery. Five trials,

which were excluded from the analysis, do not exhibit recovery because the activity is entirely suppressed by the

strength of the paradoxical effect. A similar trend is observed for Pyramidal neurons (𝑝 < 10−20).
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Figure 3: (a). The paradoxical effect is a well known phenomena in cortical circuits. In the awake resting

cortex of mice (upper őgure), when inhibitory neurons are optogenetically activated, their őring rates (in red)

show a paradoxical decrease in activity during the stimulation, indicative of an inhibition-stabilized network.

Adapted from Sanzeni et al. [21]. Similar to the experimental case (bottom őgure), numerical simulations of

őring rate models with sufficient excitatory gain and balanced by inhibition show the paradoxical effect when

the inhibitory population is excited via an external current. (b). The paradoxical effect can be demonstrated in

analog neuromorphic circuits by applying a depolarizing current to the inhibitory units of networks converged to

self-sustained activity via cross-homeostasis. The resulting decrease in the őring rate of the inhibitory units

demonstrates that the on-chip network is in the inhibition-stabilized regime. No. of trials = 14, shading region

represents standard deviation in őring rate across trials.

Inhibitory plasticity is necessary to achieve reliable convergence

The equations for the weights in absence of noise [27, eqn. 4-5] and the experimental results in Fig. 2 e indicate

that two of the four weight parameters, for example, the inhibitory weights 𝑤𝑖𝑖 and 𝑤𝑒𝑖 , can be chosen arbitrarily,

since one can always őnd a solution by learning the other two. This appears to suggest that homeostatic

plasticity of the inhibitory weights might not be required in an ideal case. However, we experimentally show that

excitatory plasticity alone is not sufficient to reliably make the network converge in the presence of the noise and

non-idealities of the analog substrate (see Fig. 4). In the absence of inhibitory plasticity, both the excitatory

and inhibitory populations approach their respective set-points, but they fail to converge to stable activity levels.

(Fig. 4a). In contrast, the full cross-homeostatic plasticity rule robustly drives the network activity towards the

set-points after just a few iterations (Fig. 2a). These results hold for multiple initializations (Fig. 4b), indicating

that inhibitory plasticity is necessary for robust convergence.

Homeostatic plasticity in inhibitory neurons is less studied than in excitatory neurons [24, 36], although

there is evidence that inhibitory neurons also regulate their activity levels based on activity set-points [37, 38].

Considering our on-chip results, we therefore speculate that homeostatic plasticity in all excitatory and inhibitory

connections plays an important stabilization role also in biological systems.
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Figure 4: (a) Example network with training results on łőxedž inhibitory synapses. Convergence is impaired if

inhibitory plasticity is turned off. (b) Random networks ran with different initialization of all weights (n=8). The

őring rates do not converge to the targets as precisely as in Fig. 2a, having a much higher root mean square error

from the target (RMS on 𝐸̄ 6.39, on 𝐼 35.11).

Neuronal ensembles remain intact under cross-homeostasis

The effect of homeostasis is to maintain a set level of activity in neurons by scaling synaptic efficacy, as done in

this work, or by changing the intrinsic properties of the neuron. This raises concerns about the stability-plasticity

dilemma, i.e., the competition between the homeostatic stability mechanism and the associative forms of

synaptic plasticity that contribute to the formation of functional neural ensembles, as they may counteract each

other causing either forgetting or the inability to form new memories. A neural ensemble corresponds to a

group of interconnected neurons (e.g., that increased their synaptic weights via learning) that contributes to

the representation of a particular feature or concept. Typically, neurons forming an ensemble exhibit shared

selectivity [39, 40].

The ensemble could potentially be affected by the homeostatic scaling process, which attempts to equalize

the activity levels across the network. To verify that the cross-homeostatic plasticity used here does not interfere

or disrupt the role of neural ensembles we artiőcially formed a łcrafted memoryž into the network during the

homeostatic training process (Fig. 5). This memory is implemented as a neural ensemble within the excitatory

population of the network. Speciőcally, the ensemble consists of 32 neurons, in which each neuron has a

connection probability with other neurons of the same ensemble of 0.5, much higher than the rest of the network

(Fig. 5a).

After 250 cross-homeostatic plasticity training iterations, we manually form the ensemble by introducing the

additional connections in it. We observe an immediate increase in the overall activity of both excitatory and

inhibitory neurons (Fig. 5b) after ensemble implantation, which is however reduced as the homeostatic training

continues. The change in weights (Fig. 5d-c) illustrates how inhibitory plasticity (specially 𝑤𝑒𝑖) compensates

for increased activity, bringing the őring rates back to the target point. Because the values of weights within

and outside of the ensemble remain differentiated, even after homeostatic plasticity converges, the neural

ensemble remains intact and retains its selectivity for the speciőc feature it represents. We conclude that the

cross-homeostatic learning rule brings the activity back to the target while preserving the implanted memory.

Multiple subnetworks can be emulated on a single chip

In the network discussed so far, we modeled a single stable point attractor in őring rate space, using an E/I-balanced

network. We used 200 out of the 256 neurons available on a single core of our multi-core neuromorphic chip

(DYNAP-SE2).

Even though it is still a relatively small-scale network, for computational purposes, having a single attractor

formed from 200 neurons is not an optimal utilization of the resources on the chip. Employing smaller networks

would allow us to implement multiple attractors on a single chip, whereby each subnetwork could represent, for
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Figure 5: Training result with a memory implanted in the network. (a) Random recurrent E/I network with

a neural ensemble (size = 32, green neurons). (b) Convergence of both excitatory (Pyr) and inhibitory (PV)

populations to their respective set-point. A subset of the weights is manually changed to represent an ensemble

at iteration 250, well after the network has converged to its set-point. A jump in activity is observed in both Pyr

and PV cells due to implanted memory. (c) Diagram illustrating the process of rebalancing the weight matrix

after implanting a single memory. Due to the chip’s limited observable and shared parameters, it’s not possible

to record the actual weight matrix for visualization. (d) The weight (𝑤𝑒𝑒) value for 32 neurons is increased by a

factor of 0.0088 µA, illustrated by a dotted line. All weights undergo alteration again to compensate for the

ensemble, bringing the network back to the set point after the memory is implanted. However, the memory

remains intact, as shown by higher recurrent weight (𝑤𝑚𝑒𝑚𝑜𝑟𝑦) compared to the baseline excitatory connectivity

(𝑤𝑒𝑒).

example, a distinct choice in a decision-making task. The model could then be extended to introduce competition

among the clusters leading to winner-take-all dynamics to facilitate decision-making processes [12ś15].

Therefore, we also run scaled down variations of the previous network, and assess whether cross-homeostatic

plasticity can still bring activity to desired levels. Table 1 summarizes the population count, connectivity scaling,

and adjustment in the target őring rate that we adopt for each experiment.

Number of neurons (E/I) Connection Probability Target (E/I)

200/50 0.1 20/40 Hz

100/25 0.1 20/40 Hz

64/16 0.35 25/50 Hz

48/12 0.35 40/60 Hz

Table 1: Variation in network size, connection scaling, and stable target őring rate (set-points) for reliable

self-sustained activity.
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Furthermore, we experiment with implementing multiple copies of these scaled-down networks on the

same chip. We create 5 instances of different E/I networks, each with 50 excitatory and 15 inhibitory neurons.

The connectivities within each sub-network are drawn from the same distribution. Each subnetwork does not

cross-talk with others. The conőguration is illustrated in Fig. 6a. To implement this conőguration on the chip, we

group the excitatory neuron populations into a single core, and use another core for the inhibitory populations. All

parameter values, including weights, are shared between sub-networks. The challenge is to check if homeostatic

plasticity leads to convergence for all subnetworks, since the effect of the weights is different for each E/I network

due to the inhomogeneity of the chip.

During the training process, we sequentially stimulate one sub-network at a time during each iteration. We

then compute the change in synaptic weights, denoted as Δ𝑤, based on the activity of the neuron population

within that E/I network. The weight is conőgured on the chip after each iteration based on the average Δ𝑤 across

all sub-networks. Fig. 6b shows that all őve subnetworks, with shared weights, can indeed converge to mean

őring rate regimes close to the target őring rate.

(a)
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Figure 6: Simultaneous training of multiple clusters. (a) Schematic of clusters on the chip. One core contains

excitatory populations, and another contains inhibitory populations. We implemented őve E/I networks, with

each network comprising 50 excitatory and 15 inhibitory neurons. As per table 1, the connection probability

within these networks stands at 0.35. To account for the network’s scaling, we deőned higher set points. It’s

worth noting that these clusters do not interconnect with one another. b) Rate convergence for 5 clusters sharing

the same nominal weights. Each color represents one cluster.

Discussion

Hardware implementations of spiking neural networks are being proposed as a promising łneuromorphicž

technology that can complement standard computation for sensory-processing applications that require limited

resource usage (such as power, memory, and size), low latency, and that cannot resort to sending the recorded data

to off-line computing centers (i.e., łthe cloudž) [29, 41, 42]. Among the proposed solutions, those that exploit the

analog properties of their computing substrate have the highest potential of minimizing power consumption and

carrying out łalways-onž processing [9, 43]. However, the challenge of using this technology is to understand

how to carry out reliable processing in the presence of the high variability, heterogeneity and sensitivity to noise

of the analog substrate. This challenge becomes even more daunting when taking into account the variability

of memristive devices, which are expected to allow for the storage and processing of information directly on

chip [44].

In this paper, we showed how resorting to strategies used by animal brains to solve the same challenge can

lead to robust solutions: we demonstrated that cross-homeostatic plasticity can autonomously bring analog

neuromorphic hardware to a fully self-sustained inhibition-stabilized regime, the regime that is thought to be the
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default state of the awake neocortex [19ś22]. These are the őrst results to show how biologically inspired learning

rules can be used to self-tune neuromorphic hardware into computationally powerful states while simultaneously

solving the problem of heterogeneity and variability in the hardware.

Our results also validate the robustness of the cross-homeostatic plasticity hypothesis [27] in a physical

substrate that presents similar challenges to those of faced by biological networks. We also highlight the

crucial contribution of inhibitory plasticity, speciőcally, that homeostatic plasticity of inhibitory connections is

necessary to maintain stability in both biological and silicon networks. Notably, we constructed an on-chip stable

attractor neural network that effectively maintains a long-term memory represented by a neural ensemble, and

demonstrates that multiple networks, each exhibiting attractor dynamics, can coexist within the hardware [18, 35].

In the future, we can extend this stable multi-network implementation to simulate decision-making processes,

along with self-generated dynamics that are thought to underlie a number of computations including motor

control, timing, and sensory integration [45ś47].

By taking inspiration from the self-calibration features of biological networks, we achieve a remarkable level

of resilience to hardware variability, enabling recurrent networks to maintain stability and self-sustained activity

across different analog neuromorphic chips. Cross-homeostatic plasticity allows us to instantiate neural networks

on different chips without the need for chip-speciőc tuning, thereby addressing the inherent mismatch in analog

devices. Such bio-plausible algorithms provide a promising avenue for the development of robust and scalable

hardware implementations of recurrent neural networks, while mitigating the challenges associated with the

intrinsic mismatch in analog devices.

In short, these results not only provide insights into the underlying mechanisms conőguring biological

circuits, but also hold great promise for the development of neuromorphic applications that unlock the power

of recurrent computations. This research presents a substantial step forward in our understanding of neural

dynamics and paves new possibilities for practical deployment of neuromorphic devices that compute, like

biological circuits, with extremely low-power and low-latency using attractor dynamics.

Methods

Neuromorphic hardware: the spiking neural network chip

In this study, we use a recently-developed mixed-signal spiking neural network chip, called Dynamic Neuromorphic

Asynchronous Processor (DYNAP-SE2) [30]. This chip comprises 1024 adaptive-exponential integrate-and-őre

(AdEx I&F) neurons [8, 48], distributed across four cores. The neuron parameters consist of its spiking threshold,

refractory period, membrane time constant, and gain. On hardware, the inputs to each neuron are limited to 64

incoming connections, implemented using differential pair integrator (DPI) synapse circuits [49]. Each synaptic

input can be conőgured to express one of four possible temporal dynamics (via four different DPI circuits):

AMPA, NMDA, GABA-A, and GABA-B. Besides expressing different time constants, the excitatory synapse

circuits (AMPA and NMDA) differ in that the NMDA circuit also incorporates a voltage gating mechanism.

Similarly, the inhibitory synapses (GABA-A, and GABA-B) differ in their subtractive (GABA-B) versus shunting

(GABA-A) effect.

The bias parameters that determine the weights, neuronal and synaptic properties are set by an on-chip digital

to analog (DAC) bias-generator circuit [50] and are shared globally within each core. These parameters are

expressed as currents that drive the neuromorphic circuits and are represented internally through a łcoarsež and

a łőnež value, according to the following equation:

𝐼 = 𝐼𝐶 (𝐶𝑤)
𝐹𝑤

256
, (1)

where 𝐹𝑤 represents the őne value and 𝐶𝑤 the coarse one. The variable 𝐼𝐶 represents a current estimated from

the bias-generator circuit simulations, which depends on 𝐶𝑤 as speciőed in Table 2.

Before training, the network is initialized with 𝐶𝑤 randomly taking a value of 3, 4, or 5, and 𝐹𝑤 uniformly

distributed between 20 and 200. The corresponding currents will therefore range between 2.7 nA and 1757 nA.

However, due to device mismatch and variability in the analog circuits, even when many circuits share the

same nominal biases, the effective values will vary. On the DYNAP-SE2 and other mixed-signal neuromorphic

processors implemented using similar technology nodes and circuit design styles, the coefficient of variation of
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Cw 0 1 2 3 4 5

IC (nA) 0.07 0.55 4.45 35.0 280 2250

Table 2: Nominal estimated coarse current values of the on-chip bias generator circuit for synaptic weights.

these parameters is typically around 20% [10]. However, the learning rules proposed in this work make these

networks robust to such variability and lead to a stable activity regime.

Network emulation

We create an on-chip E/I network composed of 200 Pyr (excitatory) and 50 PV (inhibitory) neurons. Each

neuron type is implemented by tuning the refractory period, time constants, spiking threshold, and neuron gain

parameters to match biologically measured values (Fig. 1c, [33]). The two populations are sparsely connected

with a 10% connection probability for each pair of neurons (both, within population and between populations).

Synaptic weights take four sets of values shared globally among all Pyr-to-Pyr (𝑤𝑒𝑒), Pyr-to-PV (𝑤𝑖𝑒), PV-to-PV

(𝑤𝑖𝑖), and PV-to-Pyr (𝑤𝑒𝑖) connections respectively. All excitatory weights represent synapses modeled as AMPA

receptors, and inhibitory weights as GABA-A (somatic). Here, 𝑤𝑖𝑖 and 𝑤𝑒𝑖 are somatic inhibitory connections.

Even though the weight parameters are shared, the synaptic efficacy of each synapse is subject to variability due

to device mismatch in the analog circuits [10].

During training, synaptic weights are adjusted such that the average activity for both Pyr and PV population

converge to their respective target őring rates (or set-points), and can thus maintain self-sustained activity in

the absence of any external input or bias current. To kickstart activity in the network, we provide a brief 40 ms

external input of four spikes at 10 ms intervals to 80% of the Pyr cells, with random delays for each postsynaptic

target neuron to introduce temporal sparsity to the initial response of the population. The network is emulated

in real-time on the chip (i.e., the dynamics of the analog circuits evolve through physical time reproducing the

dynamics of the biological neural circuits). Each experiment is run for 1 s and the spiking activity of the whole

network is streamed to a computer, for data logging and analysis purposes.

In the analysis, the network response is measured by calculating the average őring rate of both neural

populations, which is then used to calculate the error (i.e., the difference between set-point and actual activity)

that drives the weight update (see next section). As we are interested in the network’s self-sustained behavior, we

discard the response induced by the transient external input while calculating the őring rates (i.e., we ignore the

őrst 60 ms of activity, which comprises the őrst 40 ms of external stimulation and an additional stabilization

window of 20 ms). During the initial stages of the training procedure, before E/I balance is reached, the network

could generate non-sustained bursts of activity. Therefore, we calculate the őring rate by considering only the

time window when the neural populations are active, i.e. the in-burst őring rate, as opposed to the average over

the whole trial. We empirically őnd that this choice leads to the desired sustained activity.

Learning rule

To bring the recurrent dynamics to a fully self-sustained inhibition-stabilized regime we employ the recently

proposed cross-homeostatic plasticity rule [27], which tunes all four synaptic weight classes in parallel.

In classic forms of homeostatic plasticity, both excitatory and inhibitory populations self-regulate calcium

levels based on their own activity [24, 36]. In contrast to these classic forms, where a neuron tunes its weights to

maintain its own average output of activity (a őring rate set-point), the cross-homeostatic weight update rule aims

at bringing the neuron’s presynaptic partners of opposite polarity to an average population őring rate setpoint,

according to the following equations:

Δ𝑤𝑒𝑒 = + 𝛼𝐸̄ (𝑡) (𝐼𝑡𝑎𝑟𝑔𝑒𝑡 − 𝐼 (𝑡)),

Δ𝑤𝑒𝑖 = − 𝛼𝐼 (𝑡) (𝐼𝑡𝑎𝑟𝑔𝑒𝑡 − 𝐼 (𝑡)),

Δ𝑤𝑖𝑒 = − 𝛼𝐸̄ (𝑡) (𝐸𝑡𝑎𝑟𝑔𝑒𝑡 − 𝐸̄ (𝑡)),

Δ𝑤𝑖𝑖 = + 𝛼𝐼 (𝑡) (𝐸𝑡𝑎𝑟𝑔𝑒𝑡 − 𝐸̄ (𝑡)),
(2)

where 𝛼 is the learning rate (𝛼 = 0.05), 𝐸̄ (𝑡) and 𝐼 (𝑡) are the average measured őring rates during a trial 𝑡

and 𝐸𝑡𝑎𝑟𝑔𝑒𝑡 = 20 Hz, 𝐼𝑡𝑎𝑟𝑔𝑒𝑡 = 40 Hz are the desired őring rate set-points, for the Pyr and PV populations
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respectively. This type of plasticity can be interpreted biologically as having a target on the input current that a

given neuron receives. For example, an excitatory neuron could have indirect access to the average őring rate of

their presynaptic inhibitory neurons based on a running average of the total GABA it receives.

While biologically plausible target activities are typically lower (e.g., 5 Hz for the 𝐸 population and 14 Hz for

the 𝐼 one as proposed in [27]), in our experiments we had to use higher set-point rates to attain reliable behavior,

because of the relatively small network size and the low probability of connections used. In Table 1 we quantify

the effects of network size and connectivity with additional experiments.

As the weights are shared globally within each population, the learning rules are implemented at the whole

population level. Therefore the network maintains a given őring rate at the population level, rather than at the

individual neuron level (see [27] for a local implementation of the rules). However, the heterogeneity in the

analog circuits and their inherent noise produce diverse behaviors among neurons, for example leading some of

the neurons to őre intermittently at slightly increased rates (while maintaining the desired set-point őring rate at

the full population level). In the following section, we explain the training procedure on the hardware and how

the changes in weight Δ𝑤 are translated to the őne 𝐹𝑤 and course 𝐶𝑤 synaptic bias parameters on chip.

Chip-in-the-loop training

Although the DYNAP-SE2 chip can be tuned to exhibit biologically plausible dynamics, it does not incorporate

on-chip synaptic plasticity circuits that are capable of learning. To overcome this limitation we used a łchip-in-

the-loopž learning paradigm: the activity produced by the chip is transmitted to a computer, which analyzes the

data at the software level and calculates the parameter updates, which are then sent back to the chip.

In particular, the network is emulated for 1 s on the chip. Each emulation is repeated őve times to reduce

the inŕuence of noise and obtain more reliable results. The output spikes are sent back to the computer, which

averages the results, calculates the appropriate weight update, applies stochastic rounding (see below), and sends

the updated weights to the chip for the next iteration (i.e., after 5 repetitions). After each iteration, we drain

the accumulated residual current from both the neuron and synapse circuits. We stop the procedure after 400

iterations, as we found it to be sufficient for the network to converge to the target őring rates regardless of the

initial conditions. Most simulations converge to target őring rate before iteration 200, which shows the long-term

stability of the cross-homeostasis rules in a converged network.

For all experiments, we applied the same set of parameters to neurons and synapses at the beginning of the

training, with the exception of the random initialization of weights. The training produced stable and reliable

activity around the programmed set-points 100% of the time, without having to re-tune any of the neuron or

synapse parameters (except the synaptic weights), across multiple days, and for multiple chips.

Stochastic rounding As the values of the synaptic weight parameters are set by the bias-generator DAC, the

weight updates can only take discrete values Δ𝐹𝑤 = 0,±1,±2, .... For very large learning rates, this could lead to

unstable learning, and for very low ones to no changes at all. To overcome the constraints of limited-resolution

weight updates, a common strategy used is to use stochastic rounding (SR) [51, 52]. The SR technique consists of

interpreting the Δ𝑤 calculated by the learning rule as a probability to increase or decrease the weight, as follows:

SR(𝑥) =

{
⌈𝑥⌉ with prob. 𝑥 − ⌊𝑥⌋

⌊𝑥⌋ otherwise.
(3)

where ⌈·⌉ indicates the ceiling operation and ⌊·⌋ the ŕoor operation.

Values for the desired weight updates Δ𝑤 are given by the learning rules (2). We also deőne upper and lower

bounds for 𝐹𝑤 , respectively 𝐹− = 20 and 𝐹+ = 250. We then obtain the new coarse and őne values 𝐶′
𝑤 , 𝐹

′
𝑤 of

the weight as follows:




𝐶′
𝑤 = 𝐶𝑤 , 𝐹

′
𝑤 = 𝐹𝑤 + SR(Δ𝑤) if 𝐹− ≤ 𝐹𝑤 + SR(Δ𝑤) ≤ 𝐹+

𝐶′
𝑤 = 𝐶𝑤 − 1, 𝐹′

𝑤 = 𝐹+ if 𝐹𝑤 + SR(Δ𝑤) < 𝐹−

𝐶′
𝑤 = 𝐶𝑤 + 1, 𝐹′

𝑤 = 𝐹− if 𝐹𝑤 + SR(Δ𝑤) > 𝐹+.

(4)

In other words, the őne value is updated with the stochastically-rounded version of Δ𝑤; when it oversteps the

bound, the őne value is reset to the bound, and the coarse value is changed instead.
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Note that this SR strategy is compatible with neuromorphic hardware implementations, as demonstrated

in [53]. Our setup using a chip-in-the-loop enables the evaluation of different learning mechanisms and test the

robustness of different design choices. The design of future on-chip learning circuit can therefore be informed by

our results, following a hardware-software co-design approach.
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