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Abstract

Objectives
Regulation of the heart by the brain is a vital function of the autonomic nervous system (ANS), and
healthy ANS function has been linked to a wide range of well-being measures. Although there is evidence
of mindfulness-meditation related changes to brain functioning and heart functioning independently, few
studies have examined the interaction between the brain and heart in experienced meditators.

Methods
This study compared measures of the brain-heart relationship between 37 experienced meditators and 35
non-meditators (healthy controls) using three different analysis methods: 1) the heartbeat evoked
potential (HEP; thought to re�ect neural sensitivity to interoceptive feedback); 2) the relationship between
fronto-midline theta neural oscillations (fm-theta) and the root mean square of successive differences
(RMSSD) in electrocardiogram activity (an estimate of vagally-mediated heart rate variability); and 3) the
correlation between heart rate wavelet entropy and electroencephalographic wavelet entropy – a measure
of signal complexity.

Results
The HEP analysis indicated that meditators showed a more central-posterior distribution of neural activity
time-locked to the heartbeat (p < .001, partial η² = .06) than controls. A signi�cant positive relationship
was also found between fm-theta and RMSSD in meditators (F(2,34) = 4.18, p = .02, R2 = .2) but not
controls. No signi�cant relationship was found between EEG entropy and ECG entropy in either group.

Conclusions
The altered distribution of evoked neural activity, and the correlation between brain and heart biomarkers
of vagal activity suggests greater neural regulation and perhaps greater sensitivity to interoceptive
signals in experienced meditators.

1. Introduction
Mindfulness-meditation is a practice of non-judgemental awareness centred on the present moment, with
the goal of harnessing a sense of openness and acceptance in attitude toward one’s experiences (Kabat-
Zinn, 2013). Regular mindfulness practice has been associated with both neurological and physiological
changes. For example, neuroimaging studies of meditators have revealed altered brain structure and
activation patterns in regions associated with exteroceptive and interoceptive awareness, emotion,
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memory, and attention (Fox et al., 2014, 2016). Meditation-related changes have also been observed in
heart rate variability (HRV), and these HRV changes have been associated with improvements in attention
(Burg et al., 2012), pain perception (Adler-Neal et al., 2020), and emotion regulation (Mankus et al., 2013).
Although evidence has pointed to the effects of mindfulness on the brain and heart independently, less is
known about the impact of mindfulness on the relationship between the brain and heart. The nervous
and cardiovascular systems are inextricably linked in a synergistic and interdependent relationship (Ardell
et al., 2016; Pereira et al., 2013). Modulation of the brain-heart interaction can improve cardiovascular
functioning, reduce stress, and enhance pain regulation (Alshami, 2019; Samuels, 2007; Silvani et al.,
2016). Thus, a greater understanding of the in�uence mindfulness has on brain-heart interaction could
offer insights into the unique and multidimensional health bene�ts of mindfulness-meditation.

One method to investigate the effects of mindfulness on the brain-heart relationship is to examine the
association between electrophysiological signals from the brain using electroencephalography (EEG) and
from the heart using electrocardiography (ECG). Analysis of EEG and ECG signals often involves an
approach focused on only a single measure, whereby unique features from each signal that are known
markers of neurological and/or physiological functioning are analysed in isolation (Biel et al., 2001;
Subha et al., 2010). However, a range of perspectives have proposed several possible mechanisms of
action related to mindfulness practice, and some of these theoretical frameworks suggest the potential
for distinct effects of mindfulness on the relationship between the brain and heart. Although analysis of
either ECG or EEG modalities independently can extract speci�c measures of interest that are associated
with potential mechanisms of change related to mindfulness practice, the single analysis approach only
offers a limited understanding of underlying mechanisms. Moving beyond this conventional approach,
the present study sought to investigate the brain-heart relationship through the lens of three unique
conceptual frameworks using three different analysis methods, all of which examined the relationship
between the ECG and EEG signals. This approach allows for a comprehensive understanding of the
impact mindfulness has on the brain-heart relationship and mitigates the constraints of a single
methodological framework. In the following sections, we brie�y introduce the three conceptual
frameworks that we examine in this study.

1.1 The Bayesian Brain: Heartbeat Evoked Potentials and
Interoceptive Precision
The ‘Bayesian brain’ hypothesis proposes that the brain infers probabilistic beliefs about the world in
accordance with Bayes’ theorem (Doya, 2011; Knill & Pouget, 2004). In short, Bayes’ theorem prescribes a
method of probabilistic reasoning that speci�es how much one’s beliefs should change based on new
information (Puga et al., 2015). Bayesian brain theories thus suggest that the brain functions by
integrating a priori knowledge (prior beliefs) with sensory evidence in a way that mimics or approximates
Bayesian inference. From this perspective, subjective perception is not necessarily a re�ection of the
world as it is, but the ‘best guess’ of a predictive model based on the functional integration of incoming
stimuli, past experience, and contextual evidence (Friston, 2012; Ongaro & Kaptchuk, 2019). In the
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Bayesian view, the brain generates hypotheses about the world and our place in it, and these hypotheses
– based on beliefs formed through prior experiences – are met by sensory inputs which con�rm or
discon�rm predicted inputs (Manjaly & Iglesias, 2020). If the hypothesis does not align with the incoming
stimuli, a prediction error occurs, creating an opportunity for the brain to update its beliefs by integrating
new information (Friston, 2012; Kwee, 1995; Manjaly & Iglesias, 2020; Ongaro & Kaptchuk, 2019; O’Reilly
et al., 2012).

However, prediction errors do not guarantee belief updates. In some situations, existing beliefs can be
prioritised and outweigh the importance of sensory signals, thereby reducing the degree of belief
updating prompted by prediction errors (Ongaro & Kaptchuk, 2019). For example, chronic conditions
involving pain can lead to hypersensitivity, increased anxiety, threat detection, and catastrophic beliefs
about pain (Latremoliere & Woolf, 2009; Linton & Shaw, 2011; Vlaeyen & Linton, 2000). Within the
Bayesian brain framework, these factors are thought to undermine the reliability of sensory input, placing
more weight (i.e., greater precision) on existing beliefs and contextual cues and thus diminishing the
extent of belief updating in response to sensory signals (Ongaro & Kaptchuk, 2019). Non-judgmental
awareness – a principle of mindfulness-meditation that involves directing attention to sensations while
holding a neutral attitude (Bishop et al., 2004) - may in�uence the magnitude of belief updates following
a prediction error. Non-judgemental awareness has been proposed to lessen the in�uence of existing
beliefs while promoting the salience of sensory signals, thus increasing the amount of belief updating
that occurs in response to a prediction error (Manjaly & Iglesias, 2020).

One method to explore the in�uence of mindfulness practice on the brain using the Bayesian brain
perspective was proposed by Manjaly and Iglesias (2020), who suggested that heartbeat evoked
potentials (HEP) could be utilised to examine the effects of meditation on precision-weighted prediction
error and belief updates. The HEP is an event-related cortical response synchronised to the heartbeat that
occurs between 200ms to 600ms after the R-peak (highest amplitude of the R wave in the QRS complex;
Raj et al., 2018). Greater HEP amplitudes have been associated with increased interoceptive accuracy
(Coll et al,.2021; Mai et al., 2018). For example, in two separate studies (Montoya et al., 1993; Petzschner
et al., 2019), HEP amplitudes were measured while participants directed attention toward an external
stimulus compared to an internal stimulus (heartbeat). Both studies reported greater HEP amplitudes
when attention was directed internally compared to externally. Based on these results, the authors
reasoned that HEP amplitude provides a quantitative measure of neural sensitivity to interoceptive
feedback (Petzschner et al., 2019). Similarly, if mindfulness shifts the balance of precision towards
sensory signals (and away from prior expectations), one would expect stronger HEPs on average as a
consequence of the increased weighting of interoceptive inputs. Further, as mindfulness-related
improvements in interoceptive awareness have been shown outside of active mindfulness practice
(Mehling et al., 2018) enhanced interoceptive accuracy as re�ected by stronger HEPs are thus likely to
also be apparent while meditators are at rest, indicating enhanced interoception outside of active
meditation practice periods as a result of prolonged interoceptive training.
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1.2 Parasympathetic Regulation: Relationship between
Frontal-Midline Theta and Heart Rate Variability
The parasympathetic nervous system is a subdivision of the autonomic nervous system (ANS) that
regulates bodily functions (e.g., heart rate; Mankus et al., 2013; Wu & Lo, 2008) and is associated with
top-down self-regulation (Silvani et al., 2016). Mindfulness practice has been shown to modulate brain
and heart correlates of parasympathetic functioning (Jinich-Diamant et al., 2020; Mankus et al., 2013).
For example, frontal midline theta activity (fm-theta), a neural oscillation within the 4Hz to 8Hz range
detected predominantly over the medial prefrontal areas, has been observed to increase during
meditation compared to rest (Baijal & Srinivasan, 2010; Brandmeyer & Delorme, 2018; Clayton et al.,
2015). Fm-theta activity is thought to be associated with sustained and internalised attention and has
been found to be increased by long-term meditation practice (Lee et al., 2018; Mitchell et al., 2008). In a
study investigating the relationship between meditation, fm-theta, and cardiac dynamics, fm-theta activity
during the mindfulness meditative state was anti-correlated with sympathetic activity, suggesting that
participants were perhaps less distracted and more relaxed (Kubota et al., 2001). Fm-theta is also
generated by the anterior cingulate cortex (ACC), which is linked with emotion and cognitive control
processes, as well as autonomic nervous system regulation, providing further evidence that fm-theta is
associated with parasympathetic function (Matthews et al., 2004).

Meditation practice has also been shown to enhance HRV metrics of vagally-mediated parasympathetic
activity, such as the root mean square of successive differences (RMSSD; Joo et al., 2010; Kirk & Axelsen,
2020) and high frequency heart rate variability (HF-HRV; Mankus et al., 2013; Nagendra & Sasidharan,
2017; Wu & Lo, 2008). RMSSD is a measure of heart beat activity in the time-domain, while HF-HRV
re�ects activity in the frequency-domain; both measures are highly correlated, re�ect parasympathetic
reactivity, and both measures can be modulated by changes in breathing patterns (Minarini, 2020;
Thomas et al., 2019).

While extensive research has been conducted on the effects of mindfulness on brain and heart metrics of
parasympathetic functioning independently, few studies have investigated the relationship between fm-
theta and HRV. One such study by Tang et al. (2009), investigated the relationship between the
percentage of change between fm-theta and nuHF - a normalised form of HF-HRV that compares the ratio
of low and high frequency HRV (Burr, 2007) - before and after meditation training. After �ve days of short-
term meditation training, novice meditators showed a correlation between the percentage change in fm-
theta power and nuHF, while no correlation was found in the control group. Tang et al. (2009) argued that
these results indicated greater interaction and coupling between the autonomic and central nervous
systems following meditation training, suggesting that mindfulness practice may improve self-regulation
by enhancing ACC control of parasympathetic activity. However, Tang et al. (2009) measured fm-theta
without accounting for the contribution of non-oscillatory EEG activity (commonly referred to as 1/f
activity because the distribution of power values across different frequencies shows a 1/f slope). Recent
research has demonstrated that 1/f non-oscillatory activity can contribute more power to power-
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frequency measures than oscillatory activity and thus may confound analyses of oscillatory activity
(Donoghue et al., 2020). Hence, unless the 1/f non-oscillatory confound is removed prior to analysis,
conclusions might not relate to a relationship between fm-theta and HRV but could instead re�ect a
relationship between 1/f non-oscillatory activity and HRV. Furthermore, HF-HRV can be more susceptible
to differences in respiratory rates than RMSSD, and RMSSD is a more accurate marker of vagal activity
with changes in natural breathing patterns (Penttilä et al., 2001; Schmid & Thomas, 2021). Changes in
respiratory rates have been associated with long term meditation (Peressutti et al., 2012; Steinhubl et al.,
2015) and may confound the observed effects of mindfulness on HF-HRV. Thus, further investigation of
the relationship between fm-theta activity (after the subtraction of 1/f non-oscillatory activity) and
RMSSD may expand the existing understanding of mindfulness-related practice effects on
parasympathetic functioning – a re�ection of the coupling between brain and heart.

1.3 Wavelet Entropy and the Brain-Heart Synchronisation
Measured via Signal Complexity
In biomedical research, power-frequency spectrum analyses are typically used to examine bodily signals
such as EEG and ECG activity (Li et al., 2019; Lomas et al., 2015; Shaffer & Ginsberg, 2017). Spectral
analyses are linear models based in the time-frequency domain which can be used to isolate speci�c
frequency features of biomedical signals (such as EEG waveforms) (Gao et al., 2016; Rosso et al., 2001).
However, biomedical signals are complex, with non-linear properties, and while linear models provide
some insights to neural or bodily functioning, they are unable to capture non-linear features (Bachmann
et al., 2018; He et al., 2014). To better understand the nonlinear properties of biomedical signals,
nonlinear methods such as entropy analyses have been adopted (Borowska, 2015). Entropy is a
measurement of the degree of uncertainty or information content within a system (Quiroga et al., 2001),
where higher entropy corresponds to a less predictable, more informative signal (Deolindo et al., 2020;
Gao et al., 2016; Rosso et al., 2006). For example, cardiovascular control via sympathetic and vagal
regulation is a dynamic and nonlinear process in�uenced by a multitude of factors, and although linear
method are typically used to analyse HRV, nonlinear methods such as entropy analysis have been argued
to better represent the dynamic and complex nature of heart rate control (Byun et al., 2019).

In mindfulness research, reduced (permutation) entropy has been found in the EEG activity of experienced
meditators compared to novices during both rest and meditation practice (Kakumanu et al., 2018; Vyšata
et al., 2014). This result suggests greater synchronisation of the EEG signal in meditators, perhaps
indicating reduced information processing associated with an increase in single-pointed attention focus
(Kakumanu et al., 2018; Vyšata et al., 2014; Young et al., 2021). In an extension of this research designed
to examine how the brain-heart relationship is affected by mindfulness, Gao et al. (2016) and Sik et al.
(2017) used the discrete wavelet transform (DWT) to calculate the wavelet entropy of both EEG and heart
rate data. DWT decomposes a time series into sets of average or low pass components, where each set
of components re�ects the evolution of each frequency component across time (Bajaj, 2020; Jacob et al.,
2021). The DWT method thus incorporates temporal information with spectral-frequency analysis,
thereby taking into account transient �uctuations of electrophysiological signals (Bajaj, 2020; Jacob et
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al., 2021). Hence, wavelet entropy measures the uncertainty, information content, and complexity of
signals in both the time and frequency domain, providing additional insights into the dynamics of EEG
and heart rate activity (see Rosso et al., 2006 for a detailed review).

Gao et al. (2016) and Sik et al. (2017) reported reduced Wavelet entropy in EEG and heart rate data during
meditation compared to rest in novice meditators. Moreover, both studies also reported a stronger
correlation between EEG and heart rate entropy during mindfulness breathing compared to rest. These
authors speculated that this result might indicate a greater detachment from visual sensory input and
may re�ect mindfulness-related effects on the synchronisation of body and mind, suggesting improved
coherence of the parasympathetic nervous system.

1.4 Contrasting the Three Theoretical Frameworks
While empirical support for any of the three theoretical frameworks described above would provide
evidence to substantiate an increase in mindfulness-related connectivity between the brain and heart
activity, the implication of the results from each framework has discernible differences. For instance,
under the Bayesian brain framework, signi�cant differences in HEP amplitude between meditators and
non-meditators could suggest enhanced bottom-up sensory processing. A signi�cant correlation between
fm-theta and RMSSD among meditators would indicate practice related enhancements in top-down
parasympathetic regulation. Lastly, a stronger relationship for meditators between EEG and heart rate
entropy could provide evidence for greater detachment from external stimuli in meditators than controls.

1.5 Aims and Hypotheses
Results from the studies outlined above (Gao et al., 2016; Manjaly & Iglesias, 2020; Sik et al., 2017; Tang
et al., 2009) show evidence of mindfulness-related effects on brain-heart interaction; however, two
constraints limit the generalisability of the �ndings. First, participants primarily involved novice
meditators with short-term training. Mindfulness-meditation can affect individuals differently over time,
with stronger effects found in meditators with long-term experience (Falcone & Jerram, 2018; Marchand,
2014; Wang et al., 2021). Secondly, comparison conditions within previous research tended to focus on
state differences between meditation and rest, rather than a comparison between experienced meditators
and non-meditators. While the effects detected during meditation are informative, it is unclear from
studies focused only on the meditation state whether effects found during mindfulness practice continue
outside of practice sessions. Thus, the present study sought to determine whether mindfulness related
changes in brain-heart interaction are evident in experienced meditators while participants are at rest
(rather than during active meditation practice). In particular, it was hypothesised that: 1) experienced
meditators would show greater neural sensitivity to interoceptive information (as re�ected by larger HEP
amplitudes) at rest compared to controls; 2) experienced meditators would demonstrate higher levels of
autonomic self-regulation, re�ected by a signi�cant positive relationship between fm-theta minus 1/f non-
oscillatory activity and RMSSD, while no relationship was expected in controls; and 3) experienced
meditators would show a signi�cant positive correlation between EEG and ECG entropy while no-
signi�cant correlation would be found for controls.
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2. Methods

2.1 Participants
The data presented here was collected across two separate broader studies that examined differences in
neural activity between meditators and non-meditators at rest and while attending to cognitive tasks
(previous publications include:Bailey et al., 2023; Bailey et al., 2020; Bailey, Freedman, et al., 2019; Bailey,
Raj, et al., 2019; Payne et al., 2020; Wang et al., 2020). The current study included a subset of 103
participants from those two studies who had ECG recorded concurrently with their EEG recordings.
Participants in the current study had ages ranging from 18 to 65 years and included a total of 49
mindfulness-meditators and 54 healthy non-meditators. Participants were recruited via advertising in the
local community and meditation centres. Each participant was reimbursed $30 at the end of their
participation for parking and travelling expenses.

Inclusion criteria for meditators were (1) more than two years of meditation experience, (2) current weekly
practice of two or more hours, (3) meditation practice aligned with either body-scan or focused attention
on the breath, and that (4) practice was congruent with Kabat-Zinn’s (1994) de�nition of mindfulness –
“paying attention in a particular way: on purpose, in the present moment, and nonjudgmentally”. Non-
meditators (controls) were de�ned as participants with no more than two hours of lifetime meditation
experience. Experienced mindfulness researchers (GF, GH, NWB) screened participants on the phone and
in person, and screening ambiguities were discussed and resolved via consensus between the principal
researcher (NWB) and a second researcher.

Exclusion criteria included (1) current use of recreational drugs or psychoactive medication, (2) current or
previous diagnosis of mental or neurological illness, (3) meeting diagnostic criteria for any psychiatric
disorders on the DSM-IV assessed using the Mini International Neuropsychiatric Interview for DSM-IV
(Sheehan et al., 1998), and (4) scoring in the mild or above range on the Beck Depression Inventory-II
(BDI-II) or Beck Anxiety Inventory (Beck & Clark, 1997; Beck & Steer, 1990). Two meditators were excluded,
with one participant reporting a history of mental illness and another reporting less than two hours of
weekly mindfulness practice. Four controls were excluded after three participants scored within the
clinical range on the BDI, and one control participant did not complete EEG recording. Further exclusions
of select data were made for EEG and ECG analysis. Four controls were excluded from the analysis due to
insu�cient data length after EEG cleaning. A further ten meditators and ten controls were excluded due to
unusable ECG data.

Thus, �nal analyses were run on 37 meditators and 35 controls (see Table 1). A signi�cant difference in
age was found between groups (t(70) = -2.214, p = .03), with meditators signi�cantly older than controls.
Both fm-theta and HRV have been shown to decline with age and thus could potentially confound the
results (Kardos et al., 2014; Umetani et al., 1998). This is addressed in the results section by including age
as a covariate in the analysis and the potential limitations of this are considered in the discussion. No
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other demographic characteristics differed between meditators and controls (all p > 0.05). Key
demographic characteristics of participants are presented in Table 1.

Table 1
Demographic characteristics of participants

  Meditators Controls

N 37 35

Gender 23 females, 14 males 21 females, 14 males

  M (SD) M (SD)

Age* 39.03 (12.83) 32.49 (12.21)

Years of Education 16.84 (2.14) 16.41 (2.86)

BAI 4.98 (5.15) 5.03 (4.84)

BDI 1.38 (2.19) 4.06 (5.15)

FFMQ** 153.33 (15.11) 134.37 (13.67)

Note: N = number of participants; BAI = Beck Anxiety Inventory; BDI = Beck Depression Inventory;
FFMQ = The Five Facet Mindfulness Questionnaire.

*p < .05, **p < .001.

2.2 Procedure
A 64-channel Neuroscan EEG Ag/AgCl Quick Cap acquired EEG data to Neuroscan software through a
SynAmps2 ampli�er (Compumedics, Melbourne, Australia). Electrodes were referenced online to an
electrode between Cz and CPz, and the ground electrode was AFz. Impedances were maintained at less
than 5kΩ. Recordings were sampled at 1000 Hz and bandpass �ltered from 0.05 to 200Hz (24 dB/octave
roll off). ECG data were also acquired with Neuroscan software and SynAmps2 ampli�er sampled at
1000 Hz. Using bipolar referenced EMG measurement, two adjacent EMG electrodes were placed below
each clavicle (in line with the middle of the clavicle) to simultaneously record ECG activity into the same
data�le as the EEG activity.

The recording length for each participant ranged from 2.5 to 3.5 hours depending on the study. In the �rst
study, tasks included Go/No-Go task, the colour Stroop task, the emotional Stroop task, the 2-back task,
and the Sternberg working memory task, with resting recordings taken after the Go/No-Go task (second
task in the sequence of tasks presented).The second study included the Go/No-Go task, auditory oddball
task, and attentional blink task, with resting recordings taken after the auditory oddball task (�rst task).
Resting EEG and ECG data were recorded for each participant across two conditions: eyes opened (EO)
and eyes closed (EC). The duration of recording for each condition across both EEG and ECG was
approximately three minutes (six minutes in total including both the EO and EC conditions). Data were
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collected from all electrodes except CB1, CB2, M1 and M2 for both conditions, so recorded data included
60 active electrodes in total.

2.3 Data Analysis

2.3.1 Pre-Processing
MATLAB (R2018b and R2020a; the MathWorks, USA) toolboxes EEGLAB (Delorme & Makeig, 2004) and
FieldTrip (Oostenveld et al., 2011) were used to process EEG data. The procedure for cleaning EEG data
was to apply the RELAX pipeline (Bailey, Biabani, et al., 2022; Bailey, Hill, et al., 2022). A summary of the
cleaning process performed by the RELAX pipeline is as follows: fourth-order Butterworth �ltering was
applied to the data with a bandpass �lter from 1 to 80Hz and a band stop �lter from 47 to 53Hz. Noisy
electrodes were then removed with the “Pre-processing” (PREP) pipeline (Bigdely-Shamlo et al., 2015) and
RELAX’s default electrode exclusion settings which are based on robust outlier detection methods (full
details can be found in Bailey, Biabani, et al., 2022). No more than twenty percent of electrodes were
removed for each participant. On average, 55 EEG channels remained for both Meditators (SD = 3.12) and
Controls (SD = 4.15) in the EO condition after rejection and 57 EEG channels remained for both Meditators
(SD = 2.52) and Controls (SD = 2.36) in the EC condition after rejection. No signi�cant differences were
found between groups in the number of electrodes removed (all p < .05).

Multiple approaches were then applied to reject extreme outlying data and identify voltage drifts, eye
movements, and blinks, as well as muscle activity (details are reported in (Bailey, Biabani, et al., 2022;
Bailey, Hill, et al., 2022). Following this, a multi-channel Weiner �lter (MWF) was used to separately reduce
muscle activity, blinks, and then horizontal eye movement and voltage drift artifacts sequentially in three
separately-applied MWFs (Somers et al., 2018). The MWF �lter was selected for its effectiveness in
cleaning a wide variety of artifacts while preserving a high signal-to-error ratio, and a low risk of the
algorithm creating overcorrection artifacts (Somers et al., 2018; Somers & Bertrand, 2016). Data was then
re-referenced using PREP’s robust average re-referencing procedure which ensures data are not biased by
the removal of bad electrodes (Bigdely-Shamlo et al., 2015). Wavelet-enhanced ICA was then applied to
reduce any remaining artifactual components identi�ed by ICLabel (Castellanos & Makarov, 2006; Pion-
Tonachini et al., 2019). Electrodes that were removed after being identi�ed as bad in the initial extreme
outlying rejection step were then interpolated using spherical spline interpolation (Perrin et al., 1989).
Finally, for frequency-power and wavelet entropy analyses, the EEG data were split into epochs of 5
seconds in length with a 1.5 second overlap on each side (providing 2 unique seconds within each epoch
for frequency-power computation and a su�cient buffer on each side of the epoch to prevent edge
effects from in�uencing computations). Epochs that showed improbable voltage distributions or kurtosis
values exceeding 5SD for any single electrode or 3SD for all electrodes were rejected. The percentage of
rejected epochs from each participant was consistent with prior research and remained below 15%
(Kosciessa et al., 2020). Epoching for the HEP analysis is reported below.

Pre-processing of ECG data was conducted using the software HRVanalysis (Pichot et al., 2016). The
program automatically detects R-peaks and constructs beat-to-beat (RR) signals as a series of time
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differences between successive heartbeats (Pichot et al., 2016). The software allows for the automatic
correction of invalid or missing beats using a formula developed by Kamath et al. (2013). Although these
corrections generally result in a clean RR signal, they can still produce inconsistent values when the
original ECG signal is too corrupted. Thus, R peaks were also visually inspected and corrected when
necessary.

2.3.2 EEG Processing
HEP data was analysed using EEGLAB (Delorme & Makeig, 2004) and HEPlab (Perakakis, 2019). HEPLAB
is an EEGLAB plugin able to automatically detect R peaks in raw ECG signals using a peak detection
algorithm developed by Azevedo De Carvalho et al. (2002). Detected R peaks (events) were visually
inspected, and artifacts were corrected when necessary. R peak events were then saved to EEGLAB’s EEG
structure. EEG data were epoched around the R peaks (-100 to 650ms). Epochs with two R-peaks within
700ms of each other were excluded from the analysis to ensure that the cardiac �eld artifact of the
following heartbeat could not drive any observed effects (Petzschner et al., 2019). On average, in the EC
condition, 189.43 (SD = 24.48) epochs were included in the analysis for Controls and 194.06 (SD = 33.64)
epochs were included for Meditators. In the EO condition, on average 196.53 (SD = 28.62) epochs were
included for Controls and 197.3 (SD = 34.7) epochs were included for Meditators. No signi�cant
differences were found between groups in the number of epochs included (all p > 0.05). Previous studies
on HEPs have avoided performing baseline corrections of the data (which are typically applied in event-
related potential analyses) to avoid introducing artefactual biases from preceding heartbeats (e.g.,
Petzschner et al., 2019). However, electrode voltages can slowly drift, and baseline correction is typically
performed to normalise voltages and address this potential confound. Without baseline correction, there
is the potential for differences to be explained by slow electrode drift. To correct for potential voltage
drifts, a regression baseline correction (rather than the traditional subtraction baseline correction) was
used (Alday, 2019). The regression baseline correction method averages the amplitude of voltage within
the baseline period and records the value for each trial separately. The regression baseline correction is
then performed on each channel separately by regressing out the variance in the HEP from the baseline
period. This approach does not introduce differences from the baseline into the HEP (in contrast to the
subtraction baseline correction method, which transposes baseline differences into the active period of
interest; Bailey et al., 2023). The speci�c implementation of the regression baseline correction method
used is provided in (Bailey, Hill, et al., 2022). Separate analysis was also conducted without baseline
correction to directly replicate previous research, the results of which are reported in supplementary
materials 1.

Frontal-midline theta activity was computed at electrodes Fz, FCz, and Cz using a Mortlet Wavelet multi-
taper convolution transform with a 6-cycle width and a Hanning taper to provide a measure of power in
the 3–8 Hz frequency range. Wavelet transforms calculate the power spectrum accounting for variation
in both the frequency and time domains, and thus this transform is more appropriate for analysing
signals with transient or non-stationary characteristics (which are commonly present in EEG data) than
Fourier transforms (Bulnes, 2022). To extend the methods reported by Tang et al., (2009) and reduce the
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potential for confounds, 1/ƒ non-oscillatory activity was subtracted from theta power calculations using
the methods provided by the eBOSC toolbox (Kosciessa et al., 2020). These power values were then
averaged, resulting in a single value of theta power at each electrode.

Wavelet entropy for EEG was calculated based on methods by (Gao et al., 2016). The calculation gives a
summary estimate of signal complexity at each EEG channel. The procedure for computation was as
follows (Gao et al., 2016, supplementary materials, p. 2):

Given a signal, the wavelet coe�cients are calculated as , where  is an orthonormal
basis of the Harr wavelet family and  denoting the decomposition levels. The relative

energy is de�ned as , with  and the wavelet entropy is calculated as .

2.3.3 ECG Processing
RMSSD was obtained by �rst calculating the squared value of the time difference (in ms) between each
adjacent RR interval (RRI). This value was then averaged, and a square root of the total was calculated
(Pichot et al., 2016; Shaffer & Ginsberg, 2017). Frequency domain HRV metrics were also calculated for
comparison with RMSSD. The power spectral density (PSD) for the RRI time series was calculated using
Welch’s periodogram algorithm with a Hamming window of 256 points, an overlap of 50%, and a
precision of 256 points/Hz. From the resulting PSD estimate, very low frequency (VLF, 0.003–0.04Hz),
low-frequency (LF, 0.04–0.15Hz), and high-frequency (HF, 0.15–0.4Hz) spectral powers, their ratio (LF/HF
ratio), as well as the normalized units of both LF and HF components (nuLF and nuHF) were calculated.
Calculations for nuLF and nuHF are as follows: nuLF = 100 x LF/ (total power – VLF) and nuHF = 100 x
HF / (total power - VLF). Total power for short recordings is calculated as the sum of VLF, LF, and HF
bands (Shaffer & Ginsberg, 2017). RMSSD and HF-HRV were highly correlated (all r > .8, p < .001) within
all groups and conditions. Descriptive metrics for the HRV measures are presented in supplementary
materials 2.

The wavelet entropy of heart rate activity was calculated from the RRI time series across both EO and EC
conditions. Following Gao et al. (2016)’s methods, a sliding window of 200 RRIs and a step length of 10
was applied to derive entropy estimates using the same method as described above for EEG entropy.
These estimates were then averaged to yield a summary statistic of individual RRI entropy for each
participant per condition.

2.4 Statistical Comparisons
Statistical comparisons of HEP differences between groups were conducted using the Randomization
Graphical User Interface (RAGU), which uses rank order randomization statistics to compare global scalp
�eld differences from all electrodes and epoch time points between groups, assessing differences in
overall neural response (Koenig et al., 2011). For the primary analysis, a Global Field Power (GFP) test
was performed to assess whether overall HEP amplitude differed between groups irrespective of scalp
distribution differences. GFP is a reference-free EEG measure, which avoids an arbitrary choice of an EEG

ci =< x, φi > φi

i = 1, 2, … , N

pi = c2
i /∑N

i=1 c2
i

N

∑
i=1

pi = 1
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reference montage (Koenig et al., 2011). RAGU uses the spatial standard deviation of the electric �eld
from all electrodes simultaneously to obtain a single GFP value for each point in time across the epoch,
thus controlling for multiple comparisons across space. A Topographic Analysis of Variance (TANOVA)
was also performed on the baseline corrected data using the recommended L2 normalisation to
determine whether groups differed in the distribution of HEP activity across all electrodes. This L2
normalisation of the data accounts for differences in the variance between maps and is calculated
through the division of all possible values of a map by its GFP (Habermann et al., 2018)

Additionally, the topographical Consistency Test (TCT) was performed to assess the consistency of
topographical activation within groups, in order to con�rm that any between group differences were not
simply due to inconsistency within one of the groups (Koenig & Melie-García, 2010). Inconsistent
topographical activation can be interpreted as within group variability and supports the null hypothesis of
no difference from 0 signal within a group/condition, whereas consistent topographical activation within
groups allows valid TANOVA comparisons between groups and conditions (Koenig & Melie-García, 2010).
The TCT analysis is presented in supplementary materials 3.

Comparisons of HEP data were made for a 200 to 650ms window following the R-peak (Petzschner et al.,
2019). GFP and TANOVA tests used a 2 group × 2 conditions (EC and EO) design. The recommended
5000 randomization runs were employed for each statistical test. Global duration statistics were used to
control for multiple comparisons across time points within the epoch. Global duration statistics calculate
the duration of signi�cant effects within the epoch that are longer than 95% of signi�cant periods in the
randomized data. This ensures that signi�cant differences in the real data last longer than the random
comparison data with our alpha level of 0.05 (Grieder et al., 2012). In order to determine whether the
difference between groups in age affected the results, the Topographical Analysis of Covariance
(TANCOVA) was used to test the relationship between age and the HEP data. TANCOVA functions the
same as TANOVA except it tests the relationship between a continuous numerical predictor and the neural
data (rather than testing a between groups comparison).

For the second primary analysis, an average of the theta values across the three frontal-midline
electrodes was calculated for the EC condition separately for each group. Lower within group variability
was observed for EEG data in the EC condition and thus tests of the relationship between RMSSD and
fm-theta activity in the EC condition were chosen as the primary analysis. Using the software JASP
(Version 0.14.1; JASP Team, 2021), a regression analysis was performed to examine the relationship
betweenthe averaged fm-theta (after the removal of 1/f activity) and RMSSD in both groups, with age
included as a covariate. To examine the relationship between EEG and ECG wavelet entropy values, a
regression analysis was performed between the average EEG entropy values and RRI entropy values for
each group, again with age included as a covariate (Shaffer et al., 2014).

Lastly, the Benjamini and Hochberg false discovery rate (FDR; Benjamini & Hochberg, 1995) was used to
control for multiple comparisons across all primary statistical tests. The correction was implemented on
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the global count p-values from each main effect or interaction in RAGU, and on the overall p-values from
the regression analyses.

3. Results

3.1 Heartbeat Evoked Potentials

3.1.1 TANOVA
TANOVA using the recommended L2 normalisation for variation in amplitude was performed to examine
whether groups differed in the distribution of HEP activity across all electrodes (independently of overall
amplitude). A signi�cant main effect of group was found from 200 to 294ms that survived global
duration controls (33ms) for multiple comparisons, and also passed the global count statistic (global
count statistics across the whole epoch p = .01, FDR p = .04). This result was also signi�cant when
activity was averaged across a window showing the signi�cant effect, from 200 to 294ms (p = .001,
partial η² = .06), with meditators showing HEP with a more central posterior distribution of positive
voltages during this window. No interaction between group and condition (EC and EO) was present (p 
> .05), except for a few brief time periods that did not last longer than duration control multiple
comparisons (global count statistics across the whole epoch p = .79). Figure 1 depicts topographical
differences between groups for the signi�cant window from 200 to 294ms.

3.1.2 GFP
An exploratory GFP randomization test was performed to assess whether the strength of HEP amplitude
differed between groups irrespective of scalp distribution differences. There was no signi�cant main
effect of Group, with no periods of signi�cance lasting longer than the duration control of 43ms (global
count statistics across the whole epoch p = .45, FDR p = .5), nor interaction for Group x Condition (EC and
EO; global count statistics across the whole epoch p = .72). See Fig. 2.

To assess whether age in�uenced the altered distribution of HEP activity shown in the TANOVA test, a
TANCOVA was performed between the averaged activity within the signi�cant period shown in the
TANOVA and participant age. TANCOVA between age and topographies averaged across the signi�cant
HEP window (200 to 294ms) were not signi�cant within both meditator (p = 1) and control groups (p = 1)
across both EC and EO conditions, suggesting those HEP topographies were not related to age.

3.2 Frontal-Midline Theta and Heart Rate Variability
A linear regression was performed to assess whether RMSSD could be predicted from averaged fm-theta
(after the subtraction of 1/f activity) in the EC conditions for both groups with age included as a
covariate. The relationship between fm-theta and RMSSD was signi�cant within the meditator group
(F(2,34) = 4.18, p = .02, FDR p = .04, R2 = .2). fm-theta signi�cantly predicted RMSSD (β = 3.11, p = .02); no
signi�cant relationship was found between age and RMSSD (β = -0.54, p = .07). For the control group, the



Page 15/35

overall regression was signi�cant with age included in the analysis (F(2,32) = 3.72, p = .04, R2 = .19). Age
signi�cantly predicted RMSSD (β = − .82, p = .01); however, fm-theta did not signi�cantly predict RMSSD
(β = − .6.67, p = .53).

3.3 Wavelet Entropy
To examine the relationship between EEG and RRI wavelet entropy values, a linear regression was
performed with age included as a covariate. No signi�cant relationship between EEG and RRI wavelet
entropy values was present in either the meditator group (F(2,34) = .71, p = .5, FDR p = .5) or the control
group (F(2,32) = 3.11, p = .06). For comparison with previous research, exploratory group comparisons
were made for EEG entropy and RRI entropy separately. A signi�cant difference in RRI entropy (F(1,57) = 
5.02, p = .03, η² = .08) was found between meditators and controls, with controls exhibiting higher RRI
wavelet entropy values (see Fig. 3). No signi�cant difference was found in EEG wavelet entropy between
groups (F(1, 70) = .01, p = .93). See supplementary materials 4 for mean and standard error of EEG and
ECG Entropy.

4. Discussion
To our knowledge, the present study is the �rst to examine resting-state differences in the interaction
between brain activity and heart activity between healthy controls and experienced meditators (while
participants were not actively meditating). Meditators showed a HEP with more central posterior positivity
compared to the control group. A signi�cant relationship was also found between fm-theta activity and
RMSSD, indicating stronger coupling between brain and heart activity within the meditator group than in
the control group. Finally, an exploratory analysis showed lower heartbeat entropy values in meditators
compared to controls, suggesting lower complexity (or less uncertainty / lower information content) in
their heart activity signals. These results provide evidence of differences in neural processing of
heartbeat signals and greater coupling between brain and heart functioning in long term meditators, and
that these effects were present outside of active meditation practice.

4.1 More Central Posterior Distribution of HEPs in
Meditators
The inclusion of both the TANOVA with L2 normalisation and GFP analysis provides evidence that, while
neural responses to the heartbeat signal were equal in strength between the groups (no difference in GFP
amplitude), there was a between group difference related to the distribution of neural activity during the
HEPs. As this study was the �rst to examine the effects of long-term mindfulness-meditation experience
on HEPs at rest, there is scant literature available to directly compare our results. When examined in light
of existing HEP literature, the differences in neural distribution of activity between groups during the HEP
window could suggest enhanced susceptivity to physiological signals and thus greater brain-heart
coupling in meditators. For instance, Pollatos and Schandry (2004) examined differences in the
topographical distribution of the neural HEP between individuals who were accurate heartbeat perceivers
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and individuals who showed poor accuracy in their heartbeat perception. To test for the accuracy of
heartbeat perception, participants were given a time window to count their own heartbeats in silence
while an ECG recorded their actual heart beats. The authors noted a signi�cant difference between the
accurate heartbeat perceivers and inaccurate heartbeat perceivers in the distribution of neural HEP
activity. Results revealed that those with high scores on the heartbeat detection task (considered good
heartbeat perceivers) showed a HEP distribution with positive voltage maximums predominantly over the
parietal and fronto-central regions, an effect that is similar to the distribution found in our meditation
group.

Fronto-central activity during the HEP window is thought to be modulated by attention (Canales-Johnson
et al., 2015; García-Cordero et al., 2017; Marshall et al., 2018), while HEPs over the parietal region are
thought to be in�uenced by external sensory stimulation (Al et al., 2020, 2021). In two studies by (Al et al.,
2020, 2021), participants undertook a sensory detection task where they were instructed to attend to
electrical stimulation over the �nger and asked whether they felt the stimulation after each trial while their
EEG was simultaneously recorded. The authors found that HEP amplitudes over centro-parietal regions
were greater when participants missed the stimulation compared to when they felt the stimulation. This
could suggest that centro-parietal HEPs index the depth of interoceptive (as opposed to exteroceptive)
processing. Similarly, the greater HEP amplitudes observed over the parietal region in the current study
might suggest that meditators were less distracted by external sensory stimulation while at rest and were
more attuned to their interoceptive signals.

Relating to the Bayesian brain hypothesis, the difference in HEP distribution over the parietal region might
imply enhanced neural sensitivity to interoceptive feedback. In a study by (Baranauskas et al., 2021), HEP
amplitudes were found to be more positive at the centro-parietal areas when the current RRIs was longer
than the preceding RRI, suggesting that increased parietal processing of heart rate information is
associated with a longer postponement of the next heartbeat. Under the Bayesian Brain framework,
increased activation in these regions when RRIs are prolonged could be indicative of reduced weighting
of existing beliefs and increased processing of interoceptive prediction errors based on sensory input
(Baranauskas et al., 2021; Smith, 2017) an effect that a Bayesian brain perspective on mindfulness has
suggested is likely to be present (Manjaly & Iglesias, 2020).

Taken together, group differences in the topographic distribution of HEPs in our study might indicate that
meditators were more sensitive to bottom-up sensory feedback and less distracted by external sensory
stimuli than the control group. Future studies could test for corroborating evidence for this interpretation
by including a separate heartbeat detection task to examine whether increased heartbeat-evoked activity
over parietal-occipital regions correlates with higher heartrate detection scores in experienced meditators
while they are at rest. This could provide further evidence of mindfulness-related enhancements in
interoceptive accuracy (however, note that the validity of heartrate detection scores is still being debated;
Ring et al., 2015; Ring & Brener, 2018; Zamariola et al., 2018).
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In contrast to the hypothesis that experienced meditators would show greater HEP amplitudes than the
control group, no signi�cant group differences were found in global HEP amplitudes. Our prediction for a
difference in global HEP amplitudes was based on the assumption that HEP amplitude across the whole
brain would re�ect increased weighting of the interoceptive signal, as HEP amplitude in past studies has
been associated with greater interoceptive sensitivity to the heartbeat (Canales-Johnson et al., 2015;
Judah et al., 2018; Petzschner et al., 2019). The contrast between our �nding and previous research might
not be indicative of a lack of difference in interoceptive sensitivity in meditators in our study, but instead
could be due to differences in the analysis methods employed. Previous studies that have demonstrated
differences in HEP amplitude between conditions or groups have tended to focus on either single
electrode analyses (Judah et al., 2018; Schulz et al., 2015) or brain region of interest differences in HEP
amplitudes (Canales-Johnson et al., 2015; García-Cordero et al., 2017; Marshall et al., 2018). Analysis of a
single parietal or occipital electrode in the current study would likely show higher HEP amplitudes in the
meditator group than the control group, as our test of the topographical distribution of activity during the
HEP window show that these electrodes had increased positive voltages compared to controls. However,
single electrode analyses are unable to discriminate between differences in the distribution of neural
activity and differences in the strength of neural response (Koenig et al., 2011). Similar issues arise with
comparisons of regional brain differences in HEP amplitude. By including all electrodes in our analysis,
we were able to determine that the difference between groups was produced by a difference in the
distribution of neural activity, and as such, we were able to more accurately characterise inter-individual
differences in the activation patterns of event-related neural responses.

4.2 Association between fm-theta and HRV in Experienced
Meditators
As predicted, a signi�cant positive correlation was found between fm-theta and vagally-mediated HRV
(RMSSD) in meditators, while no such relationship was found for the control group. These results extend
those reported by Tang et al., (2009) who found a correlation between the percentage change in fm-theta
power and nuHF in a sample of participants after 5 days of meditation training. First, we found additional
evidence of a positive association between fm-theta and HRV in meditators, whereby meditators with
higher RMSSD tended to demonstrate greater theta-band activity. Crucially, our estimates of theta-band
power were corrected to eliminate the potential confounding effect of differences in1/f non-oscillatory
activity (Donoghue et al., 2020). Secondly, the present study determined that the relationship between fm-
theta and HRV was present in meditators at rest, indicating that mindfulness-meditation may alter brain-
heart interaction while participants were in a general state of relaxed awareness, and that effects are not
limited to when meditators are actively meditating.

The results are in line with previous research linking theta activity to HRV, particularly RMSSD. For
example, signi�cant positive correlations between theta power and RMSSD have been observed in
healthy participants while at rest and when participants were asked to take deep slow breaths (Sinha et
al., 2020). In research using brain stimulation techniques, increases in fm-theta activity through
intermittent theta-burst stimulation (iTBS) - a form of brain stimulation that modulates theta activity (see
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Suppa et al. (2016) for a comprehensive review of iTBS) – have been found to relate to increased RMSSD
post stimulation (Cosmo et al., 2022; Keerthy et al., 2021). Both fm-theta and RMSSD are also associated
with vagal tone (Kubota et al., 2001; Shaffer et al., 2014). Vagal tone re�ects parasympathetic control
over heart rate and is sensitive to attentional demands (McLaughlin et al., 2015; Park et al., 2012). For
example, increased working memory and attention demands have been shown to lower RMSSD,
suggesting a cognition-related reduction in vagally-mediated cardiac activity (Hansen et al., 2003).
Greater vagal activity has also been found in individuals with greater attentional control in attention
demanding tasks (Park et al., 2012). Fm-theta has been implicated in mindfulness-related reduction in
mind wandering and improved attentional functioning (Baijal & Srinivasan, 2010; Brandmeyer & Delorme,
2018; Cavanagh & Shackman, 2015; Clayton et al., 2015). Given the above points, the signi�cant
relationship between fm-theta activity and RMSSD in experienced meditators may suggest altered co-
ordination of central and autonomic nervous system functioning and greater vagal tone due to increased
attentional control (Shaffer & Ginsberg, 2017).

These �ndings are also congruent with mindfulness research that has identi�ed changes in activity and
volume in the ACC in experienced meditators (Fox et al., 2012, 2016; Zsadanyi et al., 2021). For example,
in a fMRI study, Short et al., (2010) examined regional brain activation in meditators during a 12-minute
meditation session. The authors found that during meditation, experienced meditators showed more
stable and sustained activation in the ACC region than meditators without much experience in
meditation. In a separate study, increased cortical thickness of the ACC has been demonstrated in
experienced meditators compared to controls (Grant et al., 2010). Mindfulness techniques enhance
attention and acceptance for one’s inner and outer experiences reducing emotional reactivity (Kabat-Zinn,
1994). Enhanced attentional functioning and reduced emotional reactivity are both associated with
modulation of the ACC in meditators (Tang et al., 2016; Wheeler et al., 2017; Zsadanyi et al., 2021). The
ACC is also associated with parasympathetic regulation and thus is directly related to the modulation of
HRV (Beissner et al., 2013). Together, �ndings from the present study demonstrate that long term
mindfulness practice might enhance parasympathetic modulation, an effect illustrated by the increased
connection between fm-theta and RMSSD, and that these effects are retained outside of active
meditation practice.

4.3 No Signi�cant Correlation in EEG and RRI Wavelet
Entropy in Meditators and Controls
Unlike �ndings reported by Gao et al. (2016) and Sik et al. (2017), EEG and RRI wavelet entropies were not
signi�cantly correlated in the meditator group, nor in the control group. Nor were there differences
between the groups in EEG measures of wavelet entropy. The inconsistency between our �nding and the
previous research could be attributed to a number of factors. Entropy values measured in the EEG are
sensitive to attentional state, and entropy values have been shown to be correlated with changes in
mental focus, attention, and cognitive fatigue (Azarnoosh et al., 2011; Wang et al., 2015). Both EEG and
RRI wavelet entropy has also been associated with alertness levels in participants (Lin et al., 2018). In the
research by Gao et al. (2016) and Sik et al. (2017), EEG and RRI wavelet entropy were signi�cantly
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correlated during active meditation practice, and were not signi�cantly correlated while participants were
at rest. As such, our null result may indicate that the relationship between RRI and EEG wavelet entropy
may be dependent on whether participants are actively engaged in an attention-related exercise, and as
such the resting state recordings in our study did not reveal any relationship. Thus, coherence between
EEG and RRI wavelet entropies may be state-dependent, manifesting when participants are meditating
but not at rest.

A notable �nding in our study was the higher RRI wavelet entropy in controls relative to experienced
meditators. As discussed, wavelet entropy indexes the amount of information within the signal, with
greater entropy values indicating more signal irregularity (Natwong et al., 2006). This technique has been
adopted to investigate and detect abnormal heart activity (Natwong et al., 2006; Ródenas et al., 2015).
For example,Natwong et al. (2006) found that patients with ventricular late potentials (VLP; a marker of
heart disease) showed higher RRI wavelet entropy than patients without VLPs. Additionally, in testing for
confounding variables, we also investigated the relationship between age and RMSSD. The results
revealed that for controls, RMSSD correlated signi�cantly negatively with age, while for meditators, the
relationship between age and RMSSD was not signi�cant. RMSSD has been consistently shown to
decrease with age, signaling a decline in top-down parasympathetic modulation of HR (Umetani et al.,
1998; Voss et al., 2012). Our results for the control group are thus in line with past research, while for
meditators ageing appears to have less impact on top-down parasympathetic modulation of HR.
Together with the wavelet entropy �ndings, the results could suggest that mindfulness practice may
decelerate age-related decline in top-down parasympathetic modulation, thus helping to preserve better
heart health as demonstrated by lower RRI entropy values.

4.4 Limitations and Future Direction
Engagement in mindfulness-meditation can be in�uenced by various socio-demographic factors such as
education level, with those of higher education more likely to practice mindfulness-meditation (Olano et
al., 2015). While the present study matched participants across groups with similar education level,
differences in personality characteristics, life experiences, and even neurobiological traits that motivate
mindfulness practice remain as limitations in cross-sectional studies (Mascaro et al., 2013). The lack of
standardisation of meditation practices across the meditators included in our study could also present as
a limitation. Meditators were identi�ed based on a set of inclusion criteria that were consistent with
Kabat-Zinn. (1994, p.4)’s description of “paying attention in a particular way: on purpose, in the present
moment, and nonjudgmentally”. However, the school and tradition of their practice varied and thus our
meditator group were not uniform in the techniques practiced. This presents a barrier to the conclusions
we have drawn, as our conclusions are not limited to a set of clear de�nitive practice techniques. This
factor does however allow for the generalisation of the result across different mindfulness-meditation
practices with techniques resembling those set out in our inclusion criteria. A potential confounding
variable in our study was the signi�cant age difference between groups. However, since age did not
correlate signi�cantly with any of the outcome variables of interest in our primary analyses (except with
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RMSSD in the control group) the difference between groups in age does not affect our interpretation of
the results.

Summary
Our results showed that long-term mindfulness-meditation practice can enhance brain-heart integration,
supporting both a Bayesian Brain model that suggests mindfulness affects the brain-heart relationship
by increasing bottom-up processing of sensory signals, and a model that suggests mindfulness
increases top-down regulation of the heart by fm-theta activity. The detection of differences in the brain-
heart connection is particularly signi�cant for understanding mindfulness-speci�c effects on ANS
function (Tracy et al., 2016; Wu & Lo, 2008). Overall, the study’s results promote a greater understanding
of the mechanisms underlying mindfulness-related effects on the brain-heart connection and offer
insights to the potential health consequences of long-term mindfulness practice.
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Figures

Figure 1

a – TANOVA using L2 normalisation p-graph showing the signi�cant main effect of group and p-values
across the duration of the epoch (global count statistics across the whole epoch p = .01, FDR p = .04).
Green bars re�ect periods that exceeded the duration control for multiple comparisons across time
(33ms). This period was a longer duration of signi�cance than 95% of the 5000 randomizations. b –
TANOVA with L2-normalisation topographic maps for each group and a t- map for meditators topography
minus control topography during the 200 to 294ms time window (averaged across the signi�cant period,
p = .001, partial η² = .06)
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Figure 2

a - Main effect of group in GFP test across the duration of the epoch (no signi�cant periods lasted longer
than the duration control of 43ms). b - Group effects by conditions (EC and EO) interaction in GFP test
across the duration of the epoch. No signi�cant main effect of Group, nor interaction for Group x
Condition in GFP were present
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Figure 3

Mean RRI entropy by group. Error bars represent standard error. *p < .05
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