Engineered spin-electric coupling enables spin qubits in semiconductor nanostructures to be manipulated efficiently and addressed individually. While synthetic spin-orbit coupling using a micromagnet is widely used for driving qubits based on single spins in silicon, corresponding demonstration for encoded spin qubits is so far limited to natural silicon. Here, we demonstrate fast singlet-triplet qubit oscillation (~100 MHz) in a gate-defined double quantum dot in 28Si/SiGe with an on-chip micromagnet with which we show the oscillation quality factor of an encoded spin qubit exceeding 580. The coherence time T2* is analyzed as a function of potential detuning and an external magnetic field. In weak magnetic fields, the coherence is limited by fast noise compared to the data acquisition time, which limits T2* < 1 μs in the ergodic limit. We present evidence of sizable and coherent coupling of the qubit with the spin states of a nearby quantum dot, demonstrating that appropriate spin-electric coupling may enable a charge-based two-qubit gate in a (1,1) charge configuration.