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Abstract

In the context of distributed systems, Byzantine fault tolerance plays a critical role in ensuring

the normal operation of the system, particularly when facing with malicious nodes. However, chal-

lenges remain in enhancing the security and reliability of Byzantine fault-tolerant systems. This paper

addresses these challenges by improving a Byzantine fault-tolerant approach based on stake evaluation

and improved consistency hashing. We propose a method that leverages node stakes to enhance system

security and reliability by allocating different trust values. Additionally, we introduce improvements

to the consistency hashing technique, enabling its effective operation in a Byzantine fault-tolerant

environment. By introducing redundant nodes on the hash ring to mitigate the impact of malicious

nodes, we enhance system fault tolerance and scalability. Experimental results demonstrate a signif-

icant improvement in system security and performance using this approach. These findings suggest

that our method holds considerable potential for widespread application in the field of Byzantine fault

tolerance, supporting the development of more reliable blockchain systems.

Keywords: Byzantine Fault Tolerance, Equity Assessment, Consistent Hashing, Security, Reliability,
Distributed Systems

1 Introduction

Over time, blockchain technology [1] has experi-
enced rapid development and found widespread
applications in numerous domains, ranging from
finance to supply chain management and health-
care [2–4]. As a form of distributed ledger tech-
nology, blockchain addresses the inherent issues

of trust and reliability found in traditional
centralized systems. For instance, considering
global financial transactions, blockchain technol-
ogy ensures transparency, fraud prevention, and
reduces intermediaries between financial institu-
tions.

However, ensuring consensus among various
nodes in a distributed environment is a critical
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task, particularly in scenarios involving crucial
data and assets. Consensus algorithms, by ensur-
ing consistency among distributed nodes, provide
a solid foundation for the trustworthiness and
availability of blockchain.

Among these algorithms, Practical Byzantine
Fault Tolerance (PBFT) [5] is a widely adopted
consensus algorithm in blockchain applications in
various domains, including finance, supply chain
management, and governmental sectors [6–8]. For
instance, in supply chain management, PBFT can
be employed to verify and authorize each step
from production to delivery, enhancing traceabil-
ity and transparency in the supply chain.

Despite making substantial progress in
addressing Byzantine fault tolerance, PBFT still
faces several crucial challenges. Firstly, when the
number of nodes is substantial, PBFT incurs
higher communication overhead and latency,
which can affect system performance and scal-
ability, especially in high-frequency trading and
large-scale systems. Secondly, the algorithm’s
fault tolerance concerning Byzantine nodes relies
on assessing node stakes, and accurately evalu-
ating node stakes remains a challenging issue.
For example, in supply chain management, node
stake assessment may be influenced by various
factors like supplier history and delivery records.

Therefore, this research aims to address the
aforementioned challenges by proposing an inno-
vative approach that combines equity assessment
and enhanced consistency hashing to improve the
performance and security of PBFT. The contribu-
tions of this article are as follows.

1. Designing a more precise and comprehen-
sive equity assessment mechanism that considers
various factors such as historical behavior, contri-
bution, and reputation. We will introduce a more
complex equity calculation model to accurately
reflect a node’s value within the system.

2. Innovatively designing a distributed primary
node selection mechanism to mitigate single-point
failures and centralization risks. The introduction
of a group hash ring will enable multiple nodes to
participate in the primary node selection process,
enhancing the algorithm’s robustness and security.

3. The introduction of a delayed view change
mechanism that dynamically adjusts the timing
of view changes based on system load and node
status. This helps to avoid unnecessary switching
and reduces system overhead.

The remaining sections of this paper are orga-
nized as follows: In Section 2, we will delve into
the preliminary work related to this research.
Section 3 will provide a detailed overview of our
proposed SC-PBFT design. In Section 4, we will
demonstrate the effectiveness and performance
advantages of our approach through experiments
and analysis. Finally, in Section 5, we will conclude
the entire paper.

2 Related work

In recent research of Byzantine fault tolerance,
several pioneering papers have attracted consid-
erable attention. Gao et al. [9] have introduced
T-PBFT, a multi-stage consensus algorithm opti-
mized through the utilization of the Eigen-Trust
model. Their primary objective is to significantly
enhance the performance and efficiency of Byzan-
tine fault-tolerant consensus mechanisms. Li et al.
[10] have proposed a scalable multi-layer PBFT
consensus mechanism, with the aim of address-
ing performance bottlenecks in blockchain systems
relying on proof of work (PoW). Moreover, Lao
et al. [11] have formulated G-PBFT, a consensus
protocol meticulously designed for IoT-blockchain
applications. It takes into meticulous considera-
tion the distinctive requirements of this domain
and harnesses the inherent characteristics of fixed
IoT devices to reduce exposure to malicious
nodes, while concurrently improving consensus
efficiency. Mǐsić et al. [12] have introduced a PBFT
ordering service custom-tailored for permissioned
blockchain environments. In stark contrast to
current PBFT implementations, they have inno-
vatively presented a single entry point for ordering
services, thereby enabling each ordering node to
function as an entry point and execute the con-
sensus process for the inclusion of new records
within the distributed ledger. Li et al. [13] have
proposed the Extensible-PBFT (EPBFT) con-
sensus algorithm, which can adapt its steps to
achieve consensus based on the network environ-
ment of the system. By incorporating the use
of Verifiable Random Functions (VRF) for con-
sensus node election, EPBFT becomes suitable
for dynamic networks. Furthermore, Xu et al.
[14] have propounded SG-PBFT, a solution that
achieves heightened consensus efficiency through
the optimization of the PBFT consensus pro-
cess and the application of a fractional grouping
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mechanism. This approach alleviates the strain
on central servers and diminishes the vulnerabil-
ity to single-node attacks. Tang et al. [15] have
introduced tPBFT, which incorporates a trust
and equity scoring mechanism among nodes. This
integration facilitates the dynamic selection of
consensus nodes, consequently enhancing system
security and bolstering trustworthiness.

Yang et al. [16] have introduced novel node
decision broadcast and threshold voting count
models, which notably enhance the fault toler-
ance of consensus nodes. Through the amalgama-
tion of these models, the authors have conducted
joint failure analyses of nodes, thus ensuring that
the system’s fault tolerance surpasses the crit-
ical threshold of one-third when compared to
traditional PBFT algorithms. In juxtaposition
to traditional PBFT algorithms, Xu et al. [17]
have proposed ABC-GSPBFT, which introduces
a grouping scoring mechanism and an artificial
bee colony optimization consensus process. These
sophisticated optimizations are expressly aimed at
enhancing consensus efficiency, curtailing commu-
nication overhead, and fortifying the reliability of
consensus nodes. Additionally, Xie et al. [18] have
proffered a node election methodology grounded
in the Probabilistic Linguistic Term Set (PLTS)
for PBFT consensus. This method demonstrably
enhances the efficiency of consensus attainment
by introducing the concept of confidence inter-
vals (PLTS-CI) to represent uncertain and intri-
cate voting information during the node election
process.

Lastly, Liu et al. [19] have introduced P-
PBFT, a seminal contribution that addresses
prevailing issues such as elevated latency, exces-
sive system overhead, and constrained support
for small-scale applications. The algorithm’s opti-
mization methodology involves the grouping of
large-scale network nodes based on their response
speeds, subsequently conducting group-based con-
sensus. This innovative approach substantially
diminishes inter-node communication overhead
and augments consensus efficiency. Furthermore,
Zhang et al. [20] have proposed an optimiza-
tion scheme for blockchain consensus algorithms,
grounded in genetic algorithms. This approach
meticulously utilizes genetic algorithms to itera-
tively select consensus node groups characterized
by exceptional performance indicators through the
PBFT consensus process. These high-performance

nodes are inherently regarded as more reliable
and can be effectively harnessed in the forma-
tion of consensus node groups. Li et al. [21]
have introduced the “Mandala” model, which
is predicated on a “Mesh-and-Spoke Network”
architecture, meticulously organizing nodes into
discrete layers and regulating communication pro-
tocols among these layers. This innovative network
structure markedly enhances network transmis-
sion efficiency and possesses the inherent potential
to address the prevalent issue of low transmission
efficiency in blockchain networks.

3 SC-PBFT Algorithm
Framework

In this section, we present the design of the SC-
PBFT (Stake Evaluation and Consistent Hashing
Practical Byzantine Fault Tolerance) algorithm.
Our algorithm aims to improve the PBFT consen-
sus algorithm by incorporating stake evaluation
and consistent hashing techniques. The following
subsections outline the key components of the
SC-PBFT algorithm.

3.1 Accurate Stake Evaluation

Mechanism

When it comes to the PBFT algorithm, a group
of supervisory nodes is required to oversee the
entire consensus process. Typically, nodes that
have staked a certain number of tokens in the net-
work are qualified to become supervisory nodes. In
this paper, we employ a mechanism based on node
performance to select these supervisory nodes,
ensuring that only nodes with a vested interest in
network security can participate and oversee the
consensus process.

Simultaneously, we introduce the concept of
Shapley value [22], which is a method used to
distribute rewards among cooperative members
in game theory. Incorporating this concept into
the blockchain consensus mechanism encourages
nodes to actively participate in consensus and
ensures a fair and equitable distribution of rewards
[23, 24]. This approach helps determining the
value and contribution of each participant in coop-
erative gameplay, thereby enhancing the efficiency
and fairness of the entire consensus process.

In the context of blockchain consensus mecha-
nisms, particularly when employing a stake-based
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evaluation mechanism to select supervisory nodes,
the Shapley value can be applied as follows:

1. Firstly, based on a credit assessment model,
identify the top 10% of nodes with high credit
scores from among all nodes. Assign unique iden-
tifiers to these nodes and form them into a credit
node set N .

N = {node1, node2, . . . , noden} (1)

2. During each consensus game, all nodes com-
pete for the right to record transactions and
validate new blocks. Identify the top-performing
10% of nodes that excel in promptly responding
to and validating new blocks. Assign unique iden-
tifiers to these nodes and form them into a timely
validation set M .

M = {node1, node2, . . . , nodem} (2)

3. Take the intersection of the credit node set
N and the timely validation set M to create a
new set W . This set comprises nodes that possess
both excellent creditworthiness and exceptional
performance in the validation process.

4. To determine the value of each alliance (sub-
set Z), define a value function v(Z). The function
v : 2N → R is defined for every set (a subset
of W , where W is the set of nodes with both
good creditworthiness and outstanding validation
performance), and it is specified that v(∅) = 0.

5. LetW represent the alliance of creditworthy
nodes. Therefore, for any credit alliance belong-
ing to W ⊆ 2N , its value function v(Z) can be
calculated based on the definition:

v(Z) =

{

α · θ(Z) + β · ψ(Z) + γ · ω(Z), Z ∈W

0, Z /∈W

(3)
6. Within the alliance node set, each node’s

Shapley value is calculated based on the formation
of alliances and the value function. This calcula-
tion reflects the node’s relative value in different
alliances.

φi(N, v) =
1

|N |!

∑

Z⊆N\{i}

|Z|!

(|N | − |Z| − 1)!

× [v(Z ∪ {i})− v(Z)] (4)

7. After introducing the time factor, a node’s
response time is considered as a factor influenc-
ing profit distribution. The node’s Shapley value
calculation is based on the time factor to reflect
the node’s performance and speed in the consen-
sus process. The node’s Shapley value calculation
formula is as follows:

φTi (N,V ) =
φi(N,V )

Te − Ts
(5)

where: Ts represents the start time when a new
block is prepared and broadcasted to the entire
network, Te represents the end time when online
nodes complete the legality verification of the new
block. Te−Ts represents the time elapsed from the
broadcast of the new block to the completion of
verification. Let T = Te−Ts, where a smaller value
of T indicates faster block verification by the node,
indicating a higher level of proactiveness in node
verification. Therefore, a smaller denominator in
the fraction results in a larger Shapley value for
the node, leading to higher rewards for the node’s
verification efforts.

8. Nodes with the right to validate transac-
tions and create new blocks receive block rewards
denoted as R. According to the nodes’ credit-
worthiness, the block rewards are redistributed.
Therefore, the ultimate benefit obtained by node
i within the alliance is determined as follows:

Ri = R · φTi (N,V ) ·
crediti

∑numW

j=1
crediti

(6)

3.2 Innovative Distributed Primary

Node Selection

This section outlines the selection and grouping
mechanism of the SC-PBFT consensus algorithm
illustrated in Figure 1. For the meaning of the
related symbols, please refer to Table 1.

To address the challenges of single-point fail-
ure and centralization risk, our proposed mech-
anism leverages the concept of group hashing
rings, allowing multiple nodes to participate in the
primary node selection process [25–29].

Assuming the blockchain system comprises a
total ofN nodes, among whichNc nodes are desig-
nated for consensus, while the remaining N0 nodes
are regular participants. Additionally, considering
the system’s fault tolerance, assuming f Byzan-
tine nodes exist among these Nc consensus nodes.
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Table 1 symbols used in SC-PBFT consensus
algorithm.

Symbol Meaning

N Total Number of Nodes
f Maximum Fault Tolerance of Nodes
N0 Regular Nodes
Nc Number of Consensus Nodes
Ns Number of Supervisory Nodes
NL Leader Nodes
Gi Group Number
k Number of Nodes in a Consensus Group

To ensure system reliability, it is imperative to
satisfy the condition Nc ≥ 3f + 1. Here, we set
Nc = 3f+1, representing the number of consensus
nodes.

Subsequently, we will employ a hash consen-
sus algorithm to group these Nc consensus nodes,
with each group consisting of k nodes. This pro-
cess will result in Nc/k groups. The following are
the specific steps:

1. Initialization of the Hash Ring: Firstly, each
node computes the hash value of its IP address,
such as hash(nodeip), and then maps these hash
values onto a range from 0 to 232 − 1 within a
hash ring. Notably, regulatory nodes form a dis-
tinct small hash ring, while all nodes collectively
establish a large hash ring. The primary consen-
sus process will occur within the confines of the
large hash ring.

2. Selection of Starting Node and Leader Node:
At the beginning of the initial consensus, we ran-
domly select a supervisory node, denoted as Ns1 ,
from the small hash ring as the starting point of
the consensus. Then, we choose 3f + 1 nodes in a
clockwise direction as consensus nodes, while the
remaining nodes are marked as ordinary nodes.
For these nodes, we record their respective trust
values and identifiers.

3. Formation of Groups and Election of Pri-
mary Nodes: Within the large hash ring, nodes are
categorized into different groups based on their
hash mapping values. Each group calculates a spe-
cific hash value, such as hash(hash(IPNL

) + k +
Gi), and selects the node closest to this hash value
as the primary node for the group. This primary
node assumes the leadership role in guiding the
consensus process for the respective group. It is
worth noting that the primary node of the first
group concurrently holds the position of the leader
node, with its IP address being Ns1 .

4. Consensus Process: Once the system is
operational, and the initial consensus is con-
cluded, the system initiates the re-selection of
leader nodes and other relevant nodes, while
excluding any potentially malfunctioning or mali-
cious nodes. This process involves the compu-
tation of a new hash mapping point, such as
hash(hash(preIPNL

) + k + preBlockhash). Subse-
quently, consensus nodes and group formations
are re-established following a similar procedure.
In each hash group, we select the node with the
highest trust value as the primary node. In cases
where multiple nodes possess identical trust val-
ues, the primary node is determined based on
proximity to the hash mapping point with the
highest trust value. It is important to note that
preIPNL

denotes the IP address of the preced-
ing leader node, while preBlockhash represents the
hash value of the previous block.

The above process provides a detailed expla-
nation of how to group consensus nodes and select
master nodes within a blockchain system. These
series of steps contribute to ensuring the high qual-
ity and reliability of the blockchain system while
meeting the requirements for fault tolerance.

Fig. 1 The uniform hash algorithm is used for grouping.
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3.3 Design of the SC-PBFT

Algorithm

SC-PBFT is an improvement over the traditional
PBFT algorithm, as shown in Figure 2, aiming to
enhance both performance and security. Here is an
overview of the SC-PBFT algorithm process:

1. Request Phase: The client initi-
ates the process by sending a message
to the primary node, signing it as
sign(REQUEST,operation,timestamp,clientID).
The REQUEST message includes specific details
such as the operation to be performed, appended
timestamp, and the client’s identifier.

2. Pre-Prepare Phase: The primary
node sends a message to the other
replica nodes, signed as sign(<PRE-
PREPARE,view,sequence,digest>,message).
Here, view represents the view number, sequence
denotes the sequence number of the pre-prepare
message, which should fall within a specific
range (e.g., [h, H]), and digest serves as the mes-
sage digest, typically used for verifying message
integrity. The message contains the actual content
of the message to be processed.

3. Prepare Phase (Node Verification): When
replica nodei receives the PRE-PREPARE mes-
sage from the master node, the node splits the
incoming message. This is done with the purpose
of validating the signature of the master node
and the signature provided by the client, ensuring
the transactions within the message are correctly
ordered based on their timestamps and guaran-
teeing that no PRE-PREPARE messages sharing
the same sequence number but bearing different
signatures within the same view are received. If
the master node’s integrity is confirmed, the node
proceeds to transmit its own verified transaction
information’s hash value, along with its own sig-
nature, back to the master node. However, in cases
where suspicions arise regarding the trustworthi-
ness of the master node, the node may consider
requesting a rotation of the master node.

4. Commit Phase: If a node successfully vali-
dates during the pre-prepare phase, it can tran-
sition into the prepare state to continue mes-
sage validation and commit operations. When a
node receives PREPARE messages from 2f + 1
nodes that have been successfully validated, it
proceeds to send COMMIT messages to other
nodes. These COMMIT messages are of the

form: sign(COMMIT,view,sequence,digest,i), and
the node keeps a record of these messages for
future reference.

5. Reply Phase: Once a node receives
COMMIT messages from 2f + 1 nodes
that have been successfully validated, it
can proceed to execute the client’s request
operation and generate a response message:
<REPLY,view,timestamp,clientID,i,result>.
Here, result represents the outcome of the
operation’s execution.

In the SC-PBFT consensus algorithm, nodes
receive corresponding rewards upon completing
consensus, while nodes that fail to complete the
consensus will be penalized accordingly. These
scores are used to measure the nodes’ reputation,
and they undergo moderate decay over time and
as reward scores change.

Additionally, the system regularly evaluates
the performance of nodes, typically after every 20
rounds of consensus, to identify the group of nodes
with the poorest performance. These nodes will be
replaced to maintain the high quality and reliabil-
ity of the consensus network. Lastly, when a node’s
reputation score falls below 50 points, they will
lose their eligibility to become consensus nodes.

Fig. 2 The SC-PBFT Consensus Protocol.

3.4 Optimizing View Protocol

PBFT requires maintaining a shared state where
all nodes take consistent actions. To achieve this,
three fundamental protocols are run, including the
consensus protocol, checkpoint protocol, and view
change protocol. View change is a crucial com-
ponent of the consensus protocol. In Byzantine
fault-tolerant consensus algorithms, view change

6



is used to handle scenarios involving the fail-
ure of a primary node or Byzantine faults to
ensure the continuity of consensus. View change
is an operation with high overhead as it involves
communication and state synchronization among
nodes [30–33]. This paper reduces communication
overhead by delaying the timing of view change
and batch processing of requests. The process is
illustrated in Figure 3.

Fig. 3 View Change Process.

1. View-Change Phase: After identifying the
need for a view change, instead of immediately
executing the switching operation, the system
enters a waiting phase that allows ongoing pro-
cessing of requests in the current view. A delay
timer is set to postpone the triggering of the view-
change. This timer is dynamically adjusted based
on factors such as system load, network condi-
tions, and node status. Prior to triggering the view
change, the collection of pending requests con-
tinues. These requests will be processed together
when the switching is triggered, thereby reduc-
ing the number of communication rounds and the
overhead of state synchronization.

2. View-Change-ACK Phase: Replica
nodes create View-Change messages <VIEW-
CHANGE,v,blockHeight,hash(TXs),TXs>. Once
these View-Change messages are broadcasted to
the network, backup nodes can asynchronously
process and validate their effectiveness.

Firstly, backup nodes verify the correctness of
the signature of the VIEW-CHANGE message.
Secondly, they confirm that v is greater than the
current number of the replica node by 1. This val-
idation ensures that VIEW-CHANGE messages
are submitted in the correct order. Finally, if
hash(TXs) is not empty, backup nodes verify
whether it matches the hash value of the TXs

collection. This helps ensuring that the submit-
ted transactions are complete and have not been
tampered with.

While waiting for VIEW-CHANGE messages,
backup nodes can continue processing client
requests without having to wait for the view-
change trigger for an extended period.

3. New-View Phase: When there are 2f + 1
VIEW-CHANGEmessages in the view-change set,
the network creates message <NEW-VIEW,v+1,
view set>. In this message, NEW-VIEW serves
as an indicator for transitioning to a new view,
v+1 represents the number of the new view, and
view set contains configuration details for the new
view.

Within the NEW-VIEW message, the primary
node may include pending requests that were col-
lected during the View-Change phase. By batch-
processing these requests, the goal is to reduce
communication overhead and minimize the fre-
quency of state synchronization. Upon receiving
the NEW-VIEW message, backup nodes asyn-
chronously handle these requests without waiting
for responses from other nodes. This optimiza-
tion reduces the transition time, ensuring that the
new primary node can promptly begin process-
ing requests. The delayed view change algorithm
is shown in Algorithm 1.

Algorithm 1 Delayed ViewChange Algorithm.

Require: n ≥ 0 ∨ x ̸= 0 Ensure y = xn

1: while Messageview−change do

2: if count(Messageview−change) ≥ 2f + 1
then // change the current view number

3: viewcur += 1 //broadcast the new
view message

4: Messagenew ⇐ viewcur

5: N0 ⇐Messagenew
6: fuc⇐ requestclient
7: if N0.Messageview−change then //ver-

ify the signature of primary node and client
8: Sig(Nc) and Sig(client) ⇐ fuc
9: Messageview−change.timestamp ⇐
fuc

10: Sig(MessagePre−Prepare) ⇐ fuc
11: end if

12: end ifUpdate(timer)
13: end while
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4 Experiment and Analysis

The simulation experiments are based on the
Java programming language and implemented on
a blockchain system running on Windows 10,
equipped with an Intel i7-11375H CPU and 16
GB of memory. The proposed SC-PBFT algorithm
is validated in this system, and an evaluation is
conducted on various aspects, including security,
consensus latency, communication overhead, and
throughput, for different numbers of nodes. The
experimental configuration details are presented
in Table 2.

Table 2 Configuration of Experimental System.

Object Configuration

CPU 11th Gen Intel(R) Core(TM)
i7-11375H @ 3.30GHz

Operating System Ubuntu 20.04 LTS
Memory 16GB
Software Environment MATLAB, GO

4.1 Security Analysis

4.1.1 Node Security

The SC-PBFT algorithm ensures the authentic-
ity of messages and the trustworthiness of senders
through a digital signature mechanism. Each node
digitally signs messages when sending them, and
other nodes can verify the signatures to determine
the legitimacy of the messages. This prevents mali-
cious nodes from forging messages, ensuring the
security of nodes.

Furthermore, the SC-PBFT algorithm uses a
random rotation mechanism for the selection of
consensus nodes, avoiding the centralization issue
in node selection and reducing the risk of collusion
among nodes. Node participation and exit also
undergo certain security verification to ensure the
trustworthiness of node identities and behaviors.

4.1.2 Consensus Security

During the consensus process, the SC-PBFT algo-
rithm employs a three-phase message propagation
mechanism, namely the pre-prepare, prepare, and
commit phases. In each phase, nodes need to
receive a certain number of messages before pro-
ceeding to the next step, ensuring the correctness

and consistency of messages. This mechanism pre-
vents malicious behavior by Byzantine nodes from
interfering with the consensus process.

In the SC-PBFT algorithm, each node requires
receiving confirmation messages from more than
2/3 of the nodes to consider consensus achieved.
This requirement ensures that the system can
maintain the security of consensus even in the
presence of a small number of Byzantine nodes.
Regarding the number of Byzantine nodes, the
SC-PBFT algorithm can tolerate up to 1/3 of
the nodes engaging in malicious behavior, thereby
guaranteeing the correctness of consensus.

Overall, the SC-PBFT algorithm demonstrates
excellent performance in both node security and
consensus security. Through digital signatures and
message propagation mechanisms, node behavior
and messages are safeguarded, preventing forgery
and malicious actions. Through a multi-phase
consensus process, the system can withstand mali-
cious interference by Byzantine nodes, ensuring
the correctness and security of consensus.

4.2 Communication Overhead

Analysis

In the PBFT consensus process, there are three
main stages: pre-prepare, prepare, and commit.
For the pre-prepare stage, the primary node
broadcasts messages to all communication counts
of N −1 (where N is the number of nodes). In the
prepare stage, nodes send validation messages to
all nodes except themselves, resulting in a com-
munication count of (N − 1)2. In the commit
stage, each node broadcasts commit messages to
other nodes, resulting in a communication count
of N ∗(N−1). Therefore, the total communication
complexity T1 for PBFT is calculated as follows:

T1 = N − 1 + (N − 1)2 +N · (N − 1)

= 2N · (N − 1) (7)

The SC-PBFT algorithm introduces a group-
ing phase and calculates node credit values during
the consensus process. In this algorithm, clients
initiate proposals to management nodes with a
communication count of C (where C is the num-
ber of nodes in the consensus set). During the
prepare stage within the consensus set, manage-
ment nodes broadcast messages to members of
the consensus set, resulting in a communication

8



count of [(N − 1)/(C − 1)] ∗ C. In the commit
stage within the consensus set, each member of the
consensus set sends messages to the management
node for submission, resulting in a communication
count of [(N − 1)/(C − 1)] ∗ C. During the non-
consensus set prepare stage, management nodes
broadcast messages to other management nodes
except themselves, with a communication count of
(C−1)∗C. In the non-consensus set commit stage,
each management node verifies received messages
and broadcasts them to other management nodes,
with a communication count of (C − 1) ∗ C. The
total communication complexity T2 for SC-PBFT
is calculated as follows:

T2 = C + 2

(

N − 1

C − 1

)

C + 2(C − 1)C

= (2C − 3)C + 2(N − 1)

(8)

T1 represents the communication complexity
when all nodes participate in consensus. T2 repre-
sents the communication complexity when nodes
in the consensus set participate in consensus.
Comparing the communication complexities T1
and T2, we can draw the following conclusions:
Since C < N , the communication complexity T2
is generally much smaller than T1. To provide a
comparative analysis of recent improvements to
the PBFT algorithm, we consider GPBFT and
SG-PBFT for comparison. The communication
complexity for GPBFT (T3) is represented as

T3 = N2 +N − 1 (9)

and for SG-PBFT (T4), it is represented as

T4 =
N2

4
− 1 (10)

We conducted experiments and simulations for
these four consensus processes, and in the experi-
ments, we idealized the SC-PBFT for fixed-point
simulation. The number of nodes was selected as
16, 36, 64, 100, 144, 196, 400, 1024, 1600, 2500,
4096, 4900, 6400, 8100, and 10000.

The results in Figure 4 depict the commu-
nication complexity of PBFT when all nodes
participate in consensus. As the number of
nodes N increases, the communication complexity
exhibits quadratic growth. In large-scale networks,

this leads to a sharp increase in communica-
tion complexity and a subsequent performance
decrease. GPBFT, a consensus algorithm similar
to PBFT, also exhibits communication complex-
ity that grows quadratically with N . In large-scale
networks, its communication complexity is similar
to PBFT, showing an exponential growth trend.

In summary, in large-scale networks, SC-PBFT
and SG-PBFT may be better choices to reduce
communication overhead and improve perfor-
mance. However, SG-PBFTmay sacrifice a certain
level of security. The proposed SC-PBFT in this
paper significantly reduces communication com-
plexity by choosing an appropriate number of
nodes in the consensus set, demonstrating superior
performance in large-scale networks.

Fig. 4 Communication overhead comparison.

4.3 Latency Analysis

Consensus latency refers to the time required from
when a client initiates a transaction request to
when the client receives confirmation of the com-
pleted transaction. Low latency indicates that
the consensus algorithm executes with less time,
reducing the likelihood of blockchain forks, and
making the system more secure and efficient. The
latency formula is expressed as follows:

Delay = Tc − Tr (11)

9



where Tc represents the transaction confirmation
time, and Tr represents the transaction genera-
tion time. We conducted each experiment group
100 times and averaged the results. The number
of Byzantine nodes in the system follows the con-
dition f(n− 1)/3, with some exceptions excluded.

Fig. 5 Transaction delay comparison.

As can be observed from Figure 5, with an
increase in the number of nodes, the consensus
latency for all four algorithms gradually increases.
PBFT has the highest consensus latency among
different node counts. SC-PBFT algorithm per-
forms better than PBFT overall because SC-
PBFT selects nodes with higher reputation as
primary nodes based on a stake evaluation mech-
anism. The identity of primary nodes is less
susceptible to malicious prediction attacks, result-
ing in a more trusted consensus node cluster. This
reduces the frequency of view changes, resulting
in lower consensus latency and higher consensus
efficiency.

When there are fewer nodes, SC-PBFT algo-
rithm introduces a consistency hash grouping
strategy, causing slightly higher consensus latency
compared to the SG-PBFT algorithm. However,
when the number of nodes exceeds 60, mali-
cious nodes are gradually eliminated from the
SC-PBFT algorithm’s consensus cluster, reducing
the number of consensus nodes. Consequently, the
consensus latency becomes lower than that of the
SG-PBFT algorithm.

When there are a large number of nodes, SG-
PBFT algorithm’s latency is slightly higher than
SC-PBFT algorithm. This is because SG-PBFT
simplifies the consensus phase when there are
no Byzantine nodes, resulting in slightly higher
latency compared to SC-PBFT algorithm.

4.4 Throughput Analysis

Throughput refers to the number of transactions
or requests a system can process in a unit of time.
In consensus algorithms, throughput is one of the
key metrics for measuring system performance.
For blockchain or distributed systems, throughput
gauges the system’s processing capacity, specifi-
cally the number of transactions or operations it
can complete per second.

TPS =
Transactions∆t

∆t
(12)

The term Transactions∆t represents the num-
ber of transactions completed within a time inter-
val ∆t, where ∆t represents the time interval
between transaction submission and publication
on the blockchain.

In this section of the experiment, the through-
put of the four algorithms is evaluated by having
clients to send 1000 transaction requests. The
average of multiple experimental data points is
taken to ensure the validity of the experimental
results.

As shown in Figure 6, the experimental results
indicate that the SC-PBFT algorithm performs
as the optimal algorithm in the provided data. It
exhibits high throughput across various numbers
of nodes and is suitable for large-scale networks.
Furthermore, its performance remains relatively
stable as the number of nodes increases. In con-
trast, PBFT is a Byzantine fault-tolerant algo-
rithm that maintains security and consistency in
scenarios with up to f node failures. It performs
well in small-scale node networks but experiences
a gradual decrease in throughput as the num-
ber of nodes increases, making it less suitable for
large-scale networks. GPBFT is an extension and
improvement of PBFT, offering better fault tol-
erance to handle more failure scenarios. However,
it is also not well-suited for large-scale networks.
SG-PBFT, a simplified version of GPBFT, is

10



designed to streamline the algorithm implementa-
tion and enhance performance. SG-PBFT demon-
strates higher throughput in small-scale networks
but may exhibit poorer performance in large-scale
networks. SC-PBFT, on the other hand, increases
the algorithm’s throughput and performance by
selecting core nodes. Across various numbers of
nodes, SC-PBFT consistently displays the highest
throughput and performance. It operates effec-
tively in large-scale networks and maintains stable
performance as the number of nodes increases.

Fig. 6 Throughput comparison experiment.

5 Conclusion

In this study, we have explored how to improve
Byzantine fault-tolerant protocols by introduc-
ing a stake evaluation mechanism and a con-
sistency hashing algorithm. This improvement
aims to enhance the security and performance of
blockchain systems in a Byzantine attack environ-
ment, thereby increasing trust in honest nodes,
reducing the impact of malicious behavior, and
optimizing network scalability.

We analyzed the benefits of introducing the
Shapley value for stake evaluation, which encour-
ages honest behavior through a reputation system
and increases the difficulty of Byzantine attacks.
Additionally, we conducted research on improv-
ing the consistency hashing algorithm to enhance
network scalability and reduce node communica-
tion overhead. These improvement measures have

a positive impact on enhancing the overall per-
formance and security of the network. By encour-
aging stakeholders to participate in the consensus
process and establish reputations, we reduce the
likelihood of successful Byzantine attacks. Fur-
thermore, the enhancements to the consistency
hashing algorithm improve the network’s scala-
bility, enabling it to better handle the growing
number of nodes and data loads. These efforts
contribute to maintaining system stability while
reducing potential risks, making the Byzantine
fault-tolerant protocol more robust in the face of
various challenges.

Through experimental validation, we observed
that the improved protocol exhibits greater sta-
bility when facing Byzantine attacks, and the
influence of malicious nodes is mitigated to some
extent. Moreover, under normal circumstances,
network performance is enhanced, and latency and
communication overhead are relatively reduced.
These results demonstrate the potential and prac-
ticality of the proposed improvement in the field
of Byzantine fault tolerance.

However, it’s important to note that the
improved methods may have limitations in certain
extreme scenarios. In specific attack scenarios,
malicious nodes may still bypass the defense of the
reputation system through coordinated behavior,
or the consistency hashing algorithm may perform
poorly in certain network topologies. Therefore,
we need to consider various factors and strike a
balance between security and performance in prac-
tical applications, adjusting and optimizing based
on specific circumstances.

In conclusion, the Byzantine fault-tolerant
improvement approach based on stake evaluation
and consistency hashing is a promising research
direction that provides effective means to enhance
the security and performance of blockchain sys-
tems. In future work, we can further explore more
complex attack models, more efficient reputation
mechanisms, and adaptability adjustments for dif-
ferent network topologies to achieve a more robust
and efficient Byzantine fault-tolerant protocol.
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