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Abstract

We consider high-dimensional Bayesian inverse problems with arbitrary likelihood and product-form
Laplace prior for which we provide a certified approximation of the posterior density in the Hellinger
distance. The approximate posterior density differs from the prior density only in a small number of
relevant coordinates that contribute the most to the update from the prior to the posterior. We propose
and analyze a gradient-based diagnostic to identify these relevant coordinates. Although this diagnostic
requires computing an expectation with respect to the posterior, we propose tractable methods for
the classical case of a linear forward model with Gaussian likelihood. Our methods can be employed
to estimate the diagnostic before solving the Bayesian inverse problem via, e.g., Markov chain Monte
Carlo (MCMC) methods. After selecting the coordinates, the approximate posterior density can be
efficiently inferred since most of its coordinates are only informed by the prior. Moreover, specialized
MCMC methods, such as the pseudo-marginal MCMC algorithm, can be used to obtain less correlated
samples when sampling the exact posterior density. We show the applicability of our method using a
1D signal deblurring problem and a high-dimensional 2D super-resolution problem.

Keywords: Bayesian inverse problems, dimension reduction, MCMC, Laplace prior, sparsity.

1 Introduction

Bayesian inverse problems arise in many applica-
tions in science and engineering. When performing
Bayesian inversion, one tries to characterize a
probability distribution on the unknown parame-
ters of a model given some observed data. These
data are typically subject to noise, and are often
modeled as

y = A(x) + ε, (1)

where A : Rd → R
m is the forward operator, x ∈

R
d is the unknown parameter and ε ∈ R

m is the
noise. In this work, we are concerned with high-
dimensional Bayesian inverse problems with the
posterior density given by

π(x) ∝ L(x)π0(x). (2)

Here, L : R
d → R denotes the likelihood func-

tion of observing the data y given x, and π0(x) is
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the prior density. The likelihood function models
the relationship between forward operator, error
model and data, e.g., (1). Note however, that
our general framework applies to any likelihood
function.

It is common that natural signals and images
can be effectively represented in a sparse man-
ner using adapted bases, like point source basis,
wavelets basis, etc., see [1]. Then, one can use the
so-called synthesis formulation s = Wx to expand
a signal s in a suitable basis W for which x is
sparse [2]. In this case, the heavy-tailed Laplace
distribution is a typical prior choice to enforce
sparsity in x. Indeed, in [3] it was found that the
marginals of wavelet coefficients of photographic
images are well approximated by the Laplace
distribution.

Other classical choices for heavy-tailed priors
are α-stable distributions, such as the Cauchy dis-
tribution [4]. Heavy-tailed priors are especially
popular in image reconstruction to preserve sharp
edges. To this end, heavy-tailed priors can be
imposed directly [5, 6] or via a hierarchical frame-
work on the differences between pixels (see, e.g.,
[7]). In this paper, we consider a Laplace prior, i.e.,

π0(x) ∝ exp

(
−

d∑

i=1

δi|xi|
)
,

which has a product-form with rate parameters
δi > 0 for all i = 1, . . . , d. This prior leads to the
posterior

π(x) ∝ L(x) exp
(
−

d∑

i=1

δi|xi|
)
. (3)

We note that for the case where the forward
operator is linear and the likelihood function is
Gaussian, the posterior density (3) can be sampled
via the Bayesian LASSO [8].

In real-world applications Bayesian inference is
often performed in a high-dimensional parameter
space. For instance, in imaging science, the num-
ber of pixels is very large, resulting in parameter
spaces with dimensions of order d = O(104) or
higher. When sampling from non-smooth densities
as in (3), the proximal unadjusted Langevin (p-
ULA) or proximal Metropolis-adjusted Langevin
algorithm (p-MALA) [9, 10] can be used, but

their performance deteriorates significantly with
the dimensionality of the problem.

Inspired by the certified dimension reduction
(CDR) methodology [11–13], we propose a new
method, the certified coordinate selection, to select
the components in x that contribute most to
the update from the prior to the posterior den-
sity. Hence, the efficiency of the aforementioned
sampling methods can be improved substantially
by restricting them to perform inference on the
selected components only.

In principle, the CDR method consists in
replacing the likelihood function with a ridge

approximation x 7→ L̃(U⊺

r x) for some matrix Ur ∈
R

d×r with r ≪ d orthogonal columns, and some
function L̃ : Rr → R. The matrix Ur is determined
by minimizing an error bound on the Kullback-
Leibler (KL) divergence obtained via logarithmic
Sobolev inequalities. We term our method certi-

fied coordinate selection since in this work, U⊺

r

corresponds to a projection matrix on r selected
coordinate axes.

The CDR method has been successfully
applied within a number of Bayesian updating
strategies, such as the cross-entropy method [14],
Stein-variational gradient descent [15], transport
maps [16], and in Bayesian inference applied to
rare event estimation [17]. However, it has only
been employed in cases where the prior is either
Gaussian, or it is normalized by computing a
map to push forward a standard Gaussian random
variable to the original random variable [18].

Applying the CDR method on a posterior
density as defined in (3) is not straightforward,
because the Laplace prior does not meet the
sufficient conditions for the required logarithmic
Sobolev inequalities. To overcome this issue, we
use the Hellinger distance instead of the KL diver-
gence to bound the posterior approximation. This
approach allows use to use Poincaré inequalities,
which are satisfied by the Laplace prior [12, 13].

Our main contributions are as follows:

• We propose to select the relevant coordinates
based on the following diagnostic

hi =
1

δ2i

∫

Rd

(∂i logL(x))2π(x)dx,
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and we show that the Hellinger distance
between the exact and the approximated pos-
terior density can be explicitly bounded using
hi.

• We proof that in the case of a Gaussian like-
lihood and a linear forward operator, we only
need to estimate the posterior mean and the
posterior covariance to compute the diagnostic.

• We show for the above case how a smoothing
approximation to the Laplace prior can be used
to compute a diagnostic and define an efficient
proposal for the preconditioned Metropolis-
adjusted Langevin algorithm (MALA).

• We test our methods on a 1D signal deblurring
task, which is given in the synthesis formula-
tion and a high-dimensional 2D super-resolution
example.

The remainder of this paper is structured as
follows. In section 2 we present the theoretical
part of our method which comprises the poste-
rior density approximation and its certification.
In section 3 we outline the general approach
to sample the approximate posterior and recall
the pseudo-marginal Markov chain Monte Carlo
(MCMC) algorithm, which can be used to sam-
ple the exact posterior. In section 4 we present
detailed methodology for the case of Gaussian like-
lihood and linear forward operator. In section 5
we test our methods on two numerical examples: a
1D deblurring example and a 2D super-resolution
example. We draw the conclusions in section 6.

2 Certified Coordinate
Selection

In this section we first show how we approximate
the posterior density and how this approxima-
tion can be controlled by an upper bound in the
Hellinger distance. The result can then be used
to compute a diagnostic h ∈ R

d which ranks
the coordinates based on their contribution to the
update from the prior to the posterior.

2.1 Posterior density approximation

We aim at identifying the set of components in the
parameter vector x ∈ R

d that are most informed
by the data relative to prior information. To this

end, we define the coordinate splitting

x = (x
I
, x

Ic ), (4)

where the set I ⊂ {1, . . . , d} contains the indices
of the informed coordinates, and Ic = {1, . . . , d}\
I includes the complementary indices. We refer
to x

I
as selected coordinates. Notice that if the

likelihood is almost constant in x
Ic , the update

from prior to posterior happens mainly on x
I
.

To formalize this idea, let us introduce the
posterior approximation

π̃(x) = π(x
I
)π0(xIc |xI

), (5)

where π(x
I
) is the posterior marginal and

π0(xIc |xI
) is the conditional prior. Compared to

the exact posterior, which can be factorized as
π(x) = π(x

I
)π(x

Ic |xI
), the approximation π̃(x)

essentially consists in replacing the conditional
posterior π(x

Ic |xI
) with the conditional prior

π0(xIc |xI
). Combining (5) and (2), we can write

π̃†(x) ∝ L̃†(x
I
)π0(x), (6)

where

L̃†(x
I
) =

∫
L(x

I
, x

Ic )π0(xIc )dxIc . (7)

Now we use the Hellinger distance H(·, ·) to
certify the quality of the posterior approximation.
It is defined as

H(π, π̃)
2
=

1

2

∫

Rd

(√
π(x)−

√
π̃(x)

)2
dx. (8)

The following proposition shows that for a given
coordinate splitting the reduced likelihood L̃† from
(7) is quasi-optimal with respect to the Hellinger
distance.
Proposition 1. Let π(x) ∝ L(x)π0(x) be a proba-

bility density on R
d where π0(x) is a product-form

density, and let x = (x
I
, x

Ic ) be any coordinate

splitting. Then, the function L̃ : R|I| → R+ which

minimizes H(π, π̃), where π̃(x) ∝ L̃(x
I
)π0(x), is

given by

L̃∗(x
I
) =

(∫

RIc

√
L(x

I
, x

Ic )π0(xIc )dxIc

)2

.

(9)
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As a consequence, the function L̃† defined in

(7) is not optimal for the Hellinger distance, but

still yields a quasi-optimal approximation in the

following sense

H
(
π, π̃†)2 ≤ 2H(π, π̃∗)2 , (10)

where π̃†(x) ∝ L̃†(x
I
)π0(x) and π̃∗(x) ∝

L̃∗(x
I
)π0(x).

Proof. See section A.1.

2.2 Certifying the approximation

We now provide an upper bound on the Hellinger
distance H

(
π, π̃†) for the posterior defined in (3).

Proposition 2. Consider the probability density

defined in (3). Given a coordinate splitting x =
(x

I
, x

Ic ), the probability density π̃†(x) given in (6)
satisfies

H
(
π, π̃†)2 ≤ 4

∑

i∈Ic

hi, (11)

where the diagnostic h ∈ R
d is given by

hi =
1

δ2i

∫

Rd

(∂i logL(x))2π(x)dx. (12)

Proof. See section A.2

Remark 1. In case of non-negativity constraints

on x, the analogue to the Laplace prior is the expo-

nential prior. The upper bound on the Hellinger

distance is the same for this case, since both

distributions share the same Poincaré constant.

With the diagnostic h, the coordinate splitting
can be performed by finding Ic such that

4
∑

i∈Ic

hi ≤ τ, (13)

where τ is a given desired precision on the
Hellinger distance. As a matter of fact, the set
I contains the indices i associated with the r(τ)
largest components in h.

Notice that the number of selected coordi-
nates r(τ) can be abnormally large, especially
if the bound (11) is loose. In this case, we set
r = min(r(τ), rmax) for a pre-given rmax and we let
I contain the indices of the r largest components
in h.

3 Sampling algorithms

In this section, we propose two algorithms for
drawing samples from the approximate posterior
density and the exact posterior density, respec-
tively.

3.1 Sampling the approximate

posterior density

The product-form of the prior allows us to write
the optimal approximate posterior as

π̃∗(x) ∝ L̃∗(x
I
)π0(xI

)π0(xIc ) ∝ π̃∗(x
I
)π0(xIc ),

and thus naturally suggests a simple sampling
scheme where the main sampling effort is con-
centrated on the selected coordinates x

I
[19].

The sampling method consists in firstly drawing
samples {xi

I
}Ni=1 from the low-dimensional den-

sity π̃∗(x
I
) using a MCMC method. Then, for

each sample x(i)
I
, we draw a sample x(i)

Ic from
the marginal prior π0(xIc ). In the end, reassem-
bling x(i) = (x(i)

I
, x(i)

Ic ) yields samples from the
approximate posterior π̃∗(x). We summarize this
procedure in algorithm 1.

Algorithm 1 Sampling scheme for the approxi-
mate posterior density

Require: Number of samples N , index sets I and
Ic.

1: Sample {x(i)
I
}Ni=1 ∼ π̃∗(x

I
) ∝ L̃∗(x

I
)π0(xI

),

where L̃∗(x
I
) is given in (9).

2: Sample {x(i)
Ic }Ni=1 directly from the prior.

3: Reassemble {x(i)}Ni=1 = {(x(i)
I
, x(i)

Ic )}Ni=1.

4: Return {x(i)}Ni=1.

In practice, the optimal reduced likelihood
L̃∗(x

I
) (9) must be approximated to enable sam-

pling from π̃∗(x
I
). Since we expect the likelihood

to be mostly flat in the directions of not selected
coordinates, a natural approach is to fix x

Ic in (9)
to the prior mean µ0 = 0. Then, we obtain the
approximation L̃∗(x

I
) ≈ L(x

I
, x

Ic = 0), which
is computationally cheap while giving satisfac-
tory results as has been shown in the numerical
examples of [11].
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3.2 Sampling the exact posterior via

the pseudo-marginal MCMC

algorithm

The approximate marginal posterior π̃†(x
I
) =

L̃†(x
I
)π0(xI

) satisfies π̃†(x
I
) = π(x

I
). Using this

fact, a pseudo-marginal MCMC algorithm [19, 20]
can be employed, which in combination with a
so-called recycling step, samples the exact pos-
terior. Note that the bound in (2) allows us to
control the error of this quasi-optimal posterior
approximation and therefore provides theoretical
justification for using this sampling algorithm.

We outline the pseudo-marginal MCMC algo-
rithm for the i-th iteration in the following. Given
the state x(i−1) = (x(i−1)

I
, x(i−1)

Ic ), a candidate z(i)
I

is drawn from a proposal distribution q(·|x(i−1)
I

),
which targets π̃†(x

I
). Then, the reduced likelihood

L̃†(z(i)
I

) is approximated with M freshly drawn

samples {z(i,j)
Ic }Mj=1 ∼ π0(zIc ) as

L̃†(z(i)
I

) ≈ 1

M

M∑

j=1

L(z(i)
I

, z(i,j)
Ic ). (14)

Thus, we obtain a set of candidate samples
{z(i)

I
, {z(i,j)

Ic }Mj=1}, which is accepted with proba-
bility

α = min

{
1,

π0(z
(i)
I

)L̃†(z(i)
I

)q(x(i−1)
I

|z(i)
I

)

π0(x
(i−1)
I )L̃†(x(i−1)

I )q(z
(i)
I |x(i−1)

I )

}
.

(15)
At this point, the samples x(i)

I
follow π̃†(x

I
) =

π(x
I
). Now to obtain samples x(i)

Ic from π(x
Ic ),

we can use the following recycling step. We select
x(i)

Ic from {z(i,j)
Ic }Mj=1 according to the discrete

probability

P

(
X(i)

Ic = x(i,j)
Ic |x(i)

I
, {x(i,j)

Ic }Mj=1

)

=
L(x(i)

I
, x(i,j)

Ic )
∑M

j=1 L
(
x
(i)
I , x

(i,j)
Ic

) . (16)

We summarize the pseudo-marginal MCMC
algorithm in algorithm 2.

Algorithm 2 Pseudo-marginal MCMC

Require: Number of samples N , index sets I and
Ic, number of samples M for (14), initial state
{x(0)

I
, {x(0,j)

Ic }Mj=1}, proposal density q(·|x
I
).

1: for i = 1, · · · , N do

2: Draw z
I
∼ q(·|x(i−1)

I
).

3: Draw M i.i.d. samples z(j)
Ic ∼ π0(·).

4: Compute L̃†(z
I
) via (14).

5: Set {x(i)
I
, {x(i,j)

Ic }Mj=1} = {z
I
, {z(j)

Ic }Mj=1}
with acceptance probability α (15).

6: end for

7: Return Markov chain {x(i)
I
, {x(i,j)

Ic }Mj=1}Ni=1.
8: for i = 1, · · · , N do ▷ Recycling step
9: Set x(i)

Ic = x(i,j)
Ic with probability (16).

10: Reassemble x(i) = (x(i)
I
, x(i)

Ic ).
11: end for

12: Return Markov chain {x(i)}Ni=1.

4 Methodology for Gaussian
likelihood and linear
forward operator

In this section we describe a detailed application
of the certified coordinate selection method for a
posterior density in the form

π(x) ∝ exp

(
−1

2
∥y −Ax∥2

Σ−1
obs

−
d∑

i=1

δi|xi|
)
,

(17)
where the noise follows the Gaussian distribution
N (0,Σobs).

Note that to obtain h in (12) we need to com-
pute an expectation over the posterior density.
The next lemma shows that, for a linear forward
operator with Gaussian likelihood, the diagnostic
h admits a closed-form expression involving only
the posterior mean and the posterior covariance.
Lemma 3. Let L(x) ∝ exp(− 1

2∥y − Ax∥2
Σ−1

obs

)

where Σobs ∈ R
m×m is positive definite and

assume the mean µ and the covariance Σ of the

probability density π(x) ∝ L(x)π0(x) exist. Then

we can compute the diagnostic h as

h = Λ(diag
(
A⊺Σ−1

obsAΣA
⊺Σ−1

obsA
)

+ (A⊺Σ−1
obs(y −Aµ))◦2), (18)

where (·)◦2 denotes entry-wise square and Λ =
diag

(
1/δ21 , . . . , 1/δ

2
d

)
.
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Proof. See section A.2.2.

If the posterior mean and the posterior covari-
ance are unknown, a first and intuitive choice is
to replace them respectively by the prior mean
µ0 = 0 and the prior covariance Σ0 = 2Λ. This
yields

h̃prior = 2diag
(
(Λ1/2A⊺Σ−1

obsAΛ
1/2)2

)

+ Λ(A⊺Σ−1
obsy)

◦2. (19)

In the following, we show how a more precise
estimate of the diagnostic compared to the prior-
informed estimate of (19) can be obtained. To this
end, we employ a Gaussian approximation at the
maximum-a-posteriori (MAP) estimate. Note that
the negative logarithm of (17) is strictly convex
and that even for high-dimensional problems of
this form its minimizer, i.e., the MAP-estimate,
can be computed efficiently via convex optimiza-
tion toolboxes.

4.1 MAP-approximated diagnostic

The density in (17) is unimodal and differs only
from a Gaussian in that the norm in the prior is
l1 instead of l2. This motivates us to employ a
common strategy in Bayesian inversion where the
posterior density is approximated by a Gaussian
centered at the MAP-estimate xMAP (e.g., [21]).
That is, we estimate the mean as µ ≈ xMAP, and
the covariance matrix as

Σ−1 ≈ H := −∇2 log π(xMAP). (20)

Plugging in xMAP for µ and H−1 for Σ in (18) we
obtain

h̃MAP = Λ(diag
(
A⊺Σ−1

obsAH−1A⊺Σ−1
obsA

)

+ (A⊺Σ−1
obs(y −AxMAP))

◦2). (21)

The non-differentiability of | · | poses an obsta-
cle in computing (20). Inspired by [22], we use the
approximation

|x| ≈
√

x2 + ε, (22)

where we can control the amount of smoothing
around 0 with 0 < ε ≪ 1. With this, we obtain

H = A⊺Σ−1
obsA+ diag

(
δiε

(√
xMAP,i

2 + ε

)−3
)
,

(23)
where we now use diag (·) to describe a diag-
onal matrix with diagonal given by the vector
argument.

It remains the question of how to choose ε. It
appears natural to choose ε very small to obtain
a good approximation to the absolute value. How-
ever, we have

δiε

(√
xMAP,i

2 + ε

)−3
xMAP,i→0→ δi√

ε

ε→0→ ∞.

Since we expect xMAP,i ≈ 0 for many coordinates,
ε must not be chosen too small to avoid fast,
nearly non-smooth changes among the elements in
H that lead to numerical instabilities when com-
puting its inverse which is needed for (21). Hence,
we set ε according to the following heuristic.

Observe that (23) resembles the inverse of the
covariance matrix of a Gaussian posterior density
constructed by a Gaussian likelihood with a lin-
ear forward operator and a Gaussian prior. In this
light δ−1

i ε−1(
√

xMAP,i
2 + ε)3 represents the vari-

ance of the i-th component. Now our heuristic rule
is that these variances should be at least as large as
the smallest variance of the chosen Laplace prior.
Therefore, we require

min
xMAP,i

∥δ∥−1
∞ ε−1

(√
xMAP,i

2 + ε

)3

≥ 2

∥δ∥2∞
.

(24)
We can assume that mini=1,...,d xMAP,i = 0 such
that we obtain ε ≥ 4/∥δ∥2∞.

4.2 Preconditioned MALA

The approximation in (22) enables employing
MALA, since it allows for the computation of
approximate gradients. MALA is derived by dis-
cretizating a Langevin diffusion equation and
steers the sampling process by using gradient
information of the log-target density [23]. While
different algorithms have been developed to sam-
ple non-smooth log-densities (see, e.g., [10]), the
proposed smoothing is simple to implement and
computationally cheap. Moreover, combined with
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the Metropolis step, we obtain convergence to the
target density.

Here, we remark that if H (23) is invertible,
the inverse H−1 can be used as preconditioner
to make the MALA proposal more efficient in
high dimensions [24, 25]. Furthermore, in the
pseudo-marginal MCMC algorithm (algorithm 2),
a preconditioner for a local MALA proposal for the
update of x

I
(line 2) can be obtained by projecting

H−1 onto the selected coordinates.

5 Numerical experiments

In this section, we illustrate the performance of
our methods in two different applications: a 1D
deblurring problem and a 2D super-resolution
problem. We use the Python package arviz [26]
to compute the following sample statistics in our
experiments: effective sample size (ESS), R̂ (nor-
malized R-hat), and credibility interval (CI) (see,
e.g., [21] for definitions). After every MCMC simu-
lation, we consider the maximal normalized R-hat
diagnostic over all coordinates (i.e., maxi R̂i), as
an indicator for convergence of the Markov chains.

5.1 1D signal deblurring

The main purpose of this experiment is to demon-
strate the applicability of our diagnostic when
performing the coordinate splitting. Addition-
ally, we show results when using the pseudo-
marginal MCMC algorithm (algorithm 2), and
when sampling from the approximate posterior
(algorithm 1).

5.1.1 Problem description

The data y is obtained artificially via

y = Gstrue + e,

where strue ∈ R
1024 denotes the piece-wise con-

stant ground truth, G is a Gaussian blur operator
with the kernel width 27 and standard deviation
3, and e ∈ R

1024 is a realization from N (0, σ2
obs)

with σobs = 0.03. The true signal and the data are
shown in fig. 1.

We employ a 10-level Haar wavelet transform
with periodic boundary condition and formu-
late the Bayesian inverse problem in the coeffi-
cients domain. Let W and W † denote the dis-
crete wavelet transform and the inverse discrete

0 200 400 600 800 1000

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75 y

strue

Fig. 1 True signal and data of the 1D example.

wavelet transform, respectively. The true coeffi-
cients xtrue = W †strue are sparse with ∥xtrue∥0 =
60, see fig. 2. The posterior density formulated
with respect to the coefficients reads

π(x) ∝ exp

(
− 1

2σ2
obs

∥y −GWx∥22 −
1024∑

i=1

δi|xi|
)
.

(25)
Thus, following our previous notation for the for-
ward operator, we have A = GW . We use the
Python package pywt [27] to compute the discrete
wavelet transforms.

To take the different scales of the wavelet coef-
ficients into account, we chose different δ for each
level of the wavelet basis. We define

δi = c2
ℓ(i)
2 , (26)

for some c > 0, where ℓ(i) ∈ {1, . . . , 10} denotes
the level of the of the i-th wavelet coefficient. We
plot δi for c = 1 in fig. 2. Note that for c = 1,
the prior in (25) on x corresponds to a Besov-B1

11

prior [28, 29] on the signal s.
In the following, we illustrate the performance

of the diagnostic and the pseudo-marginal MCMC
(algorithm 2). We additionally study the influ-
ence of the global parameter c on the posterior by
considering the cases c ∈ {1, 5, 25}.

5.1.2 Bound on the Hellinger distance

We compute xMAP for δ defined in (26) with c ∈
{1, 5, 25} by using the convex optimization Python
package cvxpy [30, 31]. We show WxMAP in fig. 3
and see that all estimates are close to strue.
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Fig. 3 Black dotted line: True signal. Colored lines:
WxMAP for c ∈ {1, 5, 25}.

For the case c = 5, we compute a MAP-
approximation h̃MAP via (21) and a prior-
approximation h̃prior via (19). We compare the

bound (11) obtained via h̃MAP and h̃prior to a
reference solution that we compute via a refer-
ence diagnostic h̃ref . We obtain h̃ref via the Monte
Carlo approximation

h̃ref =
1

N

N∑

i=1

∇ logL(x(i))◦2,

where {x(i)}Ni=1 are posterior samples computed
with MALA on the full dimension. The samples
are obtained from 10 independent chains of 2×106

samples with an additional burn-in period of 105

samples, and we keep only every 100-th sample to
reduce correlation. We obtain maxi R̂i = 1.02 and
a mean ESS of 500 over all chains and coordinates.

The computed bounds are shown in fig. 4. The
curves are generated by first sorting the diagnos-
tics in ascending order and then plotting their
cumulative sums. The vertical lines indicate the
indices of {i : xtrue,i ̸= 0}.

Figure 4 shows that h̃MAP is a good approx-
imation to h̃ref , and the slight differences can
mainly be seen in the vertical lines. The concen-
tration of vertical lines on the right suggests that
most of the indices {i : xtrue,i ̸= 0} tend to be
included in I in all cases. Recall that the diag-
nostic reveals the coordinates where the update
from prior to posterior information is most evi-
dent. Consequently, the remaining vertical lines
scattered across the graph correspond to coor-
dinates where the data cannot be distinguished
easily from prior information.
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h̃ref

h̃MAP

h̃prior

Fig. 4 Upper bounds computed via h̃MAP, h̃prior and h̃ref

for c = 5. The bounds are computed by sorting the diag-
nostics in ascending order followed by a cumulative sum.
The vertical lines indicate the indices {i : xtrue,i ̸= 0}.

In fig. 5 we show the bound obtained via the
MAP- approximated diagnostic for c ∈ {1, 5, 25}.
As the prior becomes tighter with larger c, the
same bound can be retained while more coordi-
nates are included in Ic, and consequently, a more
efficient dimension reduction becomes possible.

5.1.3 Sampling the exact posterior

We sample the exact posterior density (25) for
c ∈ {1, 5, 25} with MALA on the full dimensional
space, as well as with the pseudo-marginal MCMC
algorithm (algorithm 2) with MALA-proposals on
the selected coordinates. In the following, we refer
to these methods as ‘MALA’ and ‘PM-MALA’.

To compute ∇ log π for the MALA proposals,
we use an approximated gradient, which is derived
from the smoothing in (22). Furthermore, we
require the adjoints of W and G for the gradients.
We compute W ∗ with the technique from [32],
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Fig. 5 Upper bounds computed via h̃MAP for c ∈
{1, 5, 25}. The bounds are computed by sorting the diag-
nostics in ascending order followed by a cumulative sum.
The vertical lines indicate the indices {i : xtrue,i ̸= 0}.

which involves handling the padding of the bound-
ary conditions manually. Regarding the blurring
operator, we have G∗ = G.

We obtain H−1 via (23) and use only its diag-
onal as preconditioner for the MALA proposals to
save computational cost. For PM-MALA, where
the MALA-proposals are employed to update x

I
,

we project H−1 on the selected coordinates and
also use only its diagonal. We sample M = 5
vectors of x

Ic in each iteration inspired by the
numerical experiments in [19].

We sample 10 independent chains for each con-
figuration with the following settings. We use a
burn-in period of 105 samples during which we
adapt the step size to achieve a fixed acceptance
rate. Following [33], we target an acceptance rate
of 0.574 for x in the MALA runs and for x

I

in the PM-MALA runs. Note that we need to
select enough coordinates in order to achieve a
stable acceptance rate during the PM-MALA iter-
ations. Based on some pilot runs, we select nI ∈
{800, 200, 150} for c ∈ {1, 5, 25}, respectively. We
compute 106 samples in each run and save every
50-th sample to decrease correlation.

In fig. 6 we show the 99% CI for c ∈ {1, 5, 25}
in the signal space and observe that the CI
becomes narrower with increasing c. However,
reduced uncertainty due to large c enables more
efficient pseudo-marginal MCMC sampling since I
can be chosen smaller with increasing c whilst still
obtaining good mixing. This can be seen in table 1,
where mixing in terms of ESS can be orders of
magnitude larger for PM-MALA than for MALA

on the full dimension. In particular, ESS for coor-
dinate indices in Ic is close to the total amount
of samples since the proposals for x

Ic are drawn
independently.

0 200 400 600 800 1000

0.0

0.5

1.0

1.5

2.0
c=1

c=5
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strue

Fig. 6 Sample means and 99% CI for c ∈ {1, 5, 25} in
signal space.

Table 1 also shows that running MALA on the
reduced dimensional space allows for larger step
sizes, which results in improved mixing in x

I
. We

note that PM-MALA takes on average about twice
as much time as MALA which, however, is justi-
fied by the greatly improved ESS. Moreover, the
increasing maxi R̂i when using MALA on the full
dimension mean that the chains converge slower.
On the contrary, all chains of PM-MALA have a
maxi R̂i close to 1 and thus converge within the
sampling time.

5.1.4 Sampling the approximate

posterior

In this section we use algorithm 1 to sample the
approximated posterior (6) and employ a MALA-
proposal to sample x

I
in line 1. As outlined in

section 3.1, we approximate the optimal reduced
likelihood (9) by fixing not selected coordinates
to the prior mean such that the approximated
posterior reads

π̃(x) ∝ L(x
I
, x

Ic = 0)π0(x). (27)

We choose c = 5 and select |I| = 400 coordi-
nates. Hence, we expect H(π, π̃)

2 ≤ 2.49 × 10−2

according to h̃ref in fig. 4. An estimation of the
Hellinger distance based on samples from π̃ would
allow for assessing the quality of the approximate
posterior and for checking the tightness of our
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Table 1 Comparison between MALA on the full dimensional space and MALA within the pseudo-marginal MCMC
algorithm for the 1D example. ESSI and ESSIc are the mean effective sample sizes for all coordinates in I and in Ic,
respectively. ESSI , ESSIc and wall-clock time are shown as mean ± standard deviation across the chains.

c 1 5 25
Method PM-MALA MALA PM-MALA MALA PM-MALA MALA

|I| 800 - 200 - 150 -

maxi R̂i 1.00 1.00 1.00 1.08 1.01 1.38
ESSI 1523± 166 1139± 100 3233± 414 132± 30 1353± 136 64± 21
ESSIc 19749± 28 1521± 136 19732± 18 287± 68 19767± 14 111± 37
time [min] 58.3± 3.1 34.0± 1.1 69.4± 0.6 34.4± 1.0 73.2± 2.6 34.1± 0.2
step size 1.7× 10−2 1.5× 10−2 8.9× 10−3 4.5× 10−4 3.7× 10−4 1.7× 10−5

bound (11), which we estimate through the MAP-
approximated diagnostic. However, computing a
numerical estimate of the Hellinger distance based
on samples is hard since it tends to be unstable
due to the unknown normalizing constants of π
and π̃.

Instead, we can obtain a numerical estimate
of another bound on the Hellinger distance based
on samples from π̃, which is independent of the
normalizing constants as

H(π, π̃)
2 ≤ 2

∫ (√
ρ(x)

ρ̃(x)
− 1

)2

π̃(x)dx (28)

≈ 2

N

N∑

i=1

(√
ρ(x(i))

ρ̃(x(i))
− 1

)2

x(i) ∼ π̃(x), (29)

where ρ and ρ̃ are the unnormalized exact and
approximated posterior density, respectively. See
section A.3 for the derivation of (28). While
we can use this bound to assess the qual-
ity of the approximate posterior, (29) does not
allow for any conclusions on the tightness of
our bound (11), which we estimate through the
MAP-approximated diagnostic.

As in the previous section, we compute a pre-
conditioner for the MALA-proposals by projecting
the diagonal of H−1 onto the selected coordi-
nates. We sample again 10 independent chains of
2× 106 samples and an additional burn-in period
of 105 samples with adapting step size targeting
an acceptance rate of 0.574. We thin the chains
to decrease auto-correlation by keeping only every
100-th sample.

We obtain maxi R̂i = 1.00 and the following
mean and standard deviation across the chains for
the mean ESS of each chain: 2995 ± 49. These

diagnostics suggest converged chains and little
correlation. Employing (28) we get the following
mean upper bound and standard deviation across
the chains: H(π, π̃)

2 ≤ 4.73× 10−2 ± 5.10× 10−4.
These results suggest that the approximate pos-
terior is close to the exact posterior and that the
estimate (28) is indeed stable. Further, we note
that the bound estimated via h̃ref , 2.49× 10−2, is
tighter than the sample-approximated bound.

5.2 2D super-resolution microscopy

The purpose of this experiment is to show that
our coordinate selection method works well in
high dimensions and that the approximate pos-
terior can be used to perform efficient inference.
The test problem is inspired by the application
of stochastic optical reconstruction microscopy
(STORM) from [34]. A similar example was con-
sidered in the Bayesian context in [35]. STORM
is a super-resolution microscopy method based
on single-molecule stochastic switching, where the
goal is to detect molecule positions in live cell
imaging. The images are obtained by a microscope
detecting the photon count of the (fluorescence)
photoactivated molecules.

5.2.1 Problem description

We consider a microscopic image y ∈ R
m, which

is obtained from a 2D pixel-array by concatena-
tion in the usual column-wise fashion. Here, we
set m = 322 = 1024. In STORM, we want to esti-
mate precise molecule positions by computing a
super-resolution image x ∈ R

d. In this example,
we set the oversampling ratio k = 4, which leads
to d = mk2 = 16384. Based on the kernel from
the optical measurement instrument given in [34],
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we generate the forward operator A ∈ R
m×d. The

data y is obtained via

y = Axtrue + e, (30)

where e ∈ R
m is simulated from N (0, σ2

obs).
Similar as in [34], we generate the ground-truth

image xtrue for the high photon count case with
50 uniformly distributed molecules on a field of
size 4µm × 4µm. The intensity of each molecule
is simulated from a lognormal distribution with
mode 3000 and standard deviation 1700. In fig. 7
we show the ground-truth image and the data,
which is obtained according to (30) with σobs =
30.

We use a Laplace prior due to the sparse
behavior of xtrue, which leads to the posterior
density

π(x) ∝ exp

(
− 1

2σ2
obs

∥y −Ax∥22 − δ∥x∥1
)
. (31)

In fig. 7 we also show the MAP-estimate with
δ = 1.275, where δ is chosen based on the visual
quality after some pilot runs.

5.2.2 Bound on the Hellinger distance

We use the MAP-approximation (21) to estimate
the diagnostic and to compute the bound on the
Hellinger distance, which we show in the left panel
in fig. 8. It is obvious that by using the MAP-
approximation we can detect the coordinates of
interest very accurately, which may be due to the
good quality of the MAP-estimate. Although we
obtain very large bounds on the Hellinger distance
for this example, we can still employ the diagnostic
to detect the most relevant coordinates to per-
form uncertainty quantification on the molecule
positions.

5.2.3 Sampling the approximate

posterior and uncertainty

quantification

We use the MAP-approximated diagnostic to
select 1000 coordinates, which we show in the
center of fig. 8. The posterior density is again
approximated as in (27). We sample the posterior
density by using the No-U-Turn sampler (NUTS)
[36] implemented in the Python package pyro [37].
After sampling 10 independent chains with 20000

burn-in samples and 80000 posterior samples for
each chain, we obtain converged chains and sam-
ples with low correlation with maxi R̂i = 1.01, and
an averaged ESS (over all chains and components)
equal to 451.

In this example, we cannot estimate the bound
on the Hellinger distance via (28), since the ratio
ρ(x(i))
ρ̃(x(i))

computed with our samples {x(i)}Ni=1 ∼
π̃(x) is unstable. However, as it can be observed
from the center figure in fig. 8, our diagnostic is
able to select the correct molecule coordinates and
the relevant neighbourhoods around them. There-
fore, we can still use the samples from π̃(x) to
perform uncertainty quantification on the inten-
sity of the photons and on the true molecule
positions as follows.

To illustrate the uncertainty in the intensity,
we plot the 99% CI for the selected molecules in
the right figure of fig. 8. The large ranges in CI
can be contributed to the large ranges in photon
intensity. Further, we observe that the approxi-
mated posterior tends to have larger CI at the true
molecule positions, which are marked in red.

Now we estimate the uncertainty in the true
molecule positions in the super-resolution grid by
applying the following procedure. We select the
coordinates of the 50 largest posterior means as
the detected molecule positions. Then, we displace
each identified molecule vertically and horizon-
tally until its posterior mean leaves the 99%
CI. On average, we obtain an uncertainty of the
molecule positions of ±3.82 pixels, corresponding
to 118.4nm, in both horizontal and vertical direc-
tion. We note that this result is in agreement with
the results in [34].

6 Conclusions

We outlined a coordinate selection method for
high-dimensional Bayesian inverse problems with
product-form Laplace prior. Inspired by the CDR
methodology, we defined an approximate poste-
rior density by replacing the likelihood with a
ridge approximation. The ridge approximation is
constructed such that it varies mainly on the coor-
dinates which contribute mostly to the update
from the prior to the posterior. Based on a bound
in the Hellinger distance between the exact and
approximate posterior density, we then derived a
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diagnostic vector h ∈ R
d, which can be used to

select the important coordinates.
After performing the coordinate selection, it

is relatively easy to sample the approximate pos-
terior density. An additional advantage of our
coordinate splitting is that advanced MCMC algo-
rithms, such as delayed acceptance MCMC or
pseudo-marginal MCMC, can be employed to
sample the exact posterior.

The computation of h involves, however, inte-
grating over the posterior density. For the case
of a linear forward operator with additive Gaus-
sian error, we presented a tractable methodology
for estimating the diagnostic h before performing
Bayesian inference via, e.g., MCMC methods.

The numerical results indicate that our
methodology, which estimates the diagnostic
based on a MAP-estimate, succeeds in reveal-
ing the most important coordinates. This enabled
us to sample the approximate posterior very
efficiently. Furthermore, the coordinate splitting
allowed us to employ the pseudo-marginal MCMC
algorithm to sample the exact posterior density.
Here our results show that the pseudo-marginal
MCMC algorithm with MALA-proposals on the
selected coordinates performs significantly better
in terms of convergence and correlation of the
sample chains when compared to MALA on the
full-dimensional space.
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Our methodology for estimating the diagnostic
based on a MAP-estimate hinges on a smooth-
ing approximation of the prior. This introduces
an additional parameter ε which we fix following
a heuristic rule. However, other ways for estimat-
ing the diagnostic not only in the linear-Gaussian
case, but also for more general problems with
non-linear forward operator and/or non-Gaussian
likelihood should be investigated.

Moreover, we approximate the optimal
reduced likelihood by setting the non-selected
coordinates to zero (the prior mean). While this
approximation yields good results in the first
example, the approximation deteriorates in the
second high-dimensional example. Therefore,
better approximations to the optimal reduced
likelihood should be explored as well.
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Appendix A Proofs

A.1 Proposition 1

We begin by introducing the normalizing con-
stants for π, π̃ and π̃∗:

Z =

∫

RIc

∫

RI

L(x
I
, x

Ic )π0(xI
, x

Ic )dxI
dx

Ic

Z̃ =

∫

RIc

∫

RI

L̃(x
I
)π0(xI

, x
Ic )dxI

dx
Ic

=

∫

RI

L̃(x
I
)π0(xI

)dx
I

Z̃∗ =

∫

RI

L̃∗(x
I
)π0(xI

)dx
I

where we have used that the prior has product-
form. Recall that for a coordinate splitting x =
(x

I
, x

Ic ) we want to control the approximation

π̃(x) ∝ L̃(x
I
)π0(x) for π(x) ∝ L(x)π0(x) in the

Hellinger distance.

We split the remaining proof into two parts. In
the first part we will show that the choice

L̃∗(x
I
) =

(∫

RIc

√
L(x

I
, x

Ic )π0(xIc )dxIc

)2

for L̃ minimizes the Hellinger distance and is thus
the optimal reduced likelihood function. In the
second part we will show that L̃† is quasi-optimal
with respect to the Hellinger distance.

A.1.1 Optimal reduced likelihood

function

For an approximated posterior defined by any
reduced likelihood function, we can write

H(π, π̃)
2

=
1

2

∫

Rd

(√
π(x

I
, x

Ic )−
√

π̃(x
I
, x

Ic )

)2

dx

= 1−
∫

Rd

√
π(x

I
, x

Ic )π̃(xI
, x

Ic )dx

= 1− 1√
ZZ̃

∫

Rd

√
L(x

I
, x

Ic )L̃(xI
)π0(xI

, x
Ic )dx

= 1− 1√
ZZ̃

∫

RI

∫

RIc

√
L(x

I
, x

Ic )π0(xIc )dxIc

×
√

L̃(x
I
)π0(xI

)dx
I

= 1− 1√
ZZ̃

∫

RI

√
L̃∗(x

I
)L̃(x

I
)π0(xI

)dx
I

= 1−
√

Z̃∗
√
Z

∫

RI

√
L̃∗(x

I
)π0(xI

)

Z̃∗
L̃(x

I
)π0(xI

)

Z̃
dx

I

= 1−
√

Z̃∗
√
Z

(1−H(π̃∗, π̃)2).

On the contrary, if we use the optimal reduced
likelihood, the Hellinger distance reads

H(π, π̃∗)2

= 1− 1√
ZZ̃∗

∫

Rd

√
L̃∗(x

I
)L(x

I
, x

Ic )π0(xI
, x

Ic )dx

= 1− 1√
ZZ̃∗

∫

RI

√
L̃∗(x

I
)

×
∫

RIc

√
L(x

I
, x

Ic )π0(xIc )dxIcπ0(xI
)dx

I
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= 1− 1√
ZZ̃∗

∫

RI

L̃∗(x
I
)π0(xI

)dx
I

= 1−
√

Z̃∗
√
Z

.

Combining the two results, we obtain

H(π, π̃)
2
= H(π, π̃∗)2 +

√
Z̃∗

√
Z

H(π̃∗, π̃)2 ,

which concludes the first part of the proof.

A.1.2 Quasi-optimal reduced

likelihood function

For the reduced likelihood L̃†(x
I
) we have Z̃† =

Z. Further, we can write

Varπ0(x
Ic )

(√
L(x

I
, x

Ic )

)
=

=

∫

RIc

L(x
I
, x

Ic )π0(xIc )dxIc

−
(∫

RIc

√
L(x

I
, x

Ic )π0(xIc )

)2

= L̃†(x
I
)− L̃∗(x

I
),

which implies L̃∗(x
I
) ≤ L̃†(x

I
) and Z̃∗ ≤ Z̃†

(which we already know because Z̃† = Z and from

section A.1 we have 0 ≤ H(π, π̃∗)2 = 1−
√

Z̃∗√
Z

).

With this we can write

H
(
π, π̃†)2

= 1−
∫

RI

∫

RIc

√
π(x

I
, x

Ic )π̃†(x
I
, x

Ic )dxIcdxI

= 1− 1

Z

∫

RI

∫

RIc

√
L(x

I
, x

Ic )π0(xIc )dxIc

×
√

L̃†(x
I
)π0(xI

)dx
I

= 1− 1

Z

∫

RI

√
L̃∗(x

I
)L̃†(x

I
)π0(xI

)dx
I

≤ 1− 1

Z

∫

RI

√
L̃∗(x

I
)π0(xI

)dx
I

= 1− Z̃∗

Z
(A1)

=

(
1−

√
Z̃∗

√
Z

)(
1 +

√
Z̃∗

√
Z

)

≤ 2H(π, π̃∗)2 ,

which concludes the proof.

A.2 Proposition 2

Resuming from (A1) we have

H
(
π, π̃†)2 (A1)

≤ Z − Z̃∗

Z

=
1

Z

∫

RI

(
L̃†(x

I
)− L̃∗(x

I
)
)
π0(xI

)dx
I

=
1

Z

∫

RI

Varπ0(x
Ic )

(√
L(x

I
, x

Ic )

)
π0(xI

)dx
I

According to (6), π0(xIc ) satisfies the Poincaré
inequality so that

Varπ0(x
Ic ) (h(xI

, x
Ic )) ≤

4

∫

RIc

∥∇x
Ic
h(x

I
, x

Ic )∥2Λπ0(xIc )dxIc ,

where Λ = diag
(
1/δ21 , 1/δ

2
2 , . . . , 1/δ

2
d

)
. We let

h(x
I
, x

Ic ) =
√

L(x
I
, x

Ic ), so that

∇x
Ic
h(x

I
, x

Ic )

=
1

2
L(x

I
, x

Ic )
−1/2∇x

Ic
L(x

I
, x

Ic )

=
1

2
L(x

I
, x

Ic )
1/2∇x

Ic
logL(x

I
, x

Ic ).

Hence, we obtain

H
(
π, π̃†)2

≤ 4

Z

∫

Rd

∥∇x
Ic

logL(x)∥2ΛL(x)π0(x)dx

= 4

∫

Rd

∥∇x
Ic

logL(x)∥2Λπ(x)dx

= 4
∑

i∈Ic

hi,

where hi =
1

δ2i

∫

Rd

(∂i logL(x))2π(x)dx. (A2)

A.2.1 Poincaré inequality

The following proposition is a restatement of
proposition 4.4.1 in [38].
Proposition 4. For the exponential probability

density function ν(x) = δ exp (−δx) on R+ with
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rate parameter δ > 0 and any differentiable func-

tion f : R → R with f(0) = 0, the Poincaré

inequality reads

Varν (f) ≤
4

δ2
Eν

[
f ′2] .

Proof. Using Varν (f) = Eν

[
f2
]
− Eν [f ]

2
we can

write

Varν (f) ≤
∫

R+

f(x)2δ exp (−δx)dx

= 2δ

∫

R+

∫ x

0

f(t)f ′(t)dt exp (−δx)dx

= 2

∫

R+

f(x)f ′(x)δ exp (−δx)dx.

To go from line 2 to 3, observe that for h(t) =
f(t)f ′(t) we have

(∫ x

0

h(t)dt exp (−δx)

)′

= h(x) exp (−δx)− δ

∫ x

0

h(t)dt exp (−δx) = 0.

After applying a Cauchy-Schwarz inequality, we
obtain the desired result.

Corollary 5. For the Laplace probability density

function µ(x) = δ
2 exp (−δ|x|) with rate parameter

δ > 0 on R and any differentiable function f :
R → R, the Poincaré inequality reads

Varµ (f) ≤
4

δ2
Eµ

[
f ′2] .

Proof. In the following we assume without loss of
generality f(0) = 0. For any such f we have

Varµ (f)

=

∫

R−

f2 δ

2
exp(δx)dx+

∫

R+

f2 δ

2
exp(−δx)dx

=
1

2
Varν (f(−x)) +

1

2
Varν (f(x)) ,

where ν = Exponential(δ). Applying the Poincaré
inequality for ν yields

Varµ (f) ≤
2

δ2
Eν [f

′(−x)] +
2

δ2
Eν [f

′(x)]

=
4

δ2
Eµ [f

′(x)] .

Corollary 6. For the product-form

Laplace probability density function µ(x) =∏d
i=1 δi exp(−δi|xi|) on R

d with rate parameters

δ1, δ2, . . . δd > 0, the Poincaré inequality

Varµ (f) ≤
d∑

i=1

4

δ2i
Eµ

[
(∂if)

2
]
,

holds for any differentiable function f : Rd → R.

Proof. The result follows directly from the sta-
bility under products of Poincaré inequalities, see
[38]. For the sake of completeness, we give the
proof for d = 2 (a simple recursion permits to
extend to any d > 2).

Let f : x 7→ f(x1, x2) be a differen-
tiable function. Without loss of generality, we
assume f is centered

∫
fdµ = 0. For F (x1) =∫

f(x1, x2)dµ2(x2) the Poincaré inequality per-
mits to write

Varµ (f)

=

∫
(f(x1, x2)− F (x1))

2dµ(x) +

∫
F (x1)

2dµ1(x1)

=

∫
Varµ2

(f(x1, ·)) dµ1(x1) + Varµ1
(F )

≤ 4

δ22

∫
(∂2f(x))

2dµ(x) +
4

δ21

∫
(∂1F (x1))

2dµ1(x1)

≤ 4

δ22

∫
(∂2f(x))

2dµ(x) +
4

δ21

∫
(∂1f(x))

2dµ(x)

where we used a Jensen’s inequality for the last
step. This gives the result for d = 2.

A.2.2 Lemma 3

We consider the case of a Gaussian likelihood (for
fixed data y) of the form

L(x) ∝ exp

(
−1

2
∥y −Ax∥2

Σ−1
obs

)
.

Then, continuing from (A2) we can write

h = diag

(∫

Rd

Λ1/2∇ logL(x)∇ logL(x)⊺Λ1/2π(x)dx

)
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= Λdiag

(
A⊺Σ−1

obs

∫
(y −Ax)(y −Ax)⊺π(x)dxΣ−1

obsA

)
.

Given the covariance ΣXX and mean µX of the
probability density π(x) we substitute z = (y −
Ax). Then, the mean and covariance of Z read
µZ = y−AµX and ΣZZ = AΣXXA⊺, respectively.
Therefore,

h = Λdiag

(
A⊺Σ−1

obs

∫

Rd

zz⊺π(z)dzΣ−1
obsA

)

= Λdiag
(
A⊺Σ−1

obs(ΣZZ + µZµ
⊺

Z)Σ
−1
obsA

)

= Λdiag (A⊺Σ−1
obs(AΣXXA⊺

+ (y −AµX)(y −AµX)⊺)Σ−1
obsA).

A.3 Numerical estimation of a

bound on the Hellinger

distance

For two probability densities π = ρ
Z and π̃

Z̃
where

Z and Z̃ are the normalization constants, we can
write

√
2H(π, π̃)

= ∥√π −
√
π̃∥L2

= ∥
√

ρ/Z −
√

ρ̃/Z̃∥L2

=
1√
Z
∥√ρ−

√
ρ̃

√
Z/Z̃ ±

√
ρ̃∥L2

≤ 1√
Z

(
∥√ρ−

√
ρ̃∥L2 + |1−

√
Z/Z̃|∥

√
ρ̃∥L2

)
.

Furthermore, we have

∥
√

ρ̃∥2L2 =

∫
ρ̃dx = Z̃,

so that we obtain

√
2H(π, π̃) ≤ 1√

Z

(
∥√ρ−

√
ρ̃∥L2 + |

√
Z̃ −

√
Z|
)
.

In addition,

∣∣∣Z̃ − Z
∣∣∣ = |

∫
ρ− ρ̃dx|

≤
√∫

(
√
ρ−

√
ρ̃)2dx

√∫
(
√
ρ+

√
ρ̃)2dx

= ∥√ρ−
√

ρ̃∥L2∥√ρ+
√

ρ̃∥L2

≤ ∥√ρ−
√

ρ̃∥L2(∥√ρ∥L2 + ∥
√

ρ̃∥L2)

≤ ∥√ρ−
√

ρ̃∥L2(
√
Z +

√
Z̃).

Because |Z̃ −Z| = |
√

Z̃ −
√
Z||
√

Z̃ +
√
Z| we get

|
√

Z̃ −
√
Z| ≤ ∥√ρ−

√
ρ̃∥L2 .

So, in the end we have

H(π, π̃)
2 ≤ 2

Z
∥√ρ−

√
ρ̃∥2L2 .

Therefore,

H(π, π̃)
2 ≤ 2

Z̃

∫ (√
ρ−

√
ρ̃
)2

dx

= 2

∫ (√
ρ

ρ̃
− 1

)2

π̃dx

≈ 2

N

N∑

i=1

(√
ρ(x(i))

ρ̃(x(i))
− 1

)2

.
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