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Abstract

Background: Obesity is a public health problem across the world. Development of beige adipocytes in
white adipose tissue (WAT) and activation of brown adipose tissue (BAT) can support obesity
management. We aimed to investigate the effects of royal jelly (RJ) and tocotrienol-rich fraction (TRF)
along with calorie restriction diet (CRD) on the genes involved in beige fat formation and BAT activation.

Methods: Fifty 3-week-old male Wistar rats were fed high-fat diet (HFD) for 17 weeks. When obesity was
induced, they were randomly divided into 5 groups (n=10/group): HFD, CRD, RJ+CRD, TRF+CRD,
RJ+TRF+CRD for an additional 8 weeks. Finally, body weight was measured. Moreover, WAT and BAT
were dissected for assessing the expression of major genes involved in adipose thermogenesis and
histological changes evaluation.

Results: At the end of the intervention, weight significantly decreased in RJ and RJ+TRF groups relative to
the CRD group (p<0.05). RJ remarkably increased the expression of uncoupling protein 1 (UCP1) by 5.81
and 4.99 times more than CRD alone in WAT and BAT respectively (p<0.001). Expression of peroxisome
proliferator-activated receptor-y coactivator 1a (PGC1-a), peroxisome proliferator-activated receptor-a
(PPAR-a) and Sirtuin1 (SIRT1) was significantly increased in WAT and BAT of rats receiving RJ and
RJ+TRF. Peroxisome proliferator-activated receptor-y (PPAR-Il) expression was not noticeably changed in
assessed adipose tissues. Brown-like adipocytes in WAT and denser adipocytes in BAT were obvious in
RJ and RJ+TRF groups. However, the effect of TRF on studied genes was not noticeable.

Conclusion:

RJ+CRD improved markers of adipose thermogenesis and induced anti-obesity effects more than CRD
alone did. Furthermore, RJ remodeled adipose tissue and could be considered as a new therapeutic
target.

Introduction

Obesity constitutes one of the serious health problems in the world. Increasing its prevalence at an
alarming rate is indisputable and associated with increased all-cause mortality (1). In 2016 more than
1.9 billion adults were overweight (2). Calorie restriction diet (CRD) is known as a common strategy for
the treatment of obesity. However, the magnitude of weight loss through CRD is lower than what is
expected and weight loss maintenance is a great challenge (3, 4). Some previous studies suggested that
poor success in weight loss with CRD may be related to the suppression of uncoupling protein 1 (UCP1)
expression in adipose tissues, contributing to energy conservation as an adaptive response (3, 5-7).

Classic brown adipose tissue (BAT) with a high content of mitochondria and high expression of UCP1 is a
specialized tissue that has attracted a great deal of attention in obesity management. white adipocytes
have a buffering role and containing a single large lipid droplet and UCP1 doesn’t express in WAT
naturally (5, 8). Brite (brown-in-white) or beige adipocytes, are cells with more oxidative phenotype similar
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to brown adipocytes that are present in white adipose tissue (WAT). Thus beige fat formation via adipose
tissue remodeling which described as “browning/ beiging process” could be a therapeutic target in
obesity. Browning process results in elevated thermogenesis and negative energy balance (9, 10).

peroxisome proliferator-activated receptor-y coactivator 1a (PGC1-a) and PR domain containing16
(PRDM16) are two major transcriptional regulators that together with other regulators such as
peroxisome proliferator-activated receptors (PPARs) bind to UCP1 promotor and consequently, induce
beige adipocytes formation and also trigger BAT activation. Sirtuin1 (SIRT1) has a key role in PGC1-a and
PRDM16 activation (8,9, 11).

Nowadays, regarding weight loss problems via CRD, more options with thermoregulatory properties are
increasingly demanded for achieving and maintaining weight loss. A growing body of evidence has
documented that functional and nutraceutical food could play roles in adipose tissue remodeling and
obesity treatment (12, 13)

Royal jelly (RJ) as an important product of honey bees, is a functional food that provides a wide range of
effective ingredients conferring its beneficial health effects (14-17). Meanwhile, a great deal of interest
has been directed toward RJ because of its fatty acid composition including trans-10-hydroxy-2-decenoic
acid (HDEA) and10-hydroxydecanoic acid (HDAA) (16, 18). Thermogenesis effects of RJ via stimulation
of transient receptor potential ankyrin 1 (TRPA1) have been suggested (17). Furthermore, previous
researches have demonstrated that the administration of RJ increased PGC-1a mRNA levels in animal
models (19, 20). A recent study reported that RJ causes elevation in UCP1 expression and BAT activity in
mice (21).

In addition, evidence from previous studies indicates that tocotrienol (T3) and tocotrienol-rich fraction
(TRF) which found in plant products such as rice bran and vegetable oils including palm oil and
grapeseed oil have significant health-promoting effects (22-24). Since TRF improves the activity of
PPARs and acts like PPAR ligands, it is likely to be effective in beige fat formation and BAT activation (25,
26).

To the best of our knowledge, no study has evaluated the effect of RJ and TRF, as a complementary
therapy, on thermogenesis and adipose tissue remodeling along with CRD. Given that, this study was
conducted to examine whether UCP1 expression in WAT and BAT diminish with weight loss. Furthermore,
WAT to BAT remodeling and BAT activation were assessed when RJ and TRF are consumed along with
CRD and compared with CRD alone.

Method
Animals

All procedures involving animals and their care were conducted in accordance with National Institutes of
Health guide for the care and use of laboratory animals (27). The experimental protocol was reviewed
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and approved by the Ethics Committee of Iran University of medical sciences (ethic code:
IR.IUMS.FMD.REC 1396.9321324002). Male Wistar rats aged 3 weeks and weight of 58 + 4 g were
obtained from the Pasteur Institute (Tehran, Iran). They were individually housed in stainless steel cages
in an air-conditioned room (21-24 °C, 50-60% relative humidity) with a 12/12 h light/dark cycle.

Experimental Design, Diet And Treatment

Our study consists of two phases: i) obesity induction; ii) intervention in obese rats (Fig. 1). The rats were
acclimatized for one week after arrival and then randomly assigned to two groups including HFD group
fed Semi-purified HFD (n = 50) and normal diet (ND) group which fed standard laboratory chow-diet. We
mixed standard chow powder with milk butter (40% w/w) and prepared HFD. The compositions of HFD
and ND are shown in Table 1. High-fat pelleted diet was prepared and stored at 4 °C and then used freshly
within two days of preparation.

Table 1

Composition of consumed diets
Dietary Composition(g/kg) ND HFD CRD
Carbohydrate 536.2 335125  335.125
Fiber 42 26.25 26.25
Protein 260.8 163 163
Lipid 40 400 400
Calcium 9.5 5.93 5.93
Phosphorus 6.5 4.06 4.06
Salt 5 3.125 3.125
Moisture 50 31.25 31.25
Ash 50 31.25 31.25
Energy density (kcal/g) 3.6 5.6 5.6
ND: normal diet; HFD: high fat diet; CRD: calorie restriction diet

Animals had free access to food and water during the obesity induction phase. We weighed animals
every week and compared the two groups with each other to assess HFD-induced obesity. The mean
weight of rats in the HFD group was elevated significantly relative to the control ND after 17 weeks
(443.28 + 46.62 g vs 396.24 + 28.79 g; P< 0.05). Further, the obesity model was induced in the HFD group.
In the second phase of the study, obese rats were randomly divided into five groups (n = 10) matched for
body weight for eight weeks including @) RJ group; 100 mg/kg/day RJ orally added to CRD b) TRF group;
85 mg/kg/day TRF orally added to CRD ¢) RJ + TRF group; both 100 mg/kg/day RJ with 85 mg/kg/day

Page 5/19



TRF orally added to CRD d) CRD group; CRD with no added RJ and TRF as control for RJ, TRF and RJ +
TRF groups and €) HFD group; HFD with no added RJ and TRF as control for CRD group.

Administered doses of RJ and TRF were chosen considering previous studies based on no observed
adverse effects (24, 28). The composition of CRD was similar to HFD but the calorie of CRD was 30%
lower than the amount of calorie in ad libitum intake of HFD (Table 1). The CRD was weighed then
determined amount of RJ and TRF were added and then supplemented food was fed to rats. Animals had
free access to food in the HFD group. We purchased Lyophilized RJ powder from Bulk Supplements Co,
Ltd, (Henderson, USA) with 6% of 10-H2DA. TRF was obtained from ExcelVite Co, Ltd (Perak, Malaysia)
and comprise a-tocotrienol (12%), B-tocotrienol (2%), y-tocotrienol (19.3%) and &-tocotrienol (5.5%)
together with a-tocopherol (11.9%). At the end of the experiment, animals were kept fasting overnight and
blood was collected via cardiac puncture from rats anesthetized with xylazine and ketamine.

Two parts of the inguinal WAT and interscapular BAT were dissected, cleaned off their adhering tissues
and washed with phosphate-buffered saline (PBS) solution. One part was frozen at - 80 °C in RNAlater

stabilization solution (Qiagen, Inc. Germany) for determination of genes expression levels with real-time
reverse transcription polymerase chain reaction (RT-PCR), while the other part was fixed in 10% formalin
buffered solution for 7 days at room temperature for histological assessment.

Rna Isolation And Quantitative Real-time Pcr

Total RNA was isolated from adipose tissues using Trizol Reagent (Thermo fisher, USA). The quality and
quantity of extracted RNA were evaluated spectrophotometrically (NanoDrop One/Onec, Thermo
Scientific). Reverse transcription of total RNA to complementary DNA (cDNA) was conducted using the
RevertAid First Strand cDNA Synthesis Kit

(Thermo Scientific, USA). The cDNA was prepared from 1 pg of mRNA and was subjected to RT-PCR on a
quantitative PCR System. PCR amplification was performed with a fluorescence thermal cycler (Light
Cycler system; Roche Diagnostics, Mannheim, Germany) system using SYBR green kit (Takara Bio Inc.,
Shiga, Japan) and rat specific primer sequences targeting the genes including UCP-1, PGC1-a, PPAR-q,
PPAR-y, SIRT1 and B-actin. The specific forward and reverse primers for the assessed gene were designed
using the NCBI Primer Bank and were got from Metabion international AG (Steinkirchen, Germany). The
sequences of primers are tabulated in Table 2.
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Table 2
List of rat-specific primers used in gRT-PCR

Gene Forward Reverse

UCP-1 TTCTTTTCTGCGACTCGGAT GCCCAATGGTGTTTAGCATC

PPAR-a  GGACTTGAATGACCAGGTTAC  TCAGCATCCCGTCTTTGTTCA
PPARY  GTTCGCCAAGGTGCTCCAGAA  AAGGCTCATATCTGTCTCCGT
SIRTT CTCTGAAAGTAAGACCAGTAG  ACATCGCAGTCTCCAAGAAGC
PGC1-a TACACAACCGCAGTCGCAAC TCCACACTTAAGGTTCGCTCA
B-actin  TCAGGTCATCACTATCGGCAA  TTACGGATGTCAACGTCACAC

The cDNA was amplified in the three steps: 95 °C (10 min), 95 °C (10 s), 60 °C (10 s), for 45 cycles with
100% ramp rate. Relative expression of the genes of interest was calculated as relative Ct value and
normalized to housekeeping gene (B-actin) (29). We analyzed triplicate Ct values for each sample.

2.5. Histological Assay

For histological examination, WAT and BAT that fixed in 10% formalin were dehydrated using different
solutions of alcohol and then embedded in paraffin. Paraffin-embedded tissues were sectioned at a
thickness of 5 um cut by microtome and stained with hematoxylin and eosin (H&E). The sections were
viewed under the microscope (magnification, X400).

The sections were viewed triplicate by a skilled histologist under the microscope (magnification, 40X). we
conducted histomorphometric studies based on our previous work (30). Actually, 100 sections of each
sample of WAT and BAT (10 microscopic fields that were selected randomly and 10 lams were provided
from each sample) were assessed and the mean percentage of evaluated adipose tissue (BAT, WAT and
beige) and connective tissue were considered for each group.

2.6. Statistical Analysis

One-sample Kolmogorov-Smirnov test was used to analyze the normality of data. All Data were
expressed as mean + SEM. Differences between groups were tested using one-way analysis of variance
(ANOVA), with Tukey’s post hoc test analysis for multiple comparisons.

The results of gene expression were presented as fold changes. All analyses were performed using the
Statistical Package for the Social Sciences (SPSS Inc. Chicago, IL, USA, version 21). The Prism software,
version 6-0 (GraphPad, CA, USA) was used for drawing figures. A Pvalue < 0.05 was considered
statistically significant.
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Results
The effect of CRD, RJ and TRF in weight loss

Obese animals fed CRD for eight weeks following 17 weeks HFD had a significant weight loss (p< 0.001).
The weight loss was 40.70 + 6.50 g for the CRD group. The rats gained weight about 37.04 + 5.56 g in the
HFD group. In both groups, the rate of weight changes gradually decreased over the eight weeks (Fig. 2A).
Addition of RJ, TRF and RJ + TRF to CRD respectively caused 67.21 +4.84 g,44.40+3.35gand 73.29
4.57 g weight loss relative to starting point of intervention (Fig. 2B). Final weight in RJ and RJ + TRF
groups reached statistically significant levels in comparison to the CRD group (p<0.05). However, no
significant weight loss was detected in TRF groups relative to the CRD group (p = 0.05).

The effect of CRD alone and along with RJ and TRF on UCP1 expression

As shown in Fig. 3A, CRD induced about 36% reduction in UCP1 expression in WAT and also decreased
UCP1 expression by 14% in BAT as compared with HFD which did not reach statistically significant levels
(p=0.05). The level of UCPT mRNA in the RJ group was 5.81 and 4.99 times more than the CRD group in
WAT and BAT, which was statistically significant (p<0.001). Dietary TRF resulted in elevation of UCP1
MRNA level in both WAT and BAT when compared with the CRD group, but the changes were not
significant. The mRNA level of UCP1 was shown to be significantly higher in the RJ + TRF group as
compared to the CRD group in both WAT and BAT (p< 0.001) (Fig. 3B).

Assessing the effect of RJ and TRF on some genes that regulate UCP1 expression in adipose tissues

We evaluated the expression of PGC-1a as a key regulator of thermogenesis and expression of UCP1. The
MRNA levels of PGC1-a in WAT and BAT of rats in RJ groups increased considerably by 3.65 and 2.75
folds relative to CRD group (p<0.001). However, the changes of PGC1-a expression in the TRF group did
not reach significant levels in any of the assessed tissues (p= 0.05). Furthermore, the expression of
PGC1-a increased significantly in the RJ + TRF group to 3.25 and 2.9 fold in both aforementioned tissues
when compared with CRD alone (p<0.001) (Fig. 4A).

Interaction between PGC1-a and PPAR- a/ y form important thermoregulatory complex, involved in UCP1
induction and adipose tissue remodeling. So we assessed the mRNA levels of PPAR-a, PPAR-y in WAT
and BAT.

As shown in Fig. 4B, in comparison with the CRD group, RJ and RJ + TRF groups could enhance the
PPAR-a expression considerably in WAT and BAT (p<0.001). TRF could not significantly increase the
expression of PPAR-a more than CRD, in WAT and BAT of obese rats (p = 0.05). RJ and TRF, neither
separately nor together in the RJ + TRF group, significantly increased the mRNA levels of PPAR-y more
than CRD did in WAT and BAT (p= 0.05) (Fig. 4C).

In addition, SIRT1 has a remarkable role in thermogenesis via post-translation modification of
transcriptional regulators. Then, we investigated the effect of RJ and TRF on SIRT1 expression. The
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MRNA levels of SIRT1 increased dramatically in RJ and RJ + TRF groups in both investigated adipose
tissues in comparison with the CRD group (p<0.001). SIRT1 expression, neither in WAT nor in BAT were
significantly altered in the TRF group (p= 0.05) (Fig. 4D).

Histological Results

The histological results of WAT of rats were shown in Fig. 5A. In the HFD and CRD group, there were no
changes in favor of WAT remodeling. The histology of WAT in the CRD group showed unilocular white
adipocytes with smaller lipid droplets relative to HFD. Remarkably, multilocular beige adipocytes in WAT
of rats in the RJ and RJ + TRF groups were obvious. However, the WAT browning in the TRF group was so
limited than other intervention groups. When we assessed the BAT (Fig. 5B) in the HFD group, BAT
underwent an adverse remodeling in some parts and white adipocytes with large lipid droplets could be
distinguished near brown adipocytes. Some white adipocytes close to BAT were seen in the CRD group
but at a limited level as compared with HFD. Interscapular BAT in RJ and RJ + TRF groups had a more
reddish-brown color appearance, more adipocyte density and multilocular brown adipocytes relative to
CRD group. While interscapular BAT in the TRF group has white-reddish color and was less dense.

Discussion

Previous evidence suggested that some problems in weight loss occurring with CRD result from adaptive
response for energy saving in calorie restriction condition. So in the current study, we evaluated the effect
of RJ and TRF supplementation along with CRD on the weight loss, WAT to BAT remodeling and BAT
activation relative to CRD alone in obese rats.

Slowing weight loss phase following fast weight loss and weight recidivism along CRD has been reported
in several studies (3, 4, 31). In our investigation, both fast and slow phases of weight loss were observed.
When assessing the trend of weight loss, we found that the slope of weight loss dramatically decreased
after day 40. Adding RJ and TRF to CRD caused remarkable weight loss in RJ and RJ + TRF, but not in the
TRF group. Both RJ and RJ + TRF attenuated reductions in weight loss slope occurring with CRD in days
40 to 60. This observation prompted a closer look at RJ and TRF on thermogenesis via adipose tissue
remodeling, UCP1 regulation and related genes expression to elucidate the mechanism underlying this
process.

Our finding indicated that eight weeks CRD noticeably decrease the UCP1 expression by 36% and 14% in
WAT and BAT of the obese rats as compared with the HFD group but could not reach statistically
significant levels. In the current work, RJ supplementation reversed the decrement of UCP1 expression
following CRD in the obesity model of rats. To the best of our knowledge, no research has assessed the
effect of RJ during CRD on UCP1 expression and beige fat formation. Only one study by Yoneshiro et al.
reported BAT activation properties of RJ in obese rats along with HFD (21).
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We recently assessed the effect of RJ and TRF on UCP1 overexpression via TRP-SNS-UCP1 pathway (32).
Enhancement of B-adrenergic action and 5'-adenosine monophosphate-activated kinase (AMPK) by
TRPAT activators triggers P38MAPK expression and is an important aspect that may favor the UCP1
expression effects of RJ (11, 17, 32). Our previous study revealed that RJ remarkably elevated the level of
P38MAPK mRNA in both WAT and BAT of rats along with CRD (32). Since P38MAPK signaling is one of
the major pathways involved in adipocytes browning we measured some of P38MAPK target genes
expression such as PRDM16 and CREB1 (33). RJ induced the PRDM16 and CREBT mRNA levels in
previous work (32). So in the current study, we evaluated some other target genes for P38MAPK signaling
in PGC-1a dependent pathway.

The Expression of PGC-1a was significantly enhanced in the WAT and BAT of RJ and RJ + TRF groups as
compared to CRD. Previous works have demonstrated that the administration of RJ increased PGC-1a
mRNA levels in the liver and skeletal muscle of obese mice (19, 20). PGC-1a is an important transcription
factor that regulate biogenesis of mitochondri and thermogenic reflex by forming complexes with PPAR-
a/ PPAR-y and binding to a PPAR response element in the UCP1 promoter to induce its expression.
Notably, PRDM16 also interacts with the aforementioned complex and has been identified to play a
pivotal role as a UCP1 expression inducer (9—11). We found out PRDM16 overexpressed following RJ
consumption in previous work (32). As pointed above, PPAR-a has been identified to play a pivotal role as
a UCP1 expression inducer (8, 34). Assessing the changes of PPAR-a mRNA level showed that RJ
dramatically boosted PPAR-a expression in WAT and BAT. Our results are in line with Yoshida et al. study
revealing PPAR-a amelioration by RJ supplementation in the liver of obese mice (19). Our results
indicated that RJ could not induce PPAR-y relative to the CRD group. PPAR-y is a key part of the
thermogenesis process and master regulator of lipogenesis (8, 9). It is reasonable that RJ may exert its
anti-obesity effects in part through the induction of PPAR-a without any change in the PPAR-y level.

In addition, SIRT1 is another key gene recognized in beiging process which plays an important role in
AMPK/SIRT1/PGC1-a pathway and assessed in this study. In the current work, SIRT1 was overexpressed
in WAT and BAT of the RJ group when compared to the CRD group. Post-translation modification is a
further critical step that regulates beige fat formation. In this regard, SIRT 1-depended deacetylation of
PGC1-a and PPARs contributes WAT remodeling. So SIRT1 has a critical role in the induction of genes
typical for BAT and leads to PRDM16 and PGC1-a activation, which in turn activates PPARs, and
eventually trigger UCP1 expression and thermogenesis enhancement (10, 11) (Fig. 6).

Given that, RJ enhanced gene-related thermogenesis, beige fat formation and BAT activation confirming
with histological assessment in the current work.

TRF did not show any differences in thermogenesis and expression of the aforementioned genes in
comparison with the CRD. Fang et al. did not find any remarkable effect either on PPARs expression in
mice feeding TRF, though the increase in PPARs gene expression and activity was observed in vivo part of
their study (26). Further, no remarkable changes were reported in another animal model study in PPARs
expression after TRF consumption (35). We would probably achieve more remarkable results if we added
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T3 instead of TRF. a-tocopherol exert inhibitory effects against the bioavailability of T3 and suppresses
its effect; so their possible interaction cannot be ignored (36). However, due to the lack of knowledge
about T3 supplementation along with CRD, further research warranted to elucidate the involved
mechanisms.

Remarkable improvement in adipose tissue thermogenesis and the expression of assessed thermogenic
genes were shown in obese rats treated with RJ + TRF similar to RJ-fed rats. considering the slight effect
of TREF, it is therefore likely that the RJ is responsible for the studied changes in the RJ + TRF group. The
minor difference between the two aforementioned groups may have resulted from the individual
differences in rats in RJ and RJ + TRF groups.

Our data demonstrated RJ improved adipose tissue thermogenesis and remodeling along with CRD and
consequently caused more weight loss. However, it is necessary to mention some limitations of recent
investigate which are suggested to be considered in future studies. Firstly, evaluation of some other
possible dependent-CNS pathway regulating browning/beiging process such as the effect of RJ on
endoplasmic reticulum stress reduction in the hypothalamus which can activate CNS signaling and then
thermogenic genes in adipose tissue. Secondly, we investigated the effect of yT3 within TRF which may
have interacted with other components in TRF. So designing further studies with yT3 is suggested.
Finally, we couldn’t assess the effect of RJ and T3 in different doses. We suggest more studies to
evaluate dose-dependent manner of RJ and T3 in the obesity model.

Conclusion

Generally, in our investigation, we could separate two fast and slow phases of weight loss with CRD.
Supplementation with RJ and RJ + TRF attenuated reductions in weight loss slope occurring with CRD.
Furthermore, our finding potently revealed the effect of RJ on PGC1-a expression in WAT and BAT of
obese rat during CRD. The thermogenic effects of RJ via SIRT1/PGC1-a signaling and forming PGC1-
a/PPAR-a/PRDM16 complex were assessed. Based on current findings and regarding our previous data,
supporting the effect of RJ on TRP-SNS-UCP1 pathway, we concluded the effect of RJ on the beige fat
formation and BAT activation in the rat obesity model. It seems that consuming RJ along with CRD
induce some anti-obesity effects more than CRD alone did and could be considered as a new approach to
weight management. Studies that examine the effect of RJ and TRF along with other kinds of diet can be
extremely helpful in this regard.
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Scheme of study protocol
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Figure 2

Weight changes during 60 days, (A) between CRD (n=10) and HFD (n=10) ; (B) between the RJ (n=10),
TRF (n=10), RJ+TRF (n=10) and CRD groups; Data shown as mean * SEM; **P < 0.05, ****P <0.001
versus control
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Figure 3

(A) UCP1 mRNA fold change in CRD (n=10) vs HFD (n=10) in WAT and BAT; (B) mRNA fold change in RJ
(n=10), TRF (n=10) and RJ+TRF (n=10) in WAT and BAT vs CRD for UCP1. Data shown as mean + SEM;
**P < 0.05, ****P <0.001 versus control
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mRNA fold change in RJ (n=10), TRF (n=10) and RJ+TRF (n=10) in WAT and BAT vs CRD for (A) PGC1-q;
(B) PPAR-q; (C) PPAR-y; (D) SIRT1. Data shown as mean * SEM; **P < 0.05, ****P <0.001 versus control
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Figure 5

A) Representative images of H&E staining in sections of inguinal WAT of HFD, CRD, RJ, TRF and RJ+TRF
rats;

Figure 6

(B) Representative images of H&E staining in sections of interscapular BAT of HFD, CRD, RJ, TRF and
RJ+TRF rats. All images were obtained at x 400 magpnification
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Figure 7

Suggested pathway contributing to adipose tissue remodelling and BAT activation and forming PGC1-
a/PPAR/PRDM16 comlex following RJ consumption. P38 MAPK: P38 mitogen-activated protein kinase;
AMPK: adenosine monophosphate-activated kinase; PGC1-a: peroxisome proliferator-activated receptor-y
coactivator 1q; SIRT1: sirtuin1; PPAR-a/y: peroxisome proliferator-activated receptor-a/y; PRDM16: PR
domain containing16; UCP1: uncoupling protein 1; WAT: white adipose tissue
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