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Abstract

Smart Manufacturing has become a popular topic due to the growth of Internet
of Things (IoT) and Cloud Manufacturing, which is driving traditional manu-
facturing companies to migrate towards digitization and intelligence. Device to
Device (D2D) facilitates communication between terminal devices and improves
output and operational efficiency. Firstly, by using the utility theory of microe-
conomics, this paper constructs a novel utility-oriented resource allocation model
and addresses the resource allocation problem for D2D communication. This
paper also proposes an interesting price-based resource allocation scheme along
with an improved gradient descent method and proves the stability of the price-
based resource allocation technique based on the Lyapunov stability theory. The
simulation results demonstrate that the two proposed algorithms can achieve
the equilibrium which is also the optimum of the resource allocation model, and
that the gradient descent method is outperformed by the price-based mechanism
method in terms of stability and convergence speed.

Keywords: Smart Manufacturing, Device to Device, Resource allocation, Utility
theory, Lyapunov stability.

1 Introduction

IoT is a dynamic global network architecture that enables all objects to communi-
cate and exchange information with each other [1]. The Industrial Internet of Things
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(IIoT), a concept within the broader scope of IoT that focuses on the industrial sec-
tor, facilitates seamless interoperation and connectivity of industrial resources within
a network [2]. The ongoing development of IIoT makes it easier for manufacturing
enterprises to obtain a rich variety and a large volume of data to promote perceiving
the risk [3, 4], making scientific decisions, reducing costs, and improving operational
efficiency [5].

Resource allocation in smart manufacturing has emerged as a compelling topic for
researchers around the world [6, 7]. Efficient communication is pivotal for the frequent
exchange and sharing of industrial big data between devices, deeply influencing the
operation and performance of intelligent manufacturing systems [8]. The level of com-
munication efficiency directly affects the interoperation and linkage ability between
devices. Devices with low communication rates hinder fast and accurate interoperation
performance, resulting in decreased interoperation performance and delayed informa-
tion feedback during production. This negatively impacts overall production efficiency,
quality, real-time control capability, and decision making effectiveness [9, 10].

Regarding the issue of communication resource allocation in smart manufacturing,
numerous scholars tend to examine it within the contexts of cloud computing or edge
computing [11], while D2D mode is more used to solve the problem of offloading
and cost optimization [12, 13]. Bello et al. believe that the D2D has the potential to
become an integral part of the IoT [14]. Although they have provided categories of
algorithms to facilitate device interoperation, no specific concrete algorithm has been
put forward. Moreover, many scholars often employ fuzzy algorithms or traditional
precise algorithms to realize optimal resource allocation, lacking the proposal of novel
algorithms.

The primary contribution of this paper is the proposal for employing a price-
based mechanism to allocate communication resources in the D2D mode. We prove
the stability of this algorithm based on the Lyapunov stability theory, and compare its
performance with the results obtained from the traditional gradient descent method to
demonstrate the superiority and reliability of the proposed algorithm. This in-depth
investigation provides new perspectives and methods for optimizing communication
in the field of smart manufacturing.

The rest of this paper is structured as follows: Sect. 2 introduces the related work,
while Sect. 3 presents an optimal D2D-based resource allocation model in smart manu-
facturing scenarios and theoretically analyzes it to obtain the optimal solution. Sect. 4,
the main work of this paper, introduces the traditional gradient descent method and
also a novel price-based scheme to realize the optimal resource allocation, and applies
the low-pass filtering principles to enhance the algorithm. In Sect. 5, we combine
a typical scenario in smart manufacturing and conduct some numerical simulations
in the context of high-definition camera systems to discuss the convergence of both
algorithms. Finally, this paper concludes the main results in Sect. 6.

2 Related research

At present, the three-tier architecture of edge computing is widely accepted by schol-
ars, consisting of the cloud layer, edge layer, and device layer [15]. In the smart
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manufacturing scenario, the device layer is comprised of sensors in vehicles, controllers,
actuators, and robots et al. [16]. With the popularity of wireless networks and the
increasing number of new network terminals, a new inflection point has occurred [17].
The inefficiency of cloud computing in handling the performance and latency of long-
haul networks directly contributes to prolonged transmission delays [18]. Therefore, the
mode of Cloud-to-Device is not an appropriate communication way for guaranteeing
interactive real-time applications [19] in smart manufacturing.

The edge layer, which is closer to the device, has the advantage of providing pow-
erful storage, communication, computing, and network capabilities in real-time, thus
can reduce the response latency substantially [20]. However, it is always be applied to
improve system performance [21], such as optimizing business processes [22], reduc-
ing operation costs [23], and offering a lightweight transformation scheme for factory
transformation [24, 25]. The rise of the IoT has promoted the development of wire-
less communication technology and sensor technology, providing technical support for
D2D [1, 26]. Since edge computing technology solves the problem of real-time calcu-
lation and storage, it makes the communication advantage of D2D more obvious. It
is very different from the traditional architecture in technology. Devices can directly
communicate, transmit, and frequently exchange data between two adjacent devices
without going through the base stations or cloud intermediaries [27]. For example,
robots can use machine vision equipment to detect the parts on the conveyor belt and
communicate with other robots on the production line. The flexible and interactive
mode helps alleviate network load issues, enables high-speed data transmission with
low latency between devices, and also avoids the issues of signal attenuation.

Fig. 1 Overview of collaborative device-edge-cloud allocation architecture

In terms of modelling, common resource allocation models fall into three categories:
latency and energy consumption, communication and computing load balancing, and
utility maximization [28]. In addition to these traditional metrics, fairness is also
widely discussed by scholars. They argued that considering fairness can ensure that
resource allocation does not favor certain devices, thereby ensuring the balance and
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sustainable development of the system [29]. Therefore, they have initiated research
on fairness in IP networks [30]. Kelly has shown that proportional fairness can be
satisfied when using the logarithmic form [31]. In the smart manufacturing scenarios,
more scholars will reduce energy consumption and latency as a goal. Kamoun et al.
aimed to reduce energy consumption and optimize the strategy of resource allocation
[32]. Zhang et al. [33] deployed a DRL-based algorithm to maximize energy efficiency
in the long term in a D2D-enabled heterogeneous cellular network. Latency is always
considered a key indicator in smart manufacturing scenarios. Some scholars considered
that the IIoT has the characteristics of fixed devices, a large amount of generated
sensing data, and a low tolerance for time latency compared with the traditional IoT
[34–36]. And Waheed et al. [37] believed self-driving cars, machine vision systems,
autonomous storage equipment in logistics systems, industrial robots, et al. need to
sense the environment in real-time in a changing environment to perform accurate
actions. Fei et al. [38] also considered categorizing task requests by the shortest system
delay.

In terms of research methods, many scholars present various models based on
metaheuristic algorithms for resource allocation optimization [39]. Seyfollahi et al. [40]
used moth-flame optimization (MOF) to optimize the allocation of resources of servers
in the IoT framework. Hussein et al. [41] used ant colony optimization (ACO) and
particle swarm optimization (PSO) to schedule computation offloading tasks in com-
puting networks, and Alqarni et al. [42] used binary cuckoo search algorithm (BCSA).
Akbari et al. [43] investigated the scheduling problems in a distributed and hetero-
geneous cloud environment by a genetic algorithm. Tanha et al. [44] also used this
algorithm and combined it with a thermodynamic simulated annealing algorithm to
make improvements. However, optimization algorithms like gradient algorithm and
quasi-Newton method can achieve good convergence effect in a short time, fewer
researchers have come up with new precise algorithms. Li et al. [45] proposed a pric-
ing scheme to realize reasonable resource allocation in a P2P file-sharing network, and
verified its stability with Lyapunov theory. Zhan et al. [46] applied a policy gradient
DRL-based approach to solving resource scheduling problems regarded as the Markov
decision process. Gao et al. [47] used the gradient descent method to determine the
frequency allocation and proved it can minimize the delay and energy. In this paper,
we address the resource scheduling problem between edge and end devices as a com-
binatorial optimization. Traditional heuristic algorithms are found to be inefficient in
solving this problem. Therefore, we propose a new allocation algorithm called price-
based scheme and compare its performance with the commonly used precise algorithm,
namely gradient descent algorithm. Numerical examples are provided to evaluate their
performance.

3 Resource sharing model in smart manufacturing
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3.1 Problem description

Under the D2D communication mode, devices act not only as resource receivers but
also as demanders. Common interoperative application scenarios of D2D communi-
cation in smart manufacturing include robot control systems, smart sensor networks,
and high-definition camera systems. The specific devices and requirements may vary
depending on different application domains and scenarios.

Figure 2 illustrates the device communication in a high-definition camera system.
Cameras are installed on monitors and unmanned aerial vehicles (UAVs), they have
features such as autofocus and wide-angle views, providing clearer and more accurate
visual data. Display devices and control devices interact with the camera devices, the
former includes monitors, televisions, projectors, et al., while the latter includes other
UAVs, robots, or sensors. By transmitting and receiving the captured video signals,
these devices are capable of real-time monitoring, providing security, and enabling
remote operation tasks.

High-definition camera systems necessitate high communication speeds and band-
width due to the large amount of data involved. The actual rate requirements
vary depending on specific application needs, device performance and technological
limitations, communication environment, and image quality. For instance, common
high-definition images such as 1080p full HD-resolution images can be adequately
transmitted with a transfer rate of several tens of megabits per second.

Fig. 2 A D2D-based high-definition camera system

We introduce the set P of resource provider nodes and the set S of resource
demander nodes, and investigate the optimal resource allocation between providers
and demanders. The goal of resource allocation optimization problem is to maximize
the aggregated utility of all device demanders in the network while also considering
the fairness of resource allocation. First of all, the objective function is logarithmic
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form to satisfy the proportional fairness in the optimal resource allocation. Secondly,
considering the high latency requirements of devices, the value of ωs in the objective
function is positively correlated with the degree of latency required by the device. If
the device has a higher demand for latency, the ωs value will be larger.

In terms of constraints, the total amount of resources provided by all providers is
equal to the total amount obtained by demanders. For each provider p ∈ P , it has
its upper limit of upstream link capacity Cu

p for uploading resources, and for each

demander s ∈ S, it also has its limit of downstream link capaciy Cd
s for downloading

resources. Therefore, we model the resource allocation between devices to devices in
edge manufacturing networks as the following optimization problem:

Objective function:

Max
∑

s:s∈S

Us (ys)

Us (ys) = ωs ln ys (1)

Subject to:

∑

p:p∈P (s)

xps = ys

∑

s:s∈S(p)

xps ≤ Cu
p

∑

p:p∈P (s)

xps ≤ Cd
s

xps ≥ 0, p ∈ P, s ∈ S (2)

In the resource allocation problem, the notations are as follows:

Table 1 Notation list

Notations Meanings

S The set of resource demanders, each element is demander s

P The set of resource providers, each element is demander p

Ps The set of providers offering resources for demander s ∈ S

Sp The set of demanders that request resource from provider p ∈ P

xps The resource granted by provider p to demander s

ys The aggregated resource granted by providers to demander s

Us (ys) The utility of demander s

Cd
s The capacity of bandwidth resource of the downstream link of demander s

Cu
p The capacity of reserved bandwidth resource of the upstream link of provider p for its demanders

ωs The parameter correlated with the latency requirement of the device of demander s
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3.2 Modeling

In order to solve the above optimization problem, we apply the convex theory to
investigate it and find that the utility function Eq. 1 is strictly concave in ys, but not
strictly concave in xps. At the same time, since the constraints are linear, based on
the convex optimization theory [48], we can obtain the following result.
Theorem 1. The optimal resource allocation y∗s of each demander s is unique, but

the resource value x∗
ps provided by each provider to each demander is not unique.

We will come to Theorem 1 from the following analysis. First, we can obtain the
Lagrangian function of this nonlinear optimization problem:

L (x, y;λ, ν, µ) =
∑

s:s∈S

Us (ys) +
∑

s:s∈S

λs


 ∑

p:p∈P (s)

xps − ys




+
∑

s:s∈S

νs


Cd

s −
∑

p:p∈P (s)

xps


+

∑

p:p∈P (S)

µp


Cu

p −
∑

s:s∈S(p)

xps




(3)

where λs, νs, µps are Lagrange multipliers, λs can be considered as the price per
unit bandwidth paid by demander s, νs is the price per unit bandwidth charged by
demander s for downloading communication along with the downstream link and µp

is the price per unit bandwidth charged by provider p for uploading communication
along with the upstream link. Then we can rewrite the Lagrangian function as follows.

L (x, y;λ, ν, µ) =
∑

s:s∈S

(Us (ys)− λsys) +
∑

s:s∈S

∑

p:p∈P (s)

xps(λs − νs − µp)

+
∑

p:p∈P (s)

µpC
u
p +

∑

s:s∈S

vsC
d
s (4)

The first term in the above equation takes ys as independent variable, the second
term takes xps as independent variable. The objective function of the dual problem
can be written as:

D (λ, ν, µ) = max
x,y

L (x, y;λ, ν, µ) =
∑

s:s∈S

As (λs)

+
∑

s:s∈S

∑

p:p∈P (s)

Bps (λs, νs, µp) +
∑

p:p∈P (s)

µpC
u
p +

∑

s:s∈S

vsC
d
s (5)

Among them,

As (λs) = max
ys

Us (ys)− λsys (6)

Bps (λs, νs, µp) = max
xps

xps (λs − νs − µp) (7)
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From the above equations we can derive:

y∗s (λs) = argmax Us (ys)− λsys (8)

x∗
ps (νs, µp) = argmax xps (λs − νs − µp) (9)

We can interpret the sub-problems Eq. 6 and Eq. 7 from an economic point of
view. The subproblem represented by Eq. 6 is a demander problem. All demanders
try to maximize their own utility, which depends on the total offered resource ys
for demander s. λsys is the total cost that demander s is willing to pay. Thus, the
subproblem Eq. 6 means that each demander wants to maximize its own profit.

And the subproblem represented by Eq. 7 is a provider problem. The goal of this
problem is to maximize its total revenue of each provider. xpsλs is the fee paid by
the demander s for using the bandwidth resource xps, xpsνs is the cost charged by
the demander s for down-loading and xpsµp is the cost charged by the provider p for
uploading.

Thus, the dual problem of resource allocation model is:

min D(λ, ν, µ) over λs ≥ 0, νs ≥ 0, µp ≥ 0, s ∈ S, p ∈ P (10)

the goal of the dual problem Eq. 10 is to minimize the total price charged by all nodes’
transmission links while ensuring that the providers efficiently offer resources to the
demanders according to the degree of delay requirements.

3.3 Optimal resource allocation

Let (x∗, y∗, λ∗, ν∗, µ∗) be the optimal primal and dual variables. And let
∂L (x, y;λ, ν, µ) /∂ys = 0. We can obtain the optimal total resource for service
demander s:

y∗s = U−1
s (λs) =

ωs

λs

, ys
∗ > 0, ∀s : s ∈ S (11)

Substituting Eq. 11 into Eq. 4, and obtain the following Lagrangian function:

L̂ (x;λ, µ) =
∑

s:s∈S

(
ωs ln

(
ωs

λs

)
− ωs

)
+

∑

s:s∈S

∑

p:p∈P

xps (λs − µp)

+
∑

p:p∈P

µpC
u
p +

∑

s:s∈S

vsC
d
s (12)

Let ∂L̂ (x;λ, µ) /∂λs = 0, and obtain the optimal price paid by demander s:

λ*
s =

ωs∑
p:p∈P (s)

xps

(13)
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Substitute Eq. 13 into Eq. 12, and then take the partial derivative of xps, we can
get

L (x;µ) =
∑

s:s∈S

ωs ln


 ∑

p:p∈P (s)

xps


+

∑

p:p∈P

µp


Cu

p −
∑

s:s∈S(p)

xps




+
∑

s:s∈S

νs


Cd

s −
∑

p:p∈P (s)

xps


 (14)

When xps > 0, let ∂L (x;µ) /∂xps = 0, then the optimal total resource offered to
demander s is

y∗s =
∑

s:s∈S

xps =
ωs

µp − νs
(15)

In the following analysis, we firstly assume that the constraint on the downlink of
de-mander s is nonactive, i.e., νs = 0, and can obtain the following result.
Theorem 2. If two providers offer resources to the same demander at the same time,

the prices of resources charged by the two providers are equal.

If demander s obtains resources from two providers p1, p2 ∈ P (s), it will result
in:

λ∗
s = µ∗

p1 = µ∗
p2 =

ωs∑
s:s∈S

xps

x∗
ps > 0, ∀s : s ∈ S, ∀p : p ∈ P (16)

Assume that the whole network can be divided into κ regions. Each region has a
subset Pκ of providers and a subset Sκ of demanders. According to Theorem 2, the
optimal prices charged by resource providers in each region are all µp = µκ, ∀p ∈ Pκ.
The new Lagrangian equation can be expressed as:

L (x;µ) =
∑

κ


 ∑

s:s∈Sκ

ωs(ln
∑

p:p∈Pκ

xps) +
∑

p:p∈Pκ

µκ

(
Cp −

∑

s:s∈Sκ

xps

)


=
∑

κ


 ∑

s:s∈Sκ

∑

p:p∈Pκ

ωs

(
ln

ωs

µp

−
µκ

µp

)
+ µκ

∑

p:p∈Pκ

Cp




=
∑

κ


 ∑

s:s∈Sκ

ωs

(
ln

ωs

µκ

− 1

)
+ µκ

∑

p:p∈Pκ

Cp


 (17)
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By taking the partial derivative of µκ, let ∂L (x;µ) /∂µκ = 0, then

µ∗
κ =

∑
s:s∈Sκ

ωs

∑
p:p∈Pκ

Cp

(18)

Substituting Eq. 18 into Eq. 15, we can get the optimal price charged by the
providers in region κ, and the optimal resource for each demander as follows:

y∗s =
∑

s:s∈S

xps = ωs

∑
p:p∈Pκ

Cp

∑
s:s∈Sκ

ωs

(19)

So, the optimal prices paid by demander are

λ*
i = λ*

j = λ*
κ = µ∗

κ i, j ∈ Sκ (20)

Considering the maximum received resource constraint and also the minimum
resource requirement of each demander, the optimal resource allocation for each
demander can be obtained as follows:

y∗s = min




Cd

s ,max




Am

s , ωs

∑
p:p∈Pκ

Cp

∑
s:s∈Sκ

ωs









(21)

4 Resource allocation algorithms

4.1 Gradient descent method

The Gradient Descent method is a mathematical optimal algorithm that leverages
local information to obtain optimal resource allocation. At each iteration, intelligent
terminal devices calculate the price they should pay to the resource providers and
the price charged for downloading resources based on the amounts of resources pro-
vided by the providers. Similarly, each resource provider calculates the price charged
for uploading resources and updates the resource allocation to resource demanders
accordingly. However, the resource allocation model Eq. 1 is not strictly concave. Non-
uniqueness may cause oscillations in the optimal resource allocation. To overcome this
issue, we introduce an augmented variable and apply the low-pass filtering theory. This
approach eliminates potential fluctuations brought by the algorithm without affecting
the optimal results, meanwhile accelerating convergence speed.

The concrete steps to realize the algorithm are as follows:
Step 1: Initialize variables and parameters, including the resource amount xps(t)

provided by p for s at time t.
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Step 2: Judge whether the termination condition is achieved at this time. Here,
the termination condition is set to be xps(t + 1) = xps(t), which indicates that the
algorithm reaches a balanced state and obtains the optimal resource allocation.

Step 3: If the above termination condition is not satisfied, it is necessary to update
each price and resource allocation to get λs(t+ 1), µp(t+ 1), νs(t+ 1), xps(t+ 1).

Among them, the updating methods of payment price, upload and download
resource prices and resource allocation are as follows:

i. The demander s needs to update the paid price λs(t) to obtain resources ys(t)
as follows

λs(t) =
ωs

max {η, ys(t)}

ys(t) =
∑

p:p∈P (s)

xps(t) (22)

ii. The provider p updates the resource price µp(t) and the demander s updates
the resource price νs(t)

νs(t+ 1) =

(
νs(t) + αs

ys(t)− Cd
s

Cd
s

)+

vs(t)

µp(t+ 1) =

(
µp(t) + βs

zp(t)− Cu
p

Cu
p

)+

µps(t)

zp(t) =
∑

p:p∈P (s)

xps(t) (23)

where αs and βs are iteration step-sizes, zp(t) is the total resource provided by provider
p to all its customers.

iii. Provider p updates resource allocation xps (t) provided for demander s

xps (t+ 1) = (1− θp)xps (t) + θpx̃ps (t) + θpκpxps (t) (λs (t)− νs (t)− µp (t))
+
xps(t)−ε

x̃ps (t+ 1) = (1− θp) x̃ps (t) + θpxps (t) (24)

where c=(d)
+
a means c = max {0, d}, if a = 0; and c = d if a > 0.

In the above update formula, κp represents the iteration step-size and θp repre-
sents the low-pass filtering parameter, which can eliminate the oscillation phenomenon
caused by the non-unique optimal allocation in the iterative optimization process of
the algorithm, η and ε are both small positive values, so as to prevent λs (t) and xps (t)
from being negative.

The flowchart of the basic steps of the proposed algorithm is shown in the following
Figure 3:

It should be noted that the iterative step size has a great influence on the conver-
gence speed. Only the selected step size is small enough to ensure its convergence, and
if it is too small, the convergence speed will be slow. Choosing a suitable step size can

12



Fig. 3 Flow chart of gradient descent method

facilitate the algorithm to achieve the optimal resource allocation within a reasonable
convergence time.

4.2 Price-based mechanism

In this paper we also present a novel price-based resource allocation scheme. The
initialization rule and price updating rule of the price-based resource allocation mech-
anism are the same as those of the gradient descent method above, but the updating
scheme of the resource allocation xps(t) provided by provider p for demander s is
different. At time t = 1, 2, ..., each resource provider updates its resource allocation
according to the following rule:

xps (t+ 1) = (1− θp)xps (t) + θpx̃ps (t)

+ θpκ̃pxps (t)


Cpλs (t)−

∑

r:r∈S(p)

xpr (t)λr (t)




+

xps(t)−ε

(25)

Similar to the gradient descent method above, the step size selected in the algo-
rithm has a great influence on the convergence speed, so the step size should be small
enough to ensure convergence. We can prove the equilibrium and stability of this
algorithm by the following derivation:

1. Equilibrium
Among them, Cpλs (t) represents the total cost charged by provider p when offer-

ing resource to demander s. When the total cost
∑

r:r∈S(p) xpr (t)λr (t) paid by all
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demanders is equal to the actual cost charged by the provider, i.e.,

Cpλ
∗
s(t) =

∑

r:r∈S(p)

x∗
pr(t)λ

∗
r(t) (26)

Meanwhile, at the equilibrium

λ*
s =

ωs

y∗s
=

ωs∑
p:p∈P (s)

x∗
ps

(27)

Based on our earlier analysis in Eq. 17 into Eq. 19, we obtained the optimal resource
allocation for each demander and corresponding price charged by providers in region
κ. In order to validate the robustness of the algorithm, we are currently conducting
an analysis to determine whether this solution can be consistently achieved.

∑

p:p∈Pκ

Cp =
∑

p:p∈Pκ

∑
r:r∈S(p)

x∗
prλ

∗
r

λ∗
s

=
1

λ∗
s

∑

r:r∈Sκ

∑

p:p∈P (r)

x∗
prλr

=
y∗s
ωs

∑

r:r∈Sκ

λr

∑

p:p∈P (r)

x∗
pr =

y∗s
ωs

∑

r:r∈Sκ

ωr (28)

Therefore,

y∗s = ωs

∑
p:p∈P κ

Cp

∑
r:r∈S κ

ωr

λ*
s =

∑
r:r∈S κ

ωr

∑
p:p∈P κ

Cp

(29)

This is the same as the result of the model analysis, which shows that when the
system is in an equilibrium state, the equilibrium point is the global optimum of the
resource allocation model. At the same time, as long as the provider has at least one
demander to supply resources, the resources offered by the provider are always the
same as its capacity, since the demander is to maximize its utility when the resources
of providers are best used.

2. Stability
Theorem 3. Based on Lyapunov stability theory, the dynamic system can finally

converge to the system equilibrium point along all trajectories.

Proof. The proof process will be mentioned in the appendix.
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5 Simulation and numerical examples

This part gives some numerical examples to evaluate the performance of the resource
sharing schemes in smart manufacturing. First, we assume a simple bandwidth
resource allocation model in D2D scenario. We consider the high-definition camera
system discussed in Sect. 3 as an example. The system is composed of eight devices.
Among them, six devices act as demanders while the remaining two devices serve as
resource providers. The overall structure of the system is illustrated in Figure 2. The
utility functions of the six demanders are respectively:

U1 = 15 ln (y1) , U2 = 18 ln (y2, U3 = 14 ln (y3))

U4 = 12 ln (y4) , U5 = 7 ln (y5) , U6 = 16 ln (y6)

We consider the bandwidth allocation since it is very important for guaranteeing
better communication among devices in edge manufacturing. The provider’s upload
bandwidth resources are limited to C, C = (Cu

1 , C
u
2 ) = (200, 300)Mb/s. The

bandwidth of download resources of demanders is limited to C
′,

C
′ = (Cd

1 , C
d
2 , C

d
3 , C

d
4 , C

d
5 , C

d
6 ) = (150, 150, 130, 150, 80, 100)Mb/s

Firstly, choose step sizes η = ε = 0.001, κp = 0.5, κ̃p = 0.1, αs = 0.2, βs = 0.2
and the filter factor θp = 0.2, and initialize bandwidth resources xps = 1Mb/s. After
executing the MATLAB software, a comprehensive analysis reveals that a visually
illustrative depiction is acquired after numerous iterative processes. From Figure 4, it
becomes apparent that after a certain number of iterations, the charging price of the
provider is equal to the payment price of the demander.

Fig. 4 Price charged by providers and price paid by demanders

The line plots, as depicted in Figure 5 and Figure 6, showcase the resources
allocated to individual demanders employing the two algorithms. Remarkably, both
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algorithms exhibit convergence towards the optimal solution, exhibiting consistent sta-
bility across the observed timeframe. We compare the performance of the two kinds
of resource allocation algorithms in Figures 5 and 6, in which the solid line represents
the convergence process of gradient descent method and the dotted line represents the
convergence process of price-based mechanism.

Fig. 5 Optimal resource and utility of demanders
obtained by gradient descent method

Fig. 6 Optimal resource and utility of demanders
obtained by the price-based mechanism

Figure 7 shows the resource allocation of demander 1 obtained by the two algo-
rithms, and Figure 8 shows the convergence process of utility value and total utility
of each demander.
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Fig. 7 Resource allocation of demander 1 under
the two algorithms

Fig. 8 The utility convergence process of the two
algorithms
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This result shows that the optimal utility of the two algorithms can be achieved
in a limited number of iterations, and compared with the gradient descent algorithm,
the price-based mechanism achieves faster convergence and has better stability, while
the gradient descent algorithm converges after a period of fluctuation.

By using the nonlinear programming software LINGO, we obtain the optimal
resource allocation in Table 2.

Table 2 Results from the two algorithms and LINGO

Variable GD-based Price-based LINGO Variable GD-based Price-based LINGO

x*
11

36.562 36.586 0 x*
16

39.001 39.026 34.692

x*
21

54.902 54.877 91.463 x*
26

58.56 58.535 62.869

x*
12

43.874 43.905 31.786 y*
1

39.001 39.026 34.692

x*
22

65.882 65.851 77.97 y*
2

109.756 109.756 109.756

x*
13

34.124 34.147 85.366 y*
3

85.366 85.366 85.366

x*
23

51.241 51.219 0 y*
4

73.171 73.171 73.171

x*
14

29.25 29.367 31.501 y*
5

42.683 42.683 42.683

x*
24

43.921 43.904 41.67 y*
6

97.561 97.561 97.561

x*
15

17.062 17.069 16.655 λ 0.164 0.164 0.164

x*
25

25.614 25.614 26.028 TU 365.643 365.644 365.643

It is easy to observe that the utility and total amount of optimal bandwidth
resources received by each demander is unique, but the optimal bandwidth resources
obtained from different providers are not unique.

6 Conclusion

In this paper, we consider D2D resource allocation in edge manufacturing scenarios
and propose a utility maximization model from two aspects of equipment importance
and satisfaction. Then, we present the gradient descent algorithm and the price-based
mechanism to realize the optimal resource allocation, and apply the low-pass filtering
principle to eliminate the possible fluctuations of the algorithm. Through mathemat-
ical analysis and Lyapunov theory, it is proved that the price-based mechanism is
asymptotically stable, and all trajectories along the price-based scheme can ultimately
converge to the optimum of the resource allocation problem. Finally, some numerical
examples illustrate that the price-based mechanism can converge in a short time com-
pared with the gradient descent method, and the fluctuation is smaller, which reflects
the superiority of the price-based algorithm.
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Appendix A Appendix

Define the following Lyapunov function:

Q (t) = Q1 (t) +Q2 (t) =
∑

s:s∈Sκ

y∗

s∫

ys(t)

(ωs

ν
− λ∗

κ

)
dν +

∑

p:p∈P κ

λ∗
κ (Cp − γp (t))

where, γp (t) =
∑

s:s∈S(p)

xps (t) , p : p ∈ Pκ, λ
∗
κ = λ∗

s, ∀s ∈ Sκ. Since y∗s > 0 and ys (t) >

0, the first term of the Lyapunov function Q1 (t) is:

y∗

s∫

ys(t)

(ωs

ν
− λ∗

κ

)
dν = ωs (ln y

∗
s − ln ys (t))−λ∗

κ (y
∗
s − ys (t)) = ωs

(
ys (t)

y∗s
− 1− ln

ys (t)

y∗s

)
≥ 0.

From this, it can be seen that, Q1 (t) = 0 if and only if y∗s = ys (t). Meanwhile, since
γp (t) =

∑
s:s∈S(p) xps (t) ≤ Cp, the second part of the Lyapunov function Q2 (t) ≥ 0,

and Q2 (t) = 0 if and only if Cp = γp (t) =
∑

s:s∈S(p) xps (t). Thus, it is a positive-

definite function, and it is 0 only if the above equation is satisfied y∗s = ys (t) and
Cp = γp (t) =

∑
s:s∈S(p) xps (t). Next, verify its asymptotic stability by calculating the

derivative of Q (t).

dQ (t)

dt
=
∑

s:s∈Sκ

∂Q (t)

∂ys (t)

dys (t)

dt
+

∑

p:p∈Pκ

∂Q (t)

∂γp (t)

dγp (t)

dt

= −
∑

s:s∈Sκ

(
ωs

ys (t)
− λ∗

κ

) ∑

p:p∈P (s)

dxps (t)

dt
−
∑

p:p∈Pκ

λ∗
κ

∑

s:s∈S(p)

dxps (t)

dt
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= −
∑

s:s∈Sκ

(λs (t)− λ∗
κ)

∑

p:p∈P (s)

dxps (t)

dt
−
∑

p:p∈Pκ

λ∗
κ

∑

s:s∈S(p)

dxps (t)

dt

=−
∑

s:s∈Sκ

∑

p:p∈P (s)

θλs (t)xps (t)×


Cpλs (t)−

∑

r:r∈S(p)

xps (t)λr (t)




=−
∑

s:s∈Sκ

∑

p:p∈P (s)

θCpλ
2
s (t)xps (t) +

∑

p:p∈Pκ

∑

r:r∈S(p)

θxps (t)λs (t)
∑

r:r∈S(p)

xps (t)λr (t)

=−
∑

s:s∈Sκ

∑

p:p∈P (s)

θλ2
s (t)xps (t) (Cp − xps (t))

+
∑

s:s∈S(p)

∑

p:p∈Pκ

∑

r:r∈S(p)\{s}

θxps (t)λs (t)× xpr (t)λr (t)

Add
∑

s:s∈S(p)

∑
p:p∈Pκ

∑
r:r∈S(p)\{s} θxps (t)λs (t)× xpr (t)λr (t) to the first part

of the derivative above, and subtract the same term from the second part.

dQ (t)

dt
= −

∑

s:s∈Sκ

∑

p:p∈P (s)

θλ2
s (t)xps (t) (Cp − xps (t))

+
∑

s:s∈S(p)

∑

p:p∈Pκ

∑

r:r∈S(p)\{s}

θxps (t)xpr (t)
(λs (t)− λr (t))

2

2

Therefore, the conditions for obtaining the positive and negative derivatives are

as follows: dQ(t)
dt

=

{
≤ 0 Cp ≥

∑
r:r∈S(p) xpr (t)

= 0 Cp =
∑

r:r∈S(p) xpr (t) , λ
∗
κ = λ∗

s = λs = λr
. It can be seen

that the equilibrium point Eq. 19 of the dynamic system Eq. 23 into Eq. 26 is
asymptotically stable based on Lyapunov’s stability theory.
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