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Abstract
This study evaluates precipitation trends in the upper Mzingwane sub-catchment (UMS) of Zimbabwe for
the variables of annual precipitation, extremely wet days, consecutive wet days and consecutive dry days.
The UMS is of strategic socio-economic significance in terms of its provision of water security and
sustenance to livelihoods. The analysis is undertaken at four stations: Bulawayo Goetz, Filabusi,
Mbalabala and Matopos National Park, and for the period 1921–2000. In general trends were found not
to have local statistical significance, with the exception of the Matopos station (in the westernmost extent
of UMS) which records significant increasing (declining) trends for most dryness (wetness) extreme
indices. A general north to south-western declining precipitation gradient during the past ~ 69 years over
the UMS was also found. The findings provide a baseline for future extended historical and future
precipitation trend studies, and are important in the context of the socio-economic impacts of extreme
events in this region.

1.0 Introduction
Pronounced hydroclimatic variability is an intrinsic to climate variability in Africa and often has negative
implications for water security (Nash et al. 2016). Furthermore, there is evidence of drastic general
warming and regional drying (i.e. decreasing annual precipitation) over large parts of the continent since
the start of the twentieth century (Moss et al. 2010; Ramírez-Villegas and Thornton 2015; Miller and Croft
2018; Hannaford 2020). Over southern Africa (SA) for example, analysis of regionally averaged
occurrence of climate extremes have revealed declining trends in total precipitation and increase in
diurnal temperature range (DTR) coupled with rapid increases in maximum temperature extremes (New et
al. 2006; Seneviratne et al. 2012). The decreases in total precipitation have over the past second half of
the twentieth century been found to be associated with increasing (though insignificant) trends in
extreme precipitation days and in maximum annual 5-day and 1-day precipitation (Frich et al. 2002).

To better understand future climatic trends and extremes in SA, various Global Climate Models (GCMs)
and Regional Climate Models (RCMs) have been used by e.g. (Engelbrecht et al. 2013; Kalognomou et al.
2013; Shongwe et al. 2015; Dedekind et al. 2016; Archer et al. 2018; Maúre et al. 2018). Covering more of
a decade of research, these projections have revealed a robust message of general drying being likely
over SA under continued global warning. For instance, future projections of the southern African SA
climate under 1.5°C and 2°C of global warming using CORDEX regional climate models by Maúre et al.
(2018) reveal rainfall decreases of between 0.2 and 0.4 mm day− 1 over most of the central and western
parts of the region. These decreases in precipitation are expected to be accompanied by worsening
extremes characterised by increases (decreases) in the number of consecutive dry (wet) days over the
region (New et al. 2006; Shongwe et al. 2015).

Many of the aforementioned studies and others (Klein-Tank and Können 2003; Kruger 2006; Kruger and
Nxumalo 2017; Zarekarizi et al. 2018; Abbasnia and Toros 2019) have demonstrated the utility of various
climate indices such as the World Meteorological Organization–Commission for Climatology (WMO -
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CCL) and the Research Programme on Climate Variability and Predictability (CLIVAR) Expert Team for
Climate Change Detection Monitoring and Indices (ETCCDI) climate indices (Peterson et al., 2001; Zhang
et al., 2011) to explore trends in climate extremes over Africa and globally. However, climate trends
remain relatively unexplored in Zimbabwe, especially at sub-national and provincial levels. This has been
largely attributed to the paucity of reliable data (Gumindoga et al. 2017), absence of long multi-decadal
scale datasets, large data gaps and the closure of meteorological recording stations (Peterson et al.
1998) due to lack of finances and technical expertise.

The available studies on historical climatic trends in Zimbabwe reveal that since 1950, the country has
experienced variable changes in climate conditions. Daily minimum (maximum) temperatures rose by ~ 
2.6°C ( 2°C) over the last century, coupled with a mean annual precipitation decline of about 5% (Brown et
al. 2012). The recorded rate of temperature increase is in the order of twice the rate the global average
surface temperature has been increasing, consistent with the findings of Engelbrecht et al. (2015). Only a
limited number of studies have explored trends in climate extremes in Zimbabwe. An exception is Aguilar
et al. (2009) who founds no sifnificant increase in precipitation extremes over Zimbabwe between 1955–
2006. Studies at the catchment level are also limited in number. Love et al. (2010) and Sibanda et al.
(2018) noted a decline in total precipitation, declines in number of rainy days and increases in dry spells
over the entire Mzingwane catchment. The most comprehensive study performed to date, based on 40
climate stations spread across Zimbabwe for the period 1892–2000 by Mazvimavi (2010), found no
significant trends in extreme precipitation events. The study however was limited to studying extreme
occurrences in seasonal and annual rainfall totals, and did not explore the potential impact of artificial
change points in the data. Furthermore, this and other like studies used monthly data to ascertain trends,
leaving the analysis of trends in climate statistics at a finer temporal resolution unaccounted for. Such
analysis can be undertaken through indices based on daily data, which allow for an objective extraction
of information concerning extremes which are known to adversely affect human and natural systems
(Powell and Keim 2015; Abiodun et al. 2017; Schewe et al. 2019).

It is against this background that the current study uses historical daily precipitation data to compute
WMO - CCL/CLIVAR ETCCDI climate change indices for south-western Zimbabwe. This is the first such
study for Zimbabwe to assess historical (> 50 years) extreme precipitation events and trends using such
core indices at a sub-catchment scale. Such an analysis is of particular value to decision and policy
makers as it gives a comprehensive understanding of trends in precipitation extremes and their likely
current and possibly future impacts on water resources infrastructure and livelihoods. This can further
help inform current and future planning and identification of the types and range of climate resilience and
adaptation options and opportunities to minimise climate extremes exposure risks.

2.0 Materials And Methods
We adapt the methodology of Kruger (2006), combined with the change detection test approach
developed by Wang et al. (2010). We follow a 5-step approach entailing (1) data collection (digitizing of
selected daily precipitation records), (2) pre-processing (cleaning and conversion as explained in
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Sect. 2.2), (3) testing for artificial change points in the datasets, (4) further quality checking for errors (i.e.
check for duplicates, inconsistent/ unrealistic records), and (5) computation of the ETCCDI indices
(Table 1) and testing for significance of trends. This study analyses trends of 10 ETCCDI extreme
precipitation indices i.e. [Maximum 1-day precipitation amount (RX1day), Maximum 5-day precipitation
amount (RX5day), Simple daily intensity index (SDII), Number of heavy precipitation days (R10), Number
of very heavy precipitation days (R20), Consecutive dry days (CDD), Consecutive wet days (CWD), Very
wet days (R95p), Extremely wet days (R99p) and Annual total wet-day precipitation (PRCPTOT) for the
upper Mzingwane sub-catchment (UMS) in the northern Limpopo basin of Zimbabwe. The indices are
measures to establish extreme precipitation events and trends over the period 1921–2000. 

2.1 Study area
The Mzingwane catchment in the northern Limpopo basin, south-western Zimbabwe, is located in the
southern Africa “dry slot” that stretches eastward from Namibia across southern Botswana, southern
Zimbabwe and north-eastern South Africa (Engelbrecht et al. 2002). The UMS (Fig. 1) is one of the four
subcatchments of the Mzingwane catchment. It covers 2138 km2 in areal extent and is located in Natural
Region IV of Zimbabwe, which receives ~ 450–650 mm of rainfall per annum (Görgens and Boroto 1997).
This translates to a mean annual run-off of about 600 mm, thus contributing most of the Mzingwane
River’s run-off. This river in return contributes almost 25% of the Limpopo River’s flow volume, and is thus
of considerable hydrological importance in the Limpopo basin. Mean annual Tmax and Tmin are 26°C and
15°C respectively while potential evaporation ranges between 1800 mm to 2000 mm per annum (Love et
al. 2005). The region varies in elevation from ~ 864 to 1560 metres. The ecosystem is typically semi-arid
savannah with sparsely distributed woodlands species such as Brachystegia spiciformis,
Colophospermum mopane, Terminalia, Acacia, Combretum, aloes, and grass species such as
Hyparrhenia filipendula and Heteropogon contortus (Sawunyama et al. 2006). 

The UMS extends across three districts: Insiza (to the east), Umzingwane (north-western extent) and
Gwanda (to the south-western end) (Fig. 2), and hosts a population of over 50 000 people. It has a diverse
agro-ecological and socio-economic structured land-use system characterised by a mixture of
commercial and subsistence agriculture such as small-scale low cost drip irrigation farming, dam
recreational activities and private safari operations (Love et al. 2005). Gold panning is feasible in the
Zimbabwean Craton greenstone belts and granitic terrain underlying most of the catchment (Ashton et al.
2002). The soils consist of moderately coarse grained kaolinitic sands (from the granites and Limpopo
gneisses), very shallow to moderately shallow clays and loams, and very shallow sands derived from
locally weathered basalts (Love et al. 2005; Sawunyama et al. 2006).

2.2 Data collection and pre-processing
Given limited access to daily precipitation data from the Meteorological Services Department of
Zimbabwe (MSDZ), datasets utilised in this study were secured from the South African Weather Services
(SAWS) library archives and digitised to soft copy format. Unfortunately, post 20th century data are only
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kept by the MSDZ, in both digital and hardcopy (undigitised format) and can only be obtained at
prohibitive considerable expense. Criteria utilised in distilling the datasets were (1) spatial coverage (i.e.,
stations should be located in the UMS or at least within a 15 km radius from the UMS boundary), (2) have
the longest time period possible and (3) retain a sufficient number of rainfall records/have minimum
missing records. This process culminated in the selection of four stations: Bulawayo Goetz (BG),
Matopos National Park (MNP), Mbalabala (Mb) and Filabusi (Fl) (Table 2), representing the north, east,
central and western extents of the study area respectively. Pre-processing was undertaken following the
specifications by Zhang and Yang (2004), where data were converted and structured using the RClimDex
software.

Considering that precipitation data series usually contain artificial shifts that could be related to changes
in observation instruments, station location and the environmental setting etc. (Wang et al. 2010), it is
important to test for artificial change points/discontinuities in the data (Wang 2003; Touré-Halimatou et
al. 2017). Since we used the RClimDex software (which runs tests with an assumption that the data
series have Gaussian errors) to compute indices, we first used the RHtests_dlyPrcp software package
(Wang and Feng 2015) for detection and automatic adjustment of artificial shifts in daily precipitation
data.

2.2.1 Change point detection and data homogenisation
We used the default software parameterisation (e.g. setting the nominal level of confidence at which to
conduct the test [p.lev = 0.95]); the maximum number of years of data immediately before or after a
change point to be used for estimating the Probability Distribution Function (PDF) (set to use the whole
data set without segmentation); and the lower threshold of precipitation (pthr = 0.0). The homogenisation
procedure was divided into two primary steps: (i) detection of inhomogeneities (change points) and (ii)
calculation and application of data adjustment parameters for each station. The process follows an
iterative run of the ‘StepSize’ function to help detect statistically insignificant change points and
homogenise the dataset by applying the Box-Cox transformation technique. The Box-Cox transformation
also lowers False Alarm Rates (FARs) and improves extreme trend detection power (Osborne 2010).
Details of this procedure are described in detail by Wang and Feng (2013). Table 3 summaries results for
this stage of the analysis, which presents the number of significant change points. Given that no change
points were identified for BG, data were used as is.

2.3 Data analysis

2.3.1 Computation of Indices
The RClimDex software used in this study only computes monthly indices if no more than three days of
data are missing in a given month, while annual values are calculated if no more than 15 days are
missing in a given year. Annual values are only calculated if data are available for all 12 months, while
threshold indices are computed if at least 75% of data are present. The computed indices can be grouped
into five broad categories: Absolute indices (RX1Day and RX5DAY); percentile-based indices (R95P and
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R99P); threshold indices (R10MM and R20MM); duration indices (CDD and CWD); and others (PRCPTOT
and SDII). Algorithms for computation of the indices are presented in Table 1 and details for internal
processes of the RClimDex software refer to Zhang and Yang (2004).

2.3.2 Trends and statistical analysis
In order to detect trends, statistical significance and the slopes of the index series, we employed the non-
parametric Mann–Kendall (MK) trend test (Mann 1945; Kendall 1975) and the Sen’s Slope Estimator (Sen
1968) respectively. These have been widely used to evaluate significance of trends in numerous studies
e.g. (Haylock et al. 2006; Sousa et al. 2011; Rahayu 2013; Dube and Nhamo 2018; Gebrechorkos et al.
2019; Wang et al. 2020).

3.0 Results

3.1 Trends in annual total precipitation (PRCPTOT)
Figure 2 shows that all stations had declining trends in annual total precipitation over the past 69 years
with the exception of Bulawayo Goetz which had a marginal insignificant increasing trend (Qmed=-0.626,
p = 0.568). Matopos station however was the only station recording a significant declining trend in annual
total precipitation (Qmed=-3.073, p = 0.011), indicating potentially stronger drying in the western part of the
UMS. These results disaggregate and present in greater detail the general declining annual total
precipitation trends reported by Love et al. (2001) in 10 climate stations in the Mzingwane catchment
since 1980. Though other stations show statistically insignificant declining trends, the spatially coherent
pattern of decline indicate potential adverse impacts on livelihoods especially rain-fed agricultural
activities in the UMS.

3.2 Absolute indices (RX1DAY and RX5DAY)
Trend analysis for RX1DAY and RX5DAY are presented in Fig. 3 and Fig. 4 respectively, while the trend
significance results are shown in Table 4. RX1Day trends for all but Matopos National Park station were
positive and statistically insignificant. Overall, marginally increasing trends in all the UMS zones (mean = 
0.2mm/annum) were found, expect for the western extent which showed a declining trend (mean =
-0.463mm/annum) over the study period. Bulawayo Goetz and Filabusi (Mbalabala) stations had
insignificant negative (positive) trends for RX5DAY. At Matopos National Park station a significant
negative trend (Qmed=-0.672, p = 0.018) was recorded. Three of the stations exhibit declining RX5Day
trends, (mean = -0.879mm/annum). The negative (significant) trends in the western extent of UMS
suggest a decline in extreme events in the form of 5-day maximum precipitation.

3.2 Percentile-based indices (R95p and R99p)
No significant trends were detected for historical very wet day (R95p) and extremely wet day (R99p)
events over the study time period for three of the four stations. The exception is MNP, which registered a
significant declining trend (Qmed = -1.41; p = 0.029) for R95p and an insignificant declining trend for R99p
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(see Table 4). These declining trends over MNP are consistent with the earlier discussed significant
declining trend in total annual precipitation (Qmed= -3.073, p = 0.011 over the western extent of the UMS
marked by a drastic drop in R99p from 150mm to about 50mm between the 1970s and 1990s. Trends for
R95p and R99p are shown in Fig. 5 and Fig. 6.

3.3 Threshold and other indices (R10, R20 and SDII)
Results for heavy rainfall days above 10mm (R10) and 20mm (R20) per day (Fig. 7 and Fig. 8) reveal that
three of the stations record declining but statistically insignificant trends (mean R10/R20 = 19/9 days
respectively), while MNP records significant negative trends both indices i.e. R10 (R20) Qmed = -0.093, p = 
0.023 (Qmed = -0.075, p = 0.003). The magnitude of these trends is notably very low (below 1%) at all
stations (Table 4). These declining trends in R20 and R10 were matched with declining trends of
PRCPTOT (as earlier indicated in Fig. 2) at three of the stations, the exception being at BG which recorded
an increasing, albeit insignificant trend (Qmed = 0.626, p = 0.568). Over the same period, trends in the
intensity of daily precipitation (depicted by the SDII) significantly increased (decreased) for Fl (MNP),
Qmed = -0.033, p = 0.033 (Qmed = -0.035, p = 0.004), while the remaining two stations recorded marginally
positive but insignificant trends.

3.4 Duration indices (CDD and CWD)
The indices CDD (CWD) are a measure of dry (wet) ‘spell duration’ in days. Results reveal Qmed (p-values)
ranging between − 0.075 and − 0.543 (0.099 and 0.857) for CDD, indicating insignificant decreasing
trends (Fig. 9) of consecutive dry days at three of the stations, with the exception of Fl which had an
insignificant increasing trend (Qmed = 0.286, p = 0.353). Similar insignificant, declining trends are recorded
for CWD with the exception of Fl which had an insignificant increasing trend (Qmed = 0.0001, p = 0.952)
(Fig. 10). Decreasing trends in CDD do not necessarily translate into an improvement in precipitation
conditions considering the recorded negative trends in CWD over the most of stations in the UMS.

4.0 Discussion
Results from this study region depict a scenario of long-term drying over the 69 year period, most
particularly so over the westernmost portion (represented by the MNP station). Such a drying trend is
consistent with previous findings for other parts of southern Africa e.g. (Daron 2014; Morioka et al. 2015;
Scholes et al. 2015) and Zimbabwe in general (Brazier 2015; Makuvaro et al. 2017; Nangombe et al.
2018). However, while there is generally decreasing total annual precipitation (mean = -0.54mm/annum),
this is accompanied by increased precipitation intensity (marked by increasing maximum 1-day
precipitation amounts (RX1Day)) over most of the study region. While Love et al. (2006) found a general
declining trend in annual total precipitation over the entire Mzingwane catchment from years 1931 to
2003, our findings provide a finer-scale detail on how this declining PRCPTOT trend manifests at a sub-
regional (or sub-catchment) scale for the UMS over the period 1921–2000, including an analysis of
extreme events.
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In addition, given the fact that trends in precipitation intensity over longer periods (revealed by RX5DAY
trends) demonstrate a general declining trend, the northern and interior extents of the UMS indicate
general increasing trends in the very wet precipitation index (R95p), while the westernmost extent records
a significant declining trend. Coupled with this, the UMS has generally experienced marginally positive
(statistically insignificant) trends overall in both R95p and R99p though a declining trend in the
westernmost extent is noted for the same indices. There is hence an increasing drying trend over time
from north to south-west extent in the UMS which is slightly different from the general north to south
gradient reported by authors such as Masvopo (2012), Love et al. (2005) and Sibanda et al. (2018).

Declining trends in threshold indices (R10 and R20) indicate that there are fewer days with daily
precipitation above 10mm (-19/days/decade) and 20mm (-9days/decade) respectively. This may imply
that increased precipitation intensities (RX1Day) are concentrated on extreme precipitation days (e.g.
R95p) as also suggested in similar studies such as Berhane et al. (2020) in Ethiopia and Kruger (2006) in
South Africa. The time-averaged measures of precipitation which have often been used in past climate
trend analysis studies in this region e.g. (Unganai and Mason 2002; Klein-Tank and Können 2003; Dike et
al. 2019) do not capture the that increases in precipitation intensity partially compensate for decreases in
frequency.

Results for CWD (wet spells) show a general negative trend in most part of the UMS, apart from Filabusi
which has a marginal increasing (statistically insignificant) trend. The westernmost region (MNP)
registered a decreasing trend (~ 2days/decade), hence complementing and elaborating further on the
characteristics of the drying trend depicted by indices such as the PRCPTOT for the same western sub-
region. Further to this, declining trends in the consecutive number of dry days (dry spells) (CDD) were
noted in all but the eastern sub-region (Table 4). The decline in dry spells does not necessarily imply
commensurate favourable/ normal precipitation conditions as might be assumed. This could be
attributed to the fact that CDD (and CWD) are very sensitive indices, such that even single day rainfall
events are enough to terminate a CDD or CWD period as indicated by Hofstra and New (2009). This,
however, does not diminish the utility of the CDD index as it has been widely used as a meaningful
measure of unusually dry conditions and a potential proxy drought indicator (Griffiths 2007).

An understanding of these temporal changes in climatic extremes and their trends is important given the
impacts that extreme events have on society and the natural environment (Abiodun et al. 2017; Bell et al.
2018; Perera et al. 2020). For instance, trends for the RX1DAY and very wet days (R95p) are relevant for
planning and projecting changes in demands on drainage and sewerage systems at different locations
(Klein-Tank and Können 2003), while the CDD can serve as a proxy for drought detection and (Skierlo et
al. 2017; Sharma et al. 2020) thus allows for appropriate water resource planning and management. In
this study, new information on climate extremes and trends could be useful in the design of new and/
upgrading of old water supply storage infrastructure such the Insiza, Mzingwane and Inyankuni dams
located within the UMS so as to achieve targeted water security goals for the city of Bulawayo and the
surrounding communities by the local and central government of Zimbabwe. Similarly, the Zimbabwe
National Water Authority (ZINWA) could, for instance, leverage the R95p, R99p and CWD trends to guide
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decision making pertaining proper sizing and/ upgrading of flood control systems to cope with more
short and intense precipitation events which have been associated with destructive, intermittent flash
floods (Chingombe et al. 2015; Eccles et al. 2019). The findings can also be used for climate monitoring,
targeting approaching extreme events which can inform proactive impact mitigation plans as highlighted
by Davis and Hirji (2014).

5.0 Conclusion
Notwithstanding the limitations of access of up-to-date station precipitation data for our study area, we
were able to successfully analyse and demonstrate the utility of climate extreme indices in understanding
historical precipitation extremes in the UMS for the period 1921–2000. Most computed index values in
this study showed negative, statistically insignificant but spatially coherent precipitation extreme trends
across the UMS. The exception is for the westernmost extent of the area, which showed significant
negative precipitation extreme trends indicative of drying over time. A general shift towards shorter very
wet periods with more intense precipitation is noted in the study area. Overall, a general north to south-
western declining precipitation gradient across the UMS is identified contrary to the general north to south
gradient identified in previous studies. Findings from this study could also serve as a baseline in follow-
up studies aimed at extended historical analysis, modelling future trends in extreme precipitation
conditions and the likely impacts in the UMS using alternative datasets such as CCAM and CHIRPS.
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Figure 1

Location of the four selected climate stations used in this study (marked with purple ellipses) inside and
within 15km distance of the UMS Note: The designations employed and the presentation of the material
on this map
do not imply the expression of any opinion whatsoever on the part of Research Square
concerning
the legal status of any country, territory, city or area or of its authorities, or concerning the
delimitation of its frontiers or boundaries. This map has been provided by the authors.



Page 17/25

Figure 2

PRCPTOT series and trends for the four stations (a - Bulawayo Goetz, b - Filabusi, c –Mbalabala and d –
Matopos NP). Red dotted lines = linear trends
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Figure 3

RX1DAY series trends for the four stations (a - Bulawayo Goetz, b - Filabusi, c –Mbalabala and d –
Matopos NP). The red dotted lines are linear trend lines illustrating weak and insignificant trends
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Figure 4

RX5DAY series trends for the four stations (a - Bulawayo Goetz, b - Filabusi, c –Mbalabala and d –
Matopos NP). The red dotted lines are linear trend lines illustrating weak and insignificant trends
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Figure 5

R95p series and trends for the four stations (a - Bulawayo Goetz, b - Filabusi, c –Mbalabala and d –
Matopos NP). All red dotted lines = insignificant linear trends with MNP only showing a significant
declining trend
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Figure 6

R99p series and trends for the four stations (a - Bulawayo Goetz, b - Filabusi, c –Mbalabala and d –
Matopos NP). All red dotted lines = marginally positive, insignificant linear trends for all stations with the
exception of MNP having a declining trend over the study period
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Figure 7

R10 series and trends for the four stations (a - Bulawayo Goetz, b - Filabusi, c –Mbalabala and d –
Matopos NP). Red dotted lines = linear trends. All stations show negative trends except Bulawayo Goetz
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Figure 8

R20 series and trends for the four stations (a - Bulawayo Goetz, b - Filabusi, c –Mbalabala and d –
Matopos NP). Red dotted lines = linear trends
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Figure 9

CDD series and trends for the four stations (a - Bulawayo Goetz, b - Filabusi, c –Mbalabala and d –
Matopos NP). Red dotted lines = linear trends
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Figure 10

CWD series and trends for the four stations (a - Bulawayo Goetz, b - Filabusi, c –Mbalabala and d –
Matopos NP). Red dotted lines = negative linear trends with exception for Filabusi station which has a
positive trend
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