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Abstract
Multiomics-based efforts to identify therapeutic targets for IBD have been limited to European
populations. Prior reports on heterogeneity between East Asians and Europeans in clinical manifestations
of IBD and genetic architectures of IBD-related variants warrant a separate investigation in East Asians.
Using the East Asian genome and proteome data, we applied two multiomics-based causal inference
methods, proteome-wide Mendelian randomization and causal proteome-wide association study. For IBD,
Crohn’s disease (CD), and ulcerative colitis (UC), we found 30 potential drug targets with proteomic
evidence. IL18R1, IL1RL1, KIR3DL1, and MEP1B had consistent associations with across IBD, CD, and UC.
Fifteen targets were CD-speci�c, while eight were UC-speci�c. Among the candidate targets, thirteen and
eight had supportive MR evidence in the plasma transcriptome data and the multi-tissue transcriptome
data of European ancestry, respectively. IL18R1, IL6R, IL16, TNFRSF14 or their direct interactors were
currently targeted by drugs being developed to treat IBD. IL1RL1 and PDGFRB had existing drugs that
may be repurposed for IBD. Crucially, we identi�ed six previously unreported target genes, opening new
avenues for therapeutic interventions in IBD that warrant immediate validation in upcoming experiments
and clinical trials.

1. Introduction
In�ammatory bowel disease (IBD), of which two main types are Crohn’s disease (CD) and ulcerative
colitis (UC), is a category of conditions with chronic in�ammation of the gastrointestinal tract. IBD causes
severe abdominal pain and diarrhea, and potentially leads to a range of sequelae including colon cancer.
Globally, over 6 million individuals suffer from IBD, which now ranks as the fourth-leading cause of years
lived with disability among digestive diseases1. While incidence rates of IBD in North America, Europe,
Australia have fallen or stabilized since the 1990s, countries in Asia, Africa, and South America have
experienced an increase in IBD incidence and prevalence, imposing substantial burden on the economy
and especially on the healthcare systems.

One notable observation of IBD in addition to its diverging epidemiological trends is the potential
heterogeneity in its pathogenesis across ethnic or ancestral populations, especially between East Asians
and Europeans. Population-based cohort studies found that East Asian patients with IBD were more likely
to exhibit perianal involvement, complicated progression, extraintestinal manifestations, and male
predominance, after adjusting for a range of socioeconomic and demographic factors2,3. Genome-wide
association studies (GWAS) reported substantial differences of important IBD-related variants between
East Asians and Europeans in their minor allele frequencies and effect sizes, suggesting potentially
distinct genetic in�uences on IBD development in East Asians4–7.

Currently, there is no cure for IBD. Its etiology is understood to be multifaceted with genetic and
environmental factors, although the exact cause of IBD has not been pinpointed8. Current treatment
regimens aim to control in�ammation and other symptoms, but they are far from ideal as clinical
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remission rates remain low and unstable over time9. Complexities in pathophysiological mechanisms of
IBD present signi�cant challenges in developing effective drugs.

Recently, increasing availability of multiomics data coupled with explicit causal inference techniques
such as Mendelian randomization (MR) enabled multidimensional approaches that have proven to be
effective for discovering novel therapeutic targets and pathways10–13. For IBD, various data sources
including genome, transcriptome, epigenome, proteome, metabolome, and gut microbiome have been
interrogated14–20. However, most evidence on the IBD multiomics is currently limited to data of European
ancestry. For example, a previous proteome-wide screening of IBD drug targets has identi�ed MST1,
HGFAC, STAT3, ITPKA, and CXCL5 as potential novel drug targets for IBD or UC, but only utilized
European data16. A major constraint has been that, unlike genomic data which has increasingly become
diverse, multiomics data are still mostly limited to Europeans.

Unique proteome data of East Asian individuals were released a few months ago, and a latest large-scale
IBD GWAS was conducted in East Asians, enabling an exploration of IBD multiomics speci�cally in this
population. In this study, therefore, we applied two approaches of multiomics-based causal inference to
screen for potential therapeutic target genes for IBD and its subtypes (CD, UC) using East Asian data
(Fig. 1). First, we performed proteome-wide Mendelian randomization (MR) which indirectly circumvents
confounding under an instrumental variable (IV) framework. Second, we calculated cis-genetic effects on
proteins and used them to directly adjust for confounding via a summary-based proteome-wide
association study (PWAS) with its novel extension, causal-PWAS. Third, to provide additional evidence
and aid in interpretation for identi�ed candidate targets, we carried out proteome-wide colocalization,
transcriptome-wide MR, phenome-wide association study (PheWAS) database scan, functional
enrichment analyses, and drug-target database search.

2. Results

2.1. Proteome-wide MR
Among 1464 proteins, 134 (9.15%) were successfully analyzed for proteome-wide MR. Of the proteins
that were not analyzed, two were excluded because pQTLs were absent in the IBD GWAS, one was
excluded because pQTLs were absent in 1KGP for clumping, and 1,324 were excluded because they did
not have statistically signi�cant pQTLs in the East Asian samples. For IBD, proteins with MR-cML
estimates with FDR-corrected p < 0.05 were CNTN2, CSTB, FGF5, ICAM5, IL18R1, IL1RL1, KIR3DL1,
MEP1B, PDCD6, PDGFRB, PILRA, PILRB, PM20D1, and PNLIPRP2 (Fig. 2, Supplementary Table 1). For CD,
CD300C, CNTN2, IL16, IL18R1, IL1RL1, IL6R, KIR3DL1, LILRA2, MEP1B, OBP2B, PILRA, PILRB, SPINK5,
and TNXB, whereas for UC, CSTB, IL18R1, IL1RL1, KIR3DL1, MEP1B, PDCD6, PDGFRB, and PNLIPRP2
had statistically signi�cant associations. The correlation between CD and UC MR estimates was
statistically signi�cant (r = 0.588, p < 0.001; Supplementary Fig. 1).

2.2. PWAS & Causal-PWAS extension
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Among 487,199 UKB participants with genotype data, 54,219 individuals had protein data. Our random
forest classi�er assigned East Asian ancestry for 230 individuals, a number that closely matched the
number reported in a previous publication21 (Supplementary Table 2). In the PWAS, 258 proteins (17.62%)
among 1464 proteins were successfully analyzed, while the rest did not achieve statistically signi�cant
SNP-based heritability (p < 0.01). For IBD, EFNA1, IL18R1, KLK12, KLK13, RNASET2, RSPO1, SUSD2 had
causal-PWAS PIP > 0.80 (Fig. 3, Supplementary Table 3). For CD, CD300C, EFNA1, IL18R1, RNASET2,
SIRPB1, SUSD2, and TNFRSF14, whereas for UC, HYAL1, IL18R1, KLK12, KLK13, and RSPO1 had causal-
PWAS PIP > 0.80. The correlation between CD and UC PWAS estimates was statistically signi�cant (r = 
0.356, p < 0.001; Supplementary Fig. 1).

2.3. Multiomics evidence integration
When combining all genomic and proteomic evidence from the two causal inference methods (proteome-
wide MR and causal-PWAS), we identi�ed a total of 30 proteins causally associated with the risk of IBD
or its subtypes (Table 1). According to the drug-target and PheWAS databases, 24 of these proteins (80%)
are known targets. A higher protein level of IL18R1, IL1RL1, or MEP1B, or a lower level of KIR3DL1 was
associated with a higher risk for all three disease types (i.e., IBD-encompassing genes). Among these,
KIR3DL1 and MEP1B also had coloc PP-H3 < 0.80 (Supplementary Table 4). The association for KIR3DL1
was also observed for IBD and UC in transcriptome-wide MR analyses in both the plasma and multi-
tissue data (Supplementary Table 5, 6). IL1RL1 had the transcriptomic association with CD in the plasma
tissue data and with UC in the multi-tissue data. A higher level of FGF5, ICAM5, or PM20D1 was
associated with a higher risk of IBD and had coloc PP-H3 < 0.80, but the associations were not observed
when separately analyzed in the CD or UC data.
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For CD speci�cally, and not UC, a higher protein level of CD300C, CNTN2, IL6R, LILRA2, PILRA, PILRB,
SPINK5, or TNXB, or a lower level of EFNA1, IL16, OBP2B, RNASET2, SIRPB1, SUSD2, or TNFRSF14 was
associated with a higher risk. All but IL6R, LILRA2, and TNXB had coloc PP-H3 < 0.80, and IL16 had coloc
PP-H4 > 0.80 in addition. Among the CD-speci�c genes, CNTN2, EFNA1, PILRA, PILRB, RNASET2, and
SUSD2 also had associations with IBD as a whole. At the transcriptome level, CD300C and LILRA2 had
associations with CD in both the plasma and multi-tissue data. IL6R, PILRA, and RNASET2 had
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associations with CD in the plasma tissue data only, and IL16 had associations with CD in the multi-
tissue data only.

A higher level of CSTB or KLK13, or a lower level of HYAL1, KLK12, PDCD6, PDGFRB, PNLIPRP2, or
RSPO1 was associated with a higher risk of UC, but not CD. All of these UC-speci�c genes passed the
coloc PP-H3 < 0.80 threshold. Except HYAL1, all also had associations with IBD as a whole. At the
transcriptome level, PDCD6 also had associations with UC in the plasma tissue data, while CSTB had
associations with UC in both the plasma and multi-tissue data.

2.4. Gene-level PheWAS database scan
Among 30 candidate targets, the European pQTL MR database also included the associations between
IL18R1, IL1RL1, and ICAM5 with IBD and CD, but not UC (Supplementary Table 7). In addition,
associations were found for IL18R1 with eczema, CNTN2 for mean platelet volume, and IL6R for
rheumatoid arthritis. The rare variant aggregation results showed that all candidate target genes did not
have statistically signi�cant pleiotropic associations in other phenotypes, except for MEP1B, PILRA, and
PM20D1, which had associations with protein levels of MEP1A, PILRB, and TOP1, respectively. These
proteins did not have further pleiotropic associations with other phenotypes.

2.5. Functional enrichment analysis
GO enrichment analyses showed that among the biological process terms, the candidate targets were
enriched in positive regulation of cytokine production (IL16, IL18R1, IL1RL1, IL6R, LILRA2, TNFRSF14,
TNXB) (Supplementary Fig. 2). Among the molecular function terms, they were also enriched in immunity-
related pathways such as cytokine binding, immune receptor activity, growth factor receptor binding
(IL18R1, IL1RL1, IL6R, TNFRSF14, KIR3DL1, LILRA2, PILRA, PILRB, HYAL1, FGF5, PDGFRB). Among the
cellular component terms, only lysosomal lumen was signi�cantly enriched (HYAL1, PDGFRB, RNASET2).
Enriched KEGG pathways and modules also included immunity-related pathways such as cytokine-
cytokine receptor interaction.

2.6. Druggable target identi�cation
Among the identi�ed potential drug targets, two were direct targets of drugs with approval, four were in a
clinical trial stage, �ve were in an experimental stage, sixteen were not currently in development but
annotated as druggable, and four were not annotated as druggable (Supplementary Table 8). IL6R had
three drugs with regulatory approvals and two in development, and their indications included immune-
related diseases such as rheumatoid arthritis, coronavirus disease 19 (COVID-19), and systemic lupus
erythematosus. Notably, one drug, olamkicept, was successful in a phase 2 clinical trial for UC. Its ligand,
IL6, was also a target of three drugs that have been in development for treating CD (Supplementary
Table 9). PDGFRB was targeted by a number of approved drugs or drugs in development with indications
ranging from idiopathic pulmonary �brosis to various types of cancer. IL18R1 is targeted by iboctadekin
which completed a phase 2 clinical trial for treating melanoma. Also, IL18, which binds to IL18R1, is
targeted by GSK-1070806 which completed a phase 2 clinical trial for CD. IL1RL1 is targeted by
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astegolimab which has recently started a phase 3 clinical trial for chronic obstructive pulmonary disease
and completed phase 2 clinical trials for COVID-19, asthma, and atopic eczema. While IL16 and
TNFRSF14 are still in an experimental stage, IL16 receptors (GRIN2A, CCR5) and a ligand of TNFRSF14
(TNFSF14) have drugs for CD or UC in a clinical trial stage.

3. Discussion
Using the East Asian genome and proteome data, we identi�ed potential therapeutic targets for IBD and
its subtypes. We applied two multiomics-based causal inference methods, proteome-wide MR and causal-
PWAS and found 30 potential drug targets with proteomic evidence Four of them (IL18R1, IL1RL1,
KIR3DL1, and MEP1B) had consistent associations with the risk of IBD, CD, and UC. Fifteen targets were
CD-speci�c, while eight were UC-speci�c. Among the candidate targets, thirteen and eight had supportive
MR evidence in the plasma transcriptome data and the multi-tissue transcriptome data of European
ancestry, respectively. IL18R1, IL6R, IL16, and TNFRSF14 or their direct interactors were currently targeted
by drugs being developed to treat IBD. IL1RL1 and PDGFRB had existing drugs that may be repurposed
for IBD. Six target genes were novel according to a wide range of drug-target and PheWAS databases.

IBD multiomics had been largely limited to European ancestry. However, a prior IBD GWAS in East Asians
revealed substantial heterogeneity in minor allele frequencies and effect sizes for several IBD-related
variants, implying signi�cant downstream consequences for multiomics-based therapeutic target
discovery4. Indeed, the potential IBD drug targets we identi�ed in East Asians were mostly not detected by
a similar previous study in Europeans16, even when some of these are known IBD targets and have been
developed for drugs. Further research on these novel targets may reveal mechanisms that could explain
previously reported ethnic differences in clinical manifestations of IBD2,3,22. Using data of diverse
ancestries in multiomics is fruitful, and data collection in transcriptome, proteome, microbiome, and other
omics data should follow a current effort to increase diversity in genomic data. Furthermore, a recent
review on IBD drug randomized controlled trials (RCT) reported a low representation of non-White
participants (14.7%)23. As a societal burden of IBD is expected to rise in geographical regions such as
Asia, Africa, and South America1, an effort to develop optimal IBD therapeutics should diversify its
participants in every step of the entire process from multiomics-based screening to con�rmatory RCTs.

Several of our candidate targets have established relationships with IBD and are direct targets of existing
drugs. Some are already being developed to treat IBD, while others may be promising for drug
repurposing. IL18R1 and IL1RL1 are cytokine receptors within the IL1 receptor family which, together with
IL1 family, is an established regulator of gastrointestinal in�ammation. IL18R1 binds to IL18 and is
essential for IL18-mediated signal transduction. Elevated levels of IL18 in gut epithelium have been linked
to mucosal barrier breakdown and intestinal integrity24–26. IL18R1 has been targeted by iboctadekin
which was developed to treat melanoma and non-Hodgkin’s lymphoma. GSK-1070806, an anti-IL18
monoclonal antibody, is being developed to treat a range of conditions including IBD, atopic eczema, and
type 2 diabetes27. IL1RL1 is a receptor for IL33, and studies have suggested relationships between
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IL33/IL1RL1 signaling and colitis, tissue �brosis, and mucosa healing28–30. Astegolimab inhibits IL1RL1
to treat asthma, atopic eczema, chronic obstructive pulmonary disease, and COVID-19. Previous MR
studies using European data reported associations between IBD and the IL1 or IL1 receptor family
proteins, and our studies now provided consistent evidence in East Asians15,17,31,32.

IL6R is a subunit of IL6 receptor complex, and through IL6/IL6R axis, sustained elevation of IL6 conveys
IL6 classic and trans-signaling, which is primarily responsible for chronic in�ammation. Elevated levels of
IL6 have been observed in IBD33,34, and animal studies showed that IL6 inhibition was effective in
CD35,36. Olamkicept, a selective inhibitor of the IL6/sIL6R complex, was developed to inhibit IL6 trans-
signaling without blocking IL6 classic signaling, and a phase 2 clinical trial showed its e�cacy in clinical
response for UC patients37. Several other IL6 inhibitors (olokizumab, clazakizumab, PF-04236921) are
also being tested against CD. Existing drugs targeting IL6R (e.g., tocilizumab, sarilumab, satralizumab)
have been approved for multiple immune-related indications including rheumatoid arthritis; these and
other IL6R inhibitors in trials (e.g., levilimab, vobarilizumab) presents promising opportunities for
repurposing against IBD.

One interesting case is TNFRSF14 of which its ligand, TNFSF14, was tested as an IBD drug.
Quisovalimab, a TNFSF14 inhibitor, had two phase 1 IBD clinical trials prematurely terminated and one
phase 2 trial that showed e�cacy for non-eosinophilic asthma in patients with high baseline TNSFSF14
levels. TNFSF14 inhibition may be appropriate considering its traditional role in proin�ammation, but our
MR results suggested increased levels of TNFRSF14 were associated with a lower risk of IBD in both
proteomic and transcriptomic data. This is consistent with a study that found TNFSF14-de�cient mice
having more serious colitis than wild-type mice, which illuminated a separate unexpected role of
TNFSF14 in protecting against intestinal in�ammation38.

We found multiomics evidence for several novel therapeutic targets and some weakly linked candidate
targets for IBD. RSPO1 is an activator of the canonical Wnt signaling pathway and is highly expressed in
various tissues in the gastrointestinal tract. It has a crucial role in stem cell homeostasis in the
gastrointestinal tract39, and in vitro studies showed that RSPO1 supported the survival of intestinal stem
cells, while its de�ciency resulted in crypt cell and apoptosis40. KLK12 and KLK13 are kallikreins which
have functions in carcinogenesis and are close interactors of SPINK5, another candidate target from our
analyses. A structural network of IL10 centered signaling found that interactions of KLK13 may lead to
cleavage in the major components of extracellular matrix and promote cancer cell growth and
metastasis41. SPINK5 is a serine protease inhibitor with functions in anti-in�ammatory and anti-microbial
protection of mucous epithelia, and contributes to integrity and protective barrier function of the skin.
SPINK5, KLK12, and KLK13 gene and protein expression are all highly expressed in mucosa and
esophagus tissues, and for SPINK5, also in colon and rectum tissues. Mutations in SPINK5 promotes
non-speci�c in�ammation independent of allergens, leading to pro-T helper responses related to signaling
molecules such as IL33, a target of immune-related diseases such as asthma and atopic eczema42.
SPINK5 has also been suggested as a therapeutic target for cancer43. Other novel candidates, CSTB,
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PDCD6, and PDGFRB, had limited research regarding IBD. They are all highly expressed in mucosal
tissues for mRNA or protein. Weak links have been found between CSTB and UC neoplastic
progression44, and between PDCD6 and in�iximab responses and �brosis in CD45,46. Upregulation of
PDCD6 interacting protein (PDCD6IP) has also been linked with UC47. PDGFRB has several approved
drugs with indications including colorectal cancer and gastrointestinal stromal tumor which are major
sequelae of IBD, and it forms heterodimers with PDGFRA which has been linked with colitis
susceptibility48 and postnatal intestinal epithelial stemness49. In fact, nintedanib, an approved PDGFRB
inhibitor for idiopathic pulmonary �brosis and systemic scleroderma, has been found to inhibit an mRNA
level of EFNA1, another candidate target we found, to alleviate colitis and improved a gut microbiota
composition in a mouse model50.

There were important limitations to note. First, the UKB proteome data provided only a limited coverage of
the entire plasma proteome. For example, among 66 targets of approved IBD drugs according to Open
Target Platform, only six were included in the data, and only one had variants with su�cient strength to
perform MR. Second, the proteome data was only quanti�ed by antibody-based assays. Distinct and
complementary nature of antibody- and aptamer-based assays have been reported51, and it would be
consequential for drug target discovery, but aptamer-based proteome data was not available for East
Asians. Third, the sample size of East Asians in the proteome data was small. Low statistical power for
pQTLs particularly tamed our interpretation of colocalization, which requires high statistical power.
Sample size was small (less than 1000) across all ancestries except for the European ancestry;
increasing diversity in proteomic data is warranted. Fourth, our transcriptomic analyses relied on
European data because large, publicly available transcriptomic data of East Asians do not exist. We
interpreted the transcriptomic �ndings with caution.

Employing a set of causal inference methods on East Asian data, we provided proteomic evidence for
several potential therapeutic targets for IBD and supportive �ndings from transcriptomic analyses,
PheWAS, and functional enrichment analyses. Some targets or their direct interactors (IL18R1, IL6R, IL16,
TNFRSF14) had existing drugs that were currently being developed to treat IBD; we provided additional
evidence supporting these developments. Other targets (IL1RL1, PDGFRB) had drugs for other
indications; these may be promising candidates for IBD drug repurposing. Several novel targets were
found, which may be attributed to the use of East Asian data and the application of causal-PWAS. They
should be validated in future experiments and trials.

4. Methods

4.1. IBD GWAS summary data
East Asian genome-wide association study (GWAS) summary statistics for IBD and its subtypes were
obtained from International In�ammatory Bowel Disease Genetics Consortium (IIBDGC). IIBDGC has
recently conducted the largest IBD GWAS meta-analysis of East Asian ancestry with 14,393 cases (CD:
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7,372; UC: 6,682) and 15,456 controls4. The meta-analysis included cohorts of individuals from China,
Korea, Japan, and Hong Kong. Further details of the included cohorts, genotype quality control
procedures, and GWAS procedures are described in the original publication4.

4.2. Proteome data
Proteome data are appropriate as a primary data source for target discovery because proteins are more
genetically proximal, have relatively distinct genetic architectures compared to more distal biomarkers
with polygenic architectures, and are direct targets of most drugs, including small molecules and
biologics.

East Asian protein data were obtained from UK Biobank (UKB) in two forms: individual-level protein data
and pQTL summary statistics52. UKB is a population-based cohort of approximately 500,000 individuals
recruited between 2006 and 2010 in the UK. Participants’ information has been collected via a wide range
of sources such as electronic health records, death and cancer registries, self-reported surveys, biomarker
measurements, and medical images. In 2023, proteomic pro�ling data were released as part of the UKB
Pharma Proteomics Project (UKB-PPP). Brief information on proteome data is described below, and
further details on proteomic pro�ling and GWAS procedures are described in an original publication52.

Individual-level protein data were obtained from the UK Biobank with an approved application number
77890. The UK Biobank obtained approval from the Northwest Multicenter Research Ethics Committee.
All participants provided written informed consent. Using the Olink Explore 1536 platform, proteomic
pro�ling was conducted on blood plasma samples of 54,219 individuals (46,595 randomly selected
samples, 6,376 selected by UKB-PPP consortium member companies, and 1,268 selected from the UKB
COVID-19 repeat imaging study; 20 individuals overlapping in the consortium-selected and the imaging
study). Baseline demographic and clinical characteristics are described elsewhere21. Data on 1,463
unique proteins were available at the time of this study. Each protein level was quanti�ed in a normalized
protein expression unit, where 1 unit difference represents a doubling of protein concentration.

The UKB East Asian pQTL summary statistics were publicly available. The pQTL GWAS were generated
for 262 East Asian individuals using REGENIE v2.2.1, which adjusts for population structure53. Variants
were included based on the following criteria: minor allele frequency (MAF) > 0.01, minor allele count > 
100, genotyping rate > 0.99, Hardy-Weinberg equilibrium (HWE) p > 1 * 10− 15, missingness < 0.10, linkage
disequilibrium (LD) pruning (r2 < 0.8)52.

4.3. Transcriptome data
A large, plasma tissue transcriptome data source, the eQTLGen Consortium, and a multi-tissue
transcriptome data source, the GTEx Consortium, were used for transcriptomic analyses. The eQTLGen,
cis-eQTL (± 1 MB) summary statistics were produced with 31,684 blood samples from meta-analyses of
37 consortium cohorts54. GWASs were conducted in each cohort, and their Z scores were weighted by
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sample size. SNPs with MAF > 0.01, HWE P > 1 * 10− 5, call rate > 0.95, and MACH r2 > 0.5 were used.
Details of included cohorts and analytic procedures are described in a previous publication54.

The GTEx version 8 data included 15,201 samples from 49 tissues of 838 postmortem donors55. Meta-
analyses of cis-eQTL summary statistics from all 49 tissues were used. Details for samples and
analytical procedures are described in another publication55.

4.4. Reference genome data
Whenever downstream analyses of East Asian summary data required reference genome data, reference
panels of East Asian ancestry from the 1000 Genomes Project (1KGP) Phase 3 on GRCh37 or GRCh38
assembly were used, matching with the summary data in each analysis56. When assigning genetically
inferred ancestries to UK Biobank participants for PWAS weight calculation, a reference panel from the
Human Genome Diversity Project (HGDP) was used in addition to the 1KGP panel of all ancestries57.

4.5. Two-sample, cis-MR
We performed two-sample MR analyses to test causal effects of genetically determined protein levels on
the risk of IBD and its subtypes. MR is a method that exploits genetic variants as IV to test a causal
hypothesis between an exposure and an outcome58–60. In a conventional MR, genetic IVs associated with
a modi�able exposure are selected from the entire genomic range. When MR is used for drug target
discovery, genetic variants are preferred to be selected from a single genetic region (i.e., cis-
variants)10,61,62. In an MR using cis-variants (i.e., cis-MR), an exposure that can be pharmacologically
perturbed is used, such as a protein level (i.e., pQTL MR) or a gene expression level (i.e., eQTL MR) as in
this study.

A cis-MR is subject to the same assumptions in a conventional MR. First, genetic variants must be
su�ciently associated with an exposure. Among variants within each genetic region ± 500 kb (i.e., cis-
variant), we selected pQTLs with p < 0.05 after adjusting for false discovery rate (FDR) by the Benjamini-
Hochberg procedure63. Independent IVs were selected after clumping at r2 > 0.30 within each genetic
region64. Second, genetic variants must be associated with an outcome only through its association with
an exposure (i.e., no horizontal pleiotropy, or exclusion restriction). Restricting IVs to cis-variants offers an
advantage of higher speci�city in terms of biological mechanisms and has less chance of horizontal
pleiotropy, compared to a polygenic approach. In addition, we chose an MR method based on a
constrained maximum likelihood (MR-cML), which allows violation of correlated and uncorrelated
horizontal pleiotropy and outperformed other methods in a range of simulations65. Model averaging and
data perturbation were applied to account for model selection uncertainties and potentially large numbers
of invalid IVs. Third, genetic variants must not have confounding with an outcome. Confounding by
population strati�cation was controlled by limiting data to East Asian ancestry and utilizing GWAS
summary statistics that applied either covariate adjuistment of genetic principal components or mixed
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effect models. Confounding by LD was assessed with genetic colocalization described below.
Transcriptome-wide MR was also conducted with the same procedures as above using eQTLs, instead of
pQTLs.

4.6. Colocalization
Colocalization, which assesses whether two traits share common causal variants, can be a useful
sensitivity analysis when MR is based on a single gene region66. Approximate Bayes factor colocalization
(coloc) estimates posterior probabilities (PP) for �ve hypotheses: H0, no association with either trait; H1,
association with the �rst trait but not with the other; H2, association with the second trait but not with the
other; H3, associations with both traits but separately from distinct variants; H4, associations with both

traits from common variants67. High PP-H4 implies strong evidence that two traits share common causal
variants and that confounding by LD is unlikely, whereas high PP-H3 would suggest that confounding by

LD may be present68. Some limitations are important to note. Colocalization requires strong statistical
genetic associations for both traits, which is hard to achieve when using the East Asian proteome data
with a relatively small sample size. Besides, especially with small sample size, differential effects of
natural selection on GWAS hits, eQTLs, and pQTLs further complicate colocalization results69. Thus, our
colocalization results of PP-H3 and PP-H4 did not rule out MR �ndings and were deemed supplementary
with a threshold of 0.80. A prior probability of a variant being associated with each trait was set to 1 *
10− 4, and a prior probability being associated with both traits was set to 1 * 10− 5, following a standard
practice68.

4.7. Summary-based PWAS
Summary-based PWAS tests an association between a protein level and an outcome using a protein level
imputed from genotypes of an external sample70,71. From the UKB individual-level data with protein
levels, we �rst predicted those with East Asian ancestry. Then, we imputed cis-genetic effect on protein, or
PWAS weight, using the East Asian samples.

We assigned ancestries to individuals according to a recently proposed method, which is as follows72.
First, genetic principal component analyses were performed on unrelated individuals from a combined
dataset of 1KGP and HGDP. Second, a random forest classi�er was trained on using the top six principal
components as features and ancestries as labels. Those assigned to East Asian as the �nal ancestry
were used for PWAS weight calculation. We followed details of the ancestry assignment laid out in online
tutorials72.

We used FUSION to compute the PWAS weight73. Only genes with statistically signi�cant SNP-based
heritability (p < 0.01) were considered. After running multiple predictive models (top pQTL, BLUP, LASSO,
Elastic-net) with �ve cross-validations, the most predictive one was used for calculation.

4.8. Causal-PWAS
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Causal-PWAS is a novel extension of PWAS that directly adjust for genetic confounding74. PWAS in its
original form suffers from confounding by LD; that is, purported cis-genetic effect may in fact be
originated from nearby variants or genes, which independently affect a trait of interest. Causal-PWAS
jointly models protein effects for all relevant variants and genes simultaneously, rather than for only a
selection as in MR or PWAS, and implements a Bayesian variable selection model with sparse prior
distributions to identify causal variants or genes. From a causal inference perspective, a distinction is
that MR attempts to indirectly overcome confounding with an IV, whereas causal-PWAS directly models
potential genetic confounders to estimate conditional causal effects. One important advantage of causal-
PWAS is that causal hypothesis testing is allowed in the absence of strong variants (i.e., IVs); MR cannot
be performed in this case.

PWAS was �rst performed as described above. Causal-PWAS takes PWAS Z-score outputs to estimate
variant effect and gene effect parameters with sparse prior distributions. Next, using these prior
parameters, variant- and gene-level effects are �ne-mapped using SuSiE75,76, which then outputs
posterior inclusion probabilities (PIP) for variants and genes. To reduce computational burden, random
10% of variants were used for prior parameter estimation and initial �ne-mapping steps. SuSiE was run
with an assumption that allows a maximum of �ve causal variables in a region.

4.9. Multiomics evidence integration
First, by integrating the East Asian GWAS summary statistics for IBD and the East Asian protein data, we
identi�ed potential drug targets with MR-cML evidence (FDR-corrected p < 0.05) and/or causal-PWAS
evidence (PIP > 0.80). We provided MR-cML odds ratios (OR), causal-PWAS PIP, and PWAS Z-scores.
Second, for candidate targets, we provided coloc PPs (H1-H4), plasma tissue transcriptome-wide MR OR,
multi-tissue transcriptome-wide MR OR. All ORs were provided with 95% con�dence intervals (CI). We also
calculated Pearson correlations between MR-cML estimates of CD and UC to further explore between-
subtype similarity in protein effects. All p values in this study were from two-sided tests.

4.10. Gene-level PheWAS database scan
To further evaluate potential pleiotropic or side effects of identi�ed drug targets, we searched through two
gene-level phenome-wide association study (PheWAS) databases. The EpiGraphDB is a graph database
containing a variety of biomedical and epidemiological relationthips. Its proteome PheWAS browser
contains European pQTL MR results for 989 proteins on 225 traits selected from the MR-base
database32. The AstraZeneca PheWAS Portal lists gene-level rare-variant-aggregated associations for
15,017 traits in the UKB using the exome-wide sequencing data77,78. We extracted associations based on
thresholds recommended by corresponding databases: p < 3.5 × 10− 7 for the EpiGraphDB and p < 1 × 10− 

8 for the AstraZeneca PheWas.

4.11. Functional enrichment analysis
To explore biological functions of candidate drug targets, enrichment analyses were performed with over-
representation tests for Gene Ontology (GO) terms79, Kyoto Encyclopedia of Genes and Genomes (KEGG)
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pathways and modules80. GO is a widely used knowledge database that contains computational
representations of functions of protein and non-coding RNA molecules, and comprises three orthogonal
ontologies: biological process (BP), molecular function (MF), and cellular component (CC). The KEGG
pathway map represents a collection of knowledge of the molecular interaction, reaction, and relation
networks for metabolism, genetic information processing, environmental information processing, cellular
processes, organismal systems, human diseases, and drug development. The KEGG modules are
manually de�ned functional units of gene sets, which have a more straightforward interpretation. An
over-representation test was used with a default minimum gene set size of 10 to identify GO terms, KEGG
pathways, or KEGG modules in which candidate targets are over-represented81. Statistical signi�cance
was set at p < 0.05 after adjusting for FDR by the Benjamini-Hochberg procedure63.

4.12. Druggable target identi�cation
Druggability of candidate targets was assess based on various drug databases. First, we searched
through Open Target Platform82, ChEMBL83, DrugBank84, and Therapeutic Target Database85 to list drugs
approved or in development, which were targeted by candidate targets. By additionally using DailyMed,
we extracted indications of approved drugs. Next, with the same process, we identi�ed drugs targeting
ligands or receptors of candidate targets. For targets without drugs in development, potential druggability
was assessed on the Drug Gene Interaction database (DGIdb)86.
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Figure 1

An overview of the study.

Figure 2
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Proteome-wide MR results for IBD and its subtypes. MR results of proteins with at least one statistically
signi�cant association are presented. Circles, trigangles, and squares specify IBD, CD, and UC,
respectively. Dots denote odds ratios, and lines denote unadjusted 95% con�dence intervals. Lines are red
if the association passed the FDR correction threshold.

IBD, in�ammatory bowel disease; CD, Crohn’s disease; UC, ulcerative colitis; FDR, false discovery rate.
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Figure 3

PWAS and causal-PWAS extension results for IBD and its subtypes. PWAS results for proteins with at
least one association that passed the causal-PWAS PIP threshold. Circles, triangles, and squares specify
IBD, CD, and UC, respectively. Dots denote PWAS Z-scores and are red if the association passed the 80%
PIP threshold.

IBD, in�ammatory bowel disease; CD, Crohn’s disease; UC, ulcerative colitis; PIP, posterior inclusion
probability; PWAS, proteome-wide association study.
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