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 Assessment of American Bullfrog (Lithobates catesbeianus) 1 

spreading in the Republic of Korea using rule learning of 2 

elementary cellular automata  3 

 4 

Abstract 5 

The spread of American Bullfrog, one of the 100 of the World’s Worst Invasive Alien Species, has a 6 

great impact on the surrounding ecosystem. Little is known about the tendancy and pattern of how they 7 

are spreading in South Korea geographically. It is important to study the tendancy of their spreading so 8 

that a proper mitigation can be applied when needed. This study is based on the results of national 9 

surveys that observed the distribution. The entire data is divided into 25 regional clusters using the 10 

divisive hierarchical clustering method. In order to estimate the degree of spreading, a sequence of 11 

spatial distribution is constructed for each cluster using the agglomerative clustering method. 12 

ECA(elementary cellular automata) is introduced to find rules governing the pattern variation in the 13 

sequence. Each cell represents either the observed or unobserved site of bullfrog. The number of 14 

Bullfrog Observed Site (BOS) in a sequence of each cluster is counted and used to define the spreading 15 

intensity. The rules of ECA are learned by the CNN(Convolution Neural Network) method and used to 16 

estimate and predict the spreading intensity by counting the expected number of BOS over 400 17 

generations. Taking environmental factors into account, habitat suitability is used and obtained using 18 

Maxent. The spreading intensity is multiplied by the habitat suitability to get an assessment of bullfrogs 19 

spreading. The relative spreading assessment is estimated, which is classified into 4 groups; spreading 20 

intensively, spreading slowly, maintaining or declining population. 21 

 22 
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1 Introduction 37 

The American bullfrog, Lithobates catesbeianus, has been introduced to more than 40 countries 38 

worldwide and is listed on the “100 of the World’s Worst Invasive Alien Species” (Database 2023). 39 

American Bullfrog was introduced to Korea in 1957 and cultivated for the purpose of establishing new 40 

food sources for human consumption, but due to its low economic efficiency and low demand as food, 41 

most farm gave up on farming and released them into rivers illegally, and bullfrogs were spread all over 42 

the country (Jang and Suh 2010; Kim 2009; Oh and Hong 2007). The spread of bullfrogs has a great 43 

impact on the surrounding ecosystem such as increased competition with native species, predation and 44 

the spread of ranavirus (Ficetola et al. 2010; Ficetola et al. 2007; Giovanelli et al. 2008; Groffen et al. 45 

2019; Iñiguez and Morejón 2012; Kamoroff et al. 2020; Koo and Choe 2021; Nori et al. 2011; Park et 46 

al. 2022; Schlaepfer et al. 2005). Bullfrogs have continued to spread in an environment without natural 47 

enemies and have now spread nationwide except in some inland (mountain) areas in South Korea (Kang 48 

et al. 2019; Koo and Choe 2021). The species was reported to occur at 2,716 sites, mainly along the 49 

southern and western coasts, but was rarely distributed in the northern part of Korea or along the eastern 50 

coast (Kang et al. 2019). It is also predicted that bullfrogs will continue to spread further in the future 51 

(Koo and Choe 2021). Although several management strategies were implemented, the effectiveness of 52 

the past control decisions is unclear (Chang et al. 2022). Meanwhile, some reports stated that local 53 

natural enemies have appeared and are controlling the bullfrog population (No et al. 2017). 54 

In this study, the likelihood of future spread is assessed by calculating the intensity of spread and habitat 55 

suitability in 25 regions. Then they are classified into areas where the population is expected to continue 56 

to increase, areas where there is no significant change in the current population, and finally areas where 57 

the population is expected to decrease. 58 

The study is based on the findings of national surveys including Natural Resources from 2006 to 2012, 59 

the National Wetland Center Report from 2011 to 2017 and the National Institute of Ecology from 2015 60 

to 2017 (Kang et al. 2019).  61 

Since we do not have time series data of bullfrog distribution, we analyze the spatial distribution using 62 

hierarchical divisive clustering method using scikit-learn 1.3.0 (da Silveira Vasconcelos et al. 2011; 63 

Ermentrout and Edelstein-Keshet 1993; Patlolla 2018; Pedregosa et al. 2011). The entire data is 64 

clustered into small clusters, and the degree of spreading is estimated by the evolution rules from the 65 

elementary cellular automata scheme (Nagatani and Tainaka 2018; Wolfram 1983, 2002) in each small 66 

cluster. CNN is trained to learn the evolution rules (Brodrick et al. 2019; Deneu et al. 2021; Duryea 67 

2018; Kattenborn et al. 2021; Qin et al. 2020). By recognizing small clusters as a single image of 0’s 68 

and 1’s, the number of 1’s is counted, which is the number of Bullfrog Observed Site (BOS). The ratio 69 
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of the expected number of BOS at time t to the initial number of BOS is used to define the spreading 70 

intensity. The estimated spreading intensity is multiplied by the habitat suitability to express the 71 

assessment of bullfrog spreading by region. The habitat suitability is achieved using Maxent software 72 

(Elith* et al. 2006; Ficetola et al. 2010; Ficetola et al. 2007; Steven J. Phillips 2017; Steven J Phillips 73 

et al. 2017; Steven J Phillips et al. 2006; Steven J Phillips and Dudík 2008; Tesfamariam et al. 2022; 74 

Venne and Currie 2021). 75 

 76 

2 Material and Methods 77 

Following the procedure shown in Fig. 1, several machine techniques are used such as clustering, 78 

convolutional neural network, elementary cellular automata rule learning and Maxent to assess the 79 

spreading intensity of bullfrogs by region. 80 

 81 

 82 

Figure 1. The process to get an assessment of spreading. For each cluster, the agglomerative clustering method 83 

is used to generate a clustering sequence, which is regarded as an image sequence, and the CNN method is applied 84 

to learn ECA rules governing the sequence variation. For each ECA rule the number of 1’s is counted, which is 85 

the expected number of BOS to evaluate the intensity of spreading. Finally, the intensity is adjusted by multiplying 86 

habitat suitability to get an assessment of spreading 87 

 88 

2.1 Observation Data 89 

Data are collected from the results of several official nation-wide surveys, including the National Survey 90 

of Natural Resources from 2006 to 2012, the National Wetland Center Report from 2011 to 2017 and 91 

the National Institute of Ecology from 2015 to 2017 (Kang et al. 2019). Figure 2 shows the distribution 92 

of American Bullfrog observed in South Korea. Time series data is not given.  93 

 94 

 95 
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 96 
Figure 2. Distribution of bullfrog observations according to administrative districts and topography. The map 97 

above represents South Korea, and the data is between latitude 34°58’-36°71’and longitude 126°11’-128°2’, 98 

covering approximately the southern half of South Korea. a It shows where bullfrogs have been found on the 99 

maps with the boundaries of administrative districts. b It shows where bullfrogs have been found on the 100 

topographic map. The highest elevations are red, then moving to orange, yellow, bright greens and finally dull 101 

greens at the lower elevations. It is mainly distributed in coastal wetlands or riverside wetlands and is rarely 102 

distributed in mountainous areas. This is a collection of findings over 60 years, with no temporal information 103 

 104 

2.2 Clustering  105 

In order to estimate the intensity of spreading by region, a sequence of spatial distribution from the 106 

observed data in Fig. 2 is constructed using the divisive hierarchical clustering method. All observations 107 

start in one cluster of full data, and splits are performed recursively as one moves down the hierarchy 108 

by grouping neighboring data into the same cluster (Patlolla 2018). The scikit-learn clustering software 109 

(Pedregosa et al. 2011) is used, and clusters are numbered according to the order in which they are 110 

formed. Clustering is performed until 25 clusters are formed to roughly match the size of the 111 

administrative district. Rectangular images consisting of 20 by 20 cells are created by uniformly 112 

dividing the latitude and longitude including all observations in each cluster. Latitude and longitude 113 

information for all clusters is in Table 1. If each cell had a bullfrog observation point, it is marked as 1, 114 
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otherwise it is marked as 0. Here, the point density of each cell is inhomogeneous. To estimate the 115 

spreading intensity of each cluster the agglomerate clustering method is performed in each cluster 116 

making the sequence of images, 𝐶0 → 𝐶1 → ⋯ 𝐶𝑛−1 → 𝐶𝑛 . Figure 3 illustrates the agglomerate 117 

clustering steps, taking cluster #5 in Fig. 6d as an example.  118 

 119 

 120 

Figure 3. Procedure of agglomerate clustering follows the sequence. The image sequence, C0 → ⋯ C5 →121 ⋯ Cn−1 → Cn, is created by applying the agglomerate clustering method to Cluster #5 in Fig. 6d. Cn corresponds 122 

to Cluster #5 123 

 124 

2.3 Learning Elementary Cellular Automata Rules 125 

ECA is introduced to find rules in the sequences for each cluster. ECA is a one-dimensional array of 126 

cells, where each cell takes either 1 or 0, representing BOS or not BOS, respectively. It generates next 127 

array depending on its own state and states of its two closest neighbors (Martinez et al. 2012; Weisstein 128 

2017; Wolfram 1983, 2002) . Hence, 256 rules numbering from 0 to 255 are available to represent the 129 

sequence evolution. In this study only the even number rules are used. The odd number rules are 130 

excluded because it is making the next generation value 1 when both the current cell and the neighboring 131 

cells are 0, which is unsuitable for the biological spreading model. Each row in ECA represents one 132 

generation, where ECA is a one-dimensional array. The next generation is generated by the ECA rules. 133 

By reconstructing a one-dimensional array into a 2D image, each generation can be made of a sequence 134 

of images that change according to the ECA rules in Fig. 4.  135 

The rules are learned by training the image change pattern using the Convolutional Neural 136 

Network(CNN) (LeCun et al. 2015; Webb 2018). CNNs are a subset of a class of deep learning 137 

algorithms, most commonly used for spatial pattern analysis in biology and ecology (Brodrick et al. 138 

2019; Kattenborn et al. 2021; Webb 2018). Additionally, CNN methods can efficiently classify the 139 

predicted distributions of many species (Deneu et al. 2021). In this simulation CNNs are trained with 140 

Keras package in TensorFlow (Martín et al. 2015). 141 
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2.3.1 Generate training data 142 

The procedure is as follows:  143 

• Create a 20 by 20 matrix by random seeding of 1’s at 100, 200 and 300 initial points.  144 

• Reshape the 20 by 20 matrix to a 1 by 400 matrix 145 

• Generate the next generation of 1 by 400 matrix according to ECA rules. 146 

• Reshape two consecutive 1D matrices to two consecutive 2D matrices, which are considered as one 147 

sets of images, such as (𝐶𝑛−1, 𝐶𝑛) in Fig. 3. 148 

• Generate sets of image data for all 128 even rules 149 

• Generate 500 sets of image data for each 100, 200 and 300 initial points for each rule 150 

Hence, 500*3*128=192,000 sets of image data are generated 151 

 152 

2.3.2 Training the rules   153 

• Separate 80% of training data and 20% of test data from total data 154 

• Learning the rules using CNN(Convolution Neural Network) method (Fig. 4)  155 

 156 

 157 

Figure 4. Seed 100, 200 and 300 random points on the 20 by 20 matrix. Reshape 20 by 20 matrix to 1 by 400 158 
matrix, then apply the elementary cellular automata rules to make the new generation of 1 by 400 matrix. Reshape 159 
the new matrix to 2 dimensional 20 by 20 matrix. To train the ECA rule learning, we generate 1500 number of 160 
matrix pairs for all even rules of ECA by random seeding of 1’s at 100, 200 and 300 initial points we generate 161 

 162 

2.4 Spreading Intensity  163 

To estimate the intensity of spreading, the expected number of BOS variation depending on the rules 164 

governing the evolution of clusters is estimated. As an initial value, a value of 1 is randomly given to 165 

100 cells out of 400 cells of the image, then the number of 1’s in the image is counted while evolving 166 

over 400 generations according to all even-number rules of ECA. This procesure is repeated 10 times 167 



7 

 

to get the average number of 1’s. Figure 5 shows the variaton in the expected number of BOS with the 168 

initial value set to 100 and the mean of each expected number of BOS for 400 generations for certain 169 

rules. The mean of the expected number of BOS divided by the initial value of 100 is defined as 170 

spreading intensity for each rule, which shows the growth rate of the expected number of BOS. The 171 

results for all even rules are in Table 3 in Appendix B. 172 

The mean of the expected number of BOS according to each rule is multiplied by the percentile 173 

distribution of the rule to get the mean of the expected number of BOS of the cluster. Here the spreading 174 

intensity is defined as the mean of the number of BOS: 175 

 176 

spreading intensity = 177 ∑ Percentile of rule (x𝑖 ) ∗  mean of the expected number of BOS for rule (x𝑖 )/100𝑖    178 

 179 

 180 
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Figure 5. Patterns of the expected number of BOS change by generation according to each rule. A value of 1 181 

is randomly assigned to 100 cells out of 400 cells, and the number of cells having a value of 1 is counted up to 182 

400 generations according to the ECA rule. It shows the variation in the expected number of BOS. Rules 18 and 183 

146 show no significant change over 400 generations, and rules 30, 60, 90, 122, and 150 oscillate around the 200 184 

BOSs, while rule 22 stays around 150 BOSs. The mean of the expected number of BOS is indicated in the legend 185 

and shown in red dotted line. 186 

 187 

2.5 Assessment of spreading   188 

Since the spreading intensity is evaluated based on the mean of the expected number of BOS only 189 

without considering any other environmental and biological variables, the final predicted spreading 190 

intensity is weighted by the habitat suitability. The Maxent software (Maximum Entropy, version 3.4.1) 191 

is used in estimating the relative habitat suitability of sites by comparing environmental conditions at 192 

known observed sites to the available environmental conditions such as precipitation, temperature, 193 

elevation and so on (Tesfamariam et al. 2022; Venne and Currie 2021). The main environmental factors 194 

when using Maxent software are: annual mean temperature, mean diurnal range, temperature 195 

seasonality, annual precipitation, precipitation of wettest month and precipitation of driest month.  196 

 197 

3 Simulation Results 198 

 199 

3.1 Clustering 200 

 201 

Figure 6. Results of divisive clustering. a Observation data b divisive clustering after 9 clusters are 202 

formed c divisive clustering after 17 clusters are formed d the size of the clusters became similar to the 203 

size of the administrative district at 25 clusters are formed.  204 

 205 
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Using the hierarchical clustering method, the entire data is divided into 25 small clusters, and the size 206 

of the clusters became similar to the size of the administrative district (Fig. 6d). The number of clusters 207 

can be set to 1, 9 or 17, depending on the size of the region of interest (Fig. 6a-c). The common feature 208 

of the clusters is the high density mainly around the waterside and wetland. However, the shape of the 209 

cluster alone doesn’t represent the spreading intensity for each cluster. Biological and environmental 210 

informations are not taken into account when grouping the clusters 211 

3.2 Learning the rules Using CNN  212 

Figure 7 shows the accuracy of training the rules of ECA. The accuracy is more than 99%. This would 213 

mean that the rule of changes in the bullfrog distribution could be learned with a very high confidence. 214 

 215 

 216 

Figure 7. The accuracy of training. The x-axis (epoch) represents the number of training iterations, and the y-217 

axis (accuracy) represents the accuracy of the machine learning (the blue line (train acc; train accuracy) is the 218 

accuracy curve of the training data. The green line (val acc; validate accuracy) represents is the accuracy curve 219 

of the validation data). CNN is trained to learn ECA rules 220 

 221 

3.3 Spreading intensity 222 

Figure 8 in Appendix A shows the distribution of rules predicted through CNN learning for each cluster 223 

in Fig. 6d. The expected number of BOS for all 128 ECA rules estimated over 400 generations are in 224 

Table 3 in Appendix B. For cluster 14 as an example, it shows a distribution of 84.5% for rule 204, 8.5% 225 

for 206, and 7.0% for rule 220 in Fig. 9. The mean of the convergent number for rule 204 is 100, for 226 

the rule 206 is 323, and for the rule 220 is 322. Therefore, if bullfrogs are found in 100 cells now, the 227 
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expected number of converged BOS in cluster 14 can be calculated as 228 

1.00*0.845+3.23*0.085+3.22*0.07=1.34495, which is the spreading intensity for the cluster 14. The 229 

spreading intensity of all clusters are shown in Table 1 230 

 231 

 232 

Figure 9. Distribution of rules for cluster 14. It consists of rules 204, 206, and 220 corresponding to 84.5%, 233 

8.5%, and 7.0% respectively. The mean of the convergent number of BOS for rule 204 is 100, for the rule 206 is 234 

323, and for the rule 220 is 322 235 

 236 

3.4 Spreading Assessment  237 

Figure 10 shows the Spreading Intensity (SI), Habitat Suitability (HS) and Spreading Assessment (SA) 238 

of 25 clusters. Figure 10b shows the SI distribution. It does not reflect environmental and biological 239 

variables, and it shows the spreading intensity calculated only by machine learning methods (clustering, 240 

CNN, etc.). Areas that are already saturated may have low SI values, and areas with low saturation, 241 

such as mountainous areas, may have large SI values. Figure 10c represents HS distributions. HS values 242 

obtained by using Maxent software reflect ecological environmental factors for the bullfrogs. Figure 243 

10d shows the distribution of SA values obtained by multiplying SI values and HS values. The HS value 244 

ranges from 0 to 1, and the closer it is to 1, the more suitable. All distribution values are relative and 245 

expressed in four stages: strong spreading, weak spreading, strong retention, and weak retention. 246 

 247 



11 

 

 248 

Figure 10. Results of 25 clusters. a 25 Clusters : Divisive clustering is performed until the clustering became 249 

similar to the local administrative districts. b Spreading Intensity(SI): It does not show a strong spreading intensity 250 

in coastal and wetland areas. This suggests the possibility that spreading has already occurred to saturation. c 251 

Habitat Suitability(HS): Habitat suitability calculated using Maxent software. If the SI, the spreading intensity, is 252 

weak at a high HS, it means that spreading has already occurred sufficiently. d Spreading Assessment(SA): Areas 253 

with high probability of spreading are marked with red dots 254 

 255 

Table 1 shows the result of calculating the spreading assessment. From left to right, each column 256 

represents the number of BOS per cluster, spreading intensity, habitat suitability, spreading assesment, 257 

and geometric center latitude and longitude. The higher the value, the greater the probability of 258 

spreading. SI is a value obtained through machine learning using only BOS data. Environmental and 259 

biological factors were reflected through Habitat Suitability (HS) to get Spreading Assessment (SA).  260 
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Table 1 The results of bullfrog spreading for 25 clusters 261 

Clustering 

Number 

number of 

BOS 

SI HS SA Longitude Latitude 

1 77 3.25 0.331892778 1.078651528 127.99 36.42 

2 83 2.87 0.336620682 0.966101357 127.27 36.42 

3 267 3.1 0.772864513 2.395879991 128.47 35.36 

4 202 1 0.740367631 0.740367631 126.64 35.47 

5 168 2.48 0.794083093 1.96932607 126.43 34.58 

6 103 1.51 0.594828446 0.898190953 127.2 35.36 

7 127 3.25 0.713751758 2.319693214 126.77 36.16 

8 125 3.24 0.65006152 2.106199325 128.33 36 

9 96 2.08 0.460205108 0.957226626 126.47 36.71 

10 58 3.46 0.473968133 1.639929741 128.6 36.33 

11 205 1.26 0.791182732 0.996890243 126.46 35.08 

12 135 3.25 0.781342992 2.539364724 126.76 35.93 

13 98 3.42 0.62174352 2.12636284 128.14 35.4 

14 68 2.23 0.634174926 1.414210085 127.36 34.73 

15 87 1.35 0.690117529 0.931658665 128.88 35.18 

16 113 3.16 0.673967381 2.129736922 127.01 35.78 

17 136 2.91 0.701436489 2.041180182 127.91 35.11 

18 107 1.1 0.62500829 0.687509118 129.21 35.57 

19 70 2.66 0.697356021 1.854967015 126.11 34.73 

20 65 2.86 0.6193504 1.771342144 128.88 35.89 

21 58 2.14 0.617724528 1.321930491 126.88 34.58 

22 30 3.33 0.573416667 1.9094775 129.28 35.99 

23 37 2.02 0.3649146 0.737127492 127.81 35.53 

24 37 2.21 0.575529162 1.271919448 127.03 34.99 

25 65 2.22 0.804474672 1.785933772 126.66 34.98 

 262 

The final spreading assessment is the spreading intensity multiplied by the habitat suitability estimated 263 

by Maxent software 3.4.1. The higher the value, the greater the probability of spreading. Table 2 shows 264 

relative spreading assessments. Four cluster groups are created based on assessment scores. The clusters 265 

in groups (I) and (II) show spreading assessment scores greater than 2, which means that they will 266 

continue to spread. Clusters in group (III) show the scores of 1 to 1.5, which can be considered as slow 267 
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spreading or maintaining the population. For group (IV) clusters, the spread appears to have stopped, 268 

and the population may decline, especially in clusters #4, #8, and #23 269 

 270 

Table 2 Groups of Spreading Assessment  271 

Group Spreading Assessment (SA) Cluster Number(#) Relative Results 

Group (I) 2.0 <SA 3,7,8,12,13,16,17 Continue to spread 

intensively 

Group (II) 1.5<SA<2.0 5,10,19,20,22,25 Continue to spread 

Group (III) 1<SA<1.5 1,14,21,24 maintain population 

Group (IV) SA<1 2,4,6,9,11,15,18,23 maintain population and 

possibly decrease in 4,18,23 

 272 

4 Discussion 273 

Clustering is performed until 25 clusters are formed to roughly match the size of administrative districts. 274 

If the stopping number of clusters is changed in this method, the target range and the convergence of 275 

the expected number of BOS may also change, so the number of clusters should be adjusted to properly 276 

include the region of interest.  277 

In this study, the numpy. reshape() function (Harris et al. 2020) was used to rearrange two-dimensional 278 

images into one-dimensional array. Another future study is needed to apply ECA according to various 279 

array arrangements. When applying the ECA rules, zero padding was applied to both end points, that is, 280 

0 is used for the -1th and 401st virtual cells. It is assumed that Bullfrog has been never found outside the 281 

cluster. If found, they should be included in other clusters. 282 

Since the agglomerate clustering method is used in generating image sequences to train convolutional 283 

neural network, rules for increasing the expected number of BOS were mainly distributed as shown in 284 

Fig. 8 in Appendix A. However in some rules the expected number of BOS appeared to increase rapidly 285 

at first show various patterns, such as converging to a certain value (e.g. rule 124) or decreasing over 286 

time (e.g. rule 120) in Table 3 in Appendix B. 287 

In estimating spreading intensity, the mean of the expexted number of BOS is used, but the slope can 288 

be more useful in expressing the tendency of spreading as shown in Table 3 in Appendix B. Further 289 

research is needed to define the appropriate diffusion strength according to the convergence pattern of 290 

the expected number of BOS. 291 
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Since the spreading intensity is estimated based only on the data currently found it is relatively low in 292 

the region where spreading is already completed. Low spreading intensity may mean that it is already 293 

saturated, which is different from extinction. Alternatively, the carrying capacity may decrease from a 294 

population dynamics perspective due to the emergence of natural enemies or human quarantine. 295 

The size of cells is identical in each cluster. The density of observations in a cell is uniformly 0 or 1, 296 

where 1 being BOS. However, in each cell, the number of bullfrog observations are different. Hence, 297 

the cloglog(default in Maxent 3.4.1) option is used to treat occurrence records as points rather than grid 298 

cells to estimate relative habitat suitability (Steven J Phillips et al. 2017).  299 

Geographical characteristics and ecological characteristics are replaced by habitat suitability using 300 

Maxent but more detailed cultural characteristics should be applied. In addition to observations, 301 

appropriate detection methods for bullfrogs, such as eDNA methods or audio recording devices, are 302 

required (Kamoroff et al. 2020). 303 

Only the accuracy of machine learning is presented as a verification method. In order to verify its 304 

validity, it is necessary to select 3 or 4 regions and observe the spreading intensity continuously for 305 

several years to generate time series data and compare it with the expected values from simulations. 306 

 307 

5 Conclusion 308 

In this paper, the relative spreading assessment is estimated for South Korea using machine learning 309 

methods. The extent to which bullfrogs continue to spread at observation sites is quantified and assessed. 310 

Since there is no time series data, the accumulated data are used to evaluate the spread of bullfrogs by 311 

creating a spatial series using machine learning. In this process, biological and environmental factors 312 

were not considered at all. Habitat suitability obtained by using Maxent software includes 313 

environmental and biological factors, which were applied in the form of weights to the final spread 314 

classification evaluation 315 

The cell where bullfrogs are found (BOS: bullfrog observed site) is assigned to 1, and the number of 316 

1’s in 400 cells composed of 1’s and 0’s is counted and used as the spreading index of bullfrogs. The 317 

mean of the number of BOS divided by the initial value of 100 is assumed as a measure of spreading 318 

intensity for each rule. The spreading intensity is weighted by the percentile of the rules estimated by 319 

the CNN method. Spreading assessment is the spreading intensity multiplied by the habitat suitability, 320 

which can be used as one of the index showing the tendency of spreading.  321 
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A Percentile Distribution of probabilities of predicted rules for 25 clusters 334 

The trained CNN gives us the rule distribution for 25 clusters. In fact, the CNN provides a percentile 335 

distribution for 128 rules, of which only those that occur more than 1% are shown in the circle diagram. 336 

 337 

     

     

     

     

     

Figure 8. Percentile Distribution of predicted rules by cluster. It shows percentile distribution of the rules for 338 

25 clusters. It is obtained by learning ECA rules to each cluster. The percentile distribution of the rules is obtained 339 

using the trained parameters of CNN. 340 

  341 
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B Variation patterns of even ECA rules. 342 

A value of 1 is randomly assigned to 100 cells out of 400 cells, and the number of cells having a value 343 

of 1 is counted up to 400 generations according to ECA rules. This process is repeated 10 times and the 344 

average value is obtained. Cells with a value of 1 correspond to the Bullfrog Observed Sites (BOS). 345 

The mean value is shown as a red dotted line, and according to the rules, the number of estimated BOS 346 

either maintains the mean value line, decreases, or shows various types of oscillations around the line. 347 

 348 

Table 3. Variations in the expected number of BOS over 400 generations according to the ECA even 349 

number rules.  350 
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