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Abstract 16 

Traits for biomass production and composition make Miscanthus a promising bioenergy crop for different 17 

bioconversion routes. They need to be considered in miscanthus breeding programs as they are subjected to genetic 18 

and genetic x environment factors. The objective was to estimate the genetic parameters of an M. sinensis 19 

population grown during four years in two French locations. In each location, the experiment was established 20 

according to a staggered-start design in order to decompose the year effect into age and climate effects. Linear 21 

Mixed Models were used to estimate genetic variance, genotype x age, genotype x climate interaction variances 22 

and residual variances. Individual plant broad-sense heritability means ranged from 0.42 to 0.62 for biomass 23 

production traits, and were more heritable than biomass composition traits with means ranging from 0.26 to 0.47. 24 

Heritability increased through time for most of the biomass production and composition traits. Low genetic 25 

variance along with large genotype x age and genotype x climate interaction variances tended to decrease the 26 

heritability of biomass production traits for young plant ages. Most of the production traits showed large interaction 27 

variances for age and climate in both locations, while biomass composition traits highlighted large interaction 28 
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variances due to climate in Orléans. The genetic and phenotypic correlations between biomass production and 29 

composition traits were moderate and positive, while hemicelluloses were negatively correlated with all traits. 30 

Efficient genetic progress is achievable for miscanthus breeding when plants get older. The joint improvement of 31 

biomass production and composition traits would help provide a better response of miscanthus to selection.  32 

Keywords 33 

Broad-sense heritability, variance components, age effect, climate effect, genetic and phenotypic correlations 34 

Introduction 35 

High-yielding crops with low-nutrient inputs and minimal negative environmental impacts are required for 36 

sustainable agriculture [1, 2]. As such, species from the Miscanthus genus are perennial C4 grasses native to East 37 

Asia and identified as promising lignocellulosic biomass in Europe and North America [3–6]. Therefore, this crop 38 

is a feedstock for a broad range of applications: heat and electricity production, gardening and animal bedding, as 39 

well as recent applications such as biofuel and biomaterial production [7–9]. 40 

Miscanthus × giganteus (M. × giganteus), an interspecific hybrid between M. sacchariflorus and M. sinensis, 41 

is currently being used for most biomass production in Europe and North America with a single clone [10, 11]. 42 

This clone can be grown for 20-25 years in the field, for the oldest plantations [4]. However, growing this single 43 

clone is risky, because pests and diseases could spread in non-native areas and economically threaten the overall 44 

biomass production. Moreover, the narrow genetic base of this interspecific hybrid [12] and the sterility of the 45 

cultivated clone hampers its breeding. Therefore, the development of new miscanthus cultivars is targeted with a 46 

wide adaptation to a range of different environments [13, 14].  47 

The diploid Miscanthus sinensis and the tetraploid Miscanthus sacchariflorus represent substantial genetic and 48 

undomesticated diversity, making them capable of adapting and growing in various geographic areas [15, 16]. The 49 

former has a high yield potential and is adapted to drained soils, while the latter develops long rhizomes with an 50 

ability to spread, especially in wetland areas [15, 17], which is not desirable due to the risk of it becoming invasive. 51 

For these reasons, M. sinensis is more suitable for improving biomass production in arable lands. 52 

 The genetic improvement of M. sinensis will thus serve to enhance its own potential biomass production as 53 

well as M. × giganteus yield, while preserving the sterility of the new varieties in order to prevent potential 54 

invasiveness [13, 18].   55 

M. sinensis exhibits considerable intraspecific variability, with major genetic groups originating from regions 56 

across China, Korea and Japan [19–21]. The breeding of new miscanthus cultivars would make it possible to 57 
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extend the genetic base in miscanthus breeding programs of western countries where it is mainly obtained from 58 

ornamental accessions originating from Japan [18, 20]. This would be possible by crossing distinct ornamental 59 

cultivars or exploiting wild available germplasm [13, 18, 22]. 60 

To meet the requirements of miscanthus applications, high-yielding cultivars are needed with a quality well 61 

suited for each application targeted [13]. For these reasons, biomass production and biomass composition traits 62 

have to be evaluated across contrasted environments. The phenotype or expression of each trait differs according 63 

to the available genetic variability, itself determined by the genetic material studied. It also differs according to 64 

the environmental variability, determined for the years and locations considered.  65 

Many studies have evaluated M. × giganteus, M. sinensis or M. sacchariflorus genotypes (accessions, hybrids, 66 

etc.) for yield and morphological traits.  For these traits, genotype x year, genotype x location or both interactions 67 

have been highlighted in miscanthus [22–27]. Other studies have found the same trends while evaluating 68 

miscanthus biomass composition traits [26, 28–31].  69 

This suggests that genetic variability and environmental variability are key features which must be taken into 70 

account in the evaluation of traits for miscanthus breeding. For that reason, their characterization based on the 71 

study of a mapping population is required in order to determine the proportion of phenotypic variance that is the 72 

result of genetic factors, known as broad-sense heritability, for each trait. In addition to the investigation of the 73 

phenotypic correlations between species [32, 33], it would provide a thorough investigation of the genetic 74 

correlations between biomass composition traits, and their relationship with yield and yield-component traits.  75 

Miscanthus genetic parameters of biomass production and composition traits were studied either separately or 76 

together, prior to molecular-trait associations (GWAS) or genotypic performance evaluations [34–38]. Prior to 77 

QTL studies, they were evaluated for the biomass production or composition traits, separately [31, 39, 40]. 78 

Successive years were considered for these studies, rarely for more than one location. Only Clark et al. [38] have 79 

evaluated M. sinensis accessions in six locations and have highlighted combined genetic group x location and 80 

genotype within genetic group x location effects that represent a substantial proportion of the total variation for 81 

biomass yield (32%) in the third year after planting. 82 

The objectives of this study were to estimate the genetic parameters, genetic and phenotypic correlations in 83 

terms of biomass production and composition traits together, during four consecutive years in a diploid biparental 84 

M. sinensis population in two contrasted locations. We predicted that these genetic parameters and correlations 85 

would vary according to genetic and environmental variability. Environmental variability is itself determined by 86 

specific conditions such as location and year, and the year encompasses the age and climate effects in a perennial 87 
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crop such as miscanthus. For that purpose, the population was tested according to a staggered-start design [41] that 88 

established the population twice in 2014 and 2015 in both locations. With such a design, the “year” effect can be 89 

decomposed into an “age” effect and a “climate” effect [42, 43]. To date, it is the first study in miscanthus which 90 

estimates the genetic parameters and correlations when considering both biomass production and composition 91 

traits, and distinguishes within the year, age and climate effects. This will substantially broaden knowledge of the 92 

genetic evaluation of biomass traits, according to the effects of age, climate or location.  93 

 94 

Materials and Methods 95 

Plant material 96 

The mapping population was generated by crossing two diploid ornamental M. sinensis cultivars, “Malepartus” 97 

(Mal) and “Silberspinne” (Sil), to obtain an F1 progeny. These two parents were purchased in a French nursery 98 

for a previous study [44] and their initial provenance was identified to be from central and southern Japan [20, 21]. 99 

They were then evaluated in the field within a set of 21 miscanthus clones [26, 44]. They were selected for their 100 

highly contrasted plant stem numbers, and then reciprocally crossed in isolated greenhouses during the fall of 101 

2007, at the INRAE BioEcoAgro research center of Estrées-Mons in Northern France. All the seeds resulting from 102 

the cross were then stored in suitable packaging at 4°C. From 2012 to 2015, each seed was germinated in-vitro 103 

and the corresponding plant was propagated in-vitro according to a protocol of shoot organogenesis and 104 

regeneration [45]. This provided clonal replicates of each single genotype originating from a seed. Then, all 105 

seedlings were planted in a greenhouse that offered suitable growing conditions before being transplanted to a 106 

field. An average of four replicates was finally obtained per genotype, with variations for some genotypes due to 107 

variable genotype ability for in-vitro propagation.   108 

 109 

Experimental Design and Planting 110 

The experimental design of the trial was a staggered-start design [41], established in two different French locations 111 

mainly contrasted by their soil and climatic conditions. The first site was located at the INRAE GCIE experimental 112 

unit of Estrées-Mons (Somme, 49°53′N, 3°00′E) and characterized by a deep loam soil (Orthic Luvisol, WRB) 113 

while the second one was located at the INRAE GBFOr experimental unit in Orléans (Loiret, 47°49’N, 1°54’E) 114 

and offered a sandy soil (Dystric Cambisol, WRB). For each location, the field trial consisted in a staggered-start 115 

design where two groups of genotypes were established in two subsequent years, according to two adjacent plots 116 

in the field (one plot per year). The first group of genotypes was established in 2014 and coded G1, while the 117 
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second group of genotypes was established in 2015 and coded G2 (Fig. 1). The first group G1 was observed for a 118 

four-year period and the second group G2 for a 3-year period. In Estrées-Mons, 159 replicated genotypes, including 119 

the parents, were distributed across each plot, with most genotypes being common between the two establishment 120 

years (Table 1). In Orléans, 106 replicated genotypes, including the parents, were established in each plot, with in 121 

addition a set of genotypes common to the two establishment years (Table 1). In both locations, each of the two 122 

plots was organized with single plants in an incomplete randomized block design, with genotypes being replicated 123 

in four of the five blocks on average. Therefore, each of the two staggered-start designs was composed of two 124 

incomplete randomized block designs. The single‐plants were equally spaced within and between rows 1 meter 125 

apart, which lead to a plant density of 1 plant per m2. To ensure an equal competition effect between plants along 126 

the trial, a border row was planted on each side of the plots that contained repeated genotypes of the population. 127 

After transplanting, the field trial was watered and drip irrigation was installed, in both years and locations, thus 128 

supplying sufficient water for the overall duration of the trial. No fertilizers were applied and weed management 129 

was carried out using a hoe whenever necessary. Plants that did not survive the first year were replaced by plants 130 

of the same age that were kept in a nursery near the trial. 131 

The strength of the staggered-start design made it possible to decompose the “year” effect into “age” and 132 

“climate” effects (Fig. 1). For example, when considering the “year” 2017 in one location, G1 and G2 were 133 

contrasted by the “age” effect, because G1 plants were three-year old while G2 plants were only two-year old. 134 

Thus, the age effect was decomposed based on the year considered, in which a given climate condition occurred. 135 

Plants with the same “age” of 3-year old genotypes were then considered, for instance, with G1 observed in 2017 136 

and G2 in 2018: G1 and G2 were now distinguished by the “climate” effect, because G1 plants were evaluated 137 

during the year 2017 and G2 plants during 2018. Therefore, the “climate” conditions that occurred during each 138 

“year” were considered using plants of the same “age”. All these decompositions were applied in each location to 139 

all biomass production and composition traits in order to assess the corresponding genetic parameters, genetic and 140 

phenotypic correlations. It can be noted that the analysis of these two kinds of data required two different statistical 141 

models as described later in the statistical analysis section.  142 

 143 

Climatic conditions according to plant cycle determined per year and location 144 

As reported previously, the staggered-start design was established in two different locations, each one 145 

characterized by specific soil and climate conditions. Weather indicators were calculated according to five periods 146 

of the plant cycle determined on Malepartus which is one parent of the population. These periods were determined 147 
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for each year in which the population grew, by considering each location separately (Tables S2a and S2b). The 148 

pre-emergence phase was coded as Period 1 and lasted from senescence in the fall of year N-1 to shoot emergence 149 

in year N (and accordingly, this period was not available for the first year). Period 2 lasted from shoot emergence 150 

to floral transition, i.e. which corresponded to the differentiation of the terminal vegetative apex into a panicle and 151 

was determined as the date of the first stem that showed the transition to floral stage. This date was determined 152 

according to Hou et al. (submitted to BioEnergy Research). Period 3 lasted from floral transition to panicle heading 153 

and Period 4 from panicle heading to senescence. Period 5 slightly contrasted with the other periods that were 154 

identically determined in both locations: in Estrées-Mons, it started with senescence and ended on the date of the 155 

first winter frost, while it ended on the harvest date in Orléans. This was due to the fact that winter frost always 156 

occurred after senescence in Estrées-Mons and therefore shortened the plant cycle, while no winter frost occurred 157 

in Orléans for all the years observed.  158 

In each location, weather indicators were recorded daily in a meteorological station located at a short distance 159 

from the trial, and downloaded from the CLIMATIK database (INRAE AGROCLIM, 2020). The weather 160 

indicators were as follows: air minimum temperature (MinT), air maximum temperature (MaxT), air mean 161 

temperature (MeanT), soil minimum temperature (MinTs), precipitation (Prec_M), mean humidity (MeanH), 162 

vapor-pressure deficit (VPD), maximum vapor-pressure deficit (VPD_M), Penman potential evapotranspiration 163 

(ETPP), photosynthetically active radiation (PAR), cumulated growing degree-days (CGDD). Their mean was 164 

calculated for each year in each location according to the five periods of the plant cycle previously defined (Tables 165 

S3a and S3b). In addition, cumulated precipitation (Prec_S) was also determined. 166 

 167 

Phenotyping of biomass production and composition traits 168 

The phenotyping was carried out for five biomass production traits and six biomass composition traits (from which 169 

three traits were expressed as a percentage of dry matter, %DM or cell wall, %CW). In each location, the data was 170 

acquired over a four-year period, from 2014 for G1 and 2015 for G2. Each trait was named according to a 171 

miscanthus ontology, developed at the INRAE BioEcoAgro research unit of Estrées-Mons, thanks to the GnpIS 172 

multispecies integrative information system from the INRAE URGI of Versailles [46].  173 

The following morphological traits related to biomass production were evaluated. Canopy height (CH_cm) 174 

was phenotyped in late fall using a measuring rod from the ground to the ligule of the last ligulated leaf. Plant 175 

maximum height (HMax_cm) was measured in late fall from the ground to the highest panicle of the plant (if the 176 

plant flowered), or to the horizontal flexion of the highest leaf (if the plant did not flower). The plant stem number 177 
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(PSNb) was determined in late fall on each plant, by considering all stems with at least one ligulated leaf. Plant 178 

circumference (C50_cm) corresponded to the measurement, just before harvest, of the plant circumference 50 cm 179 

from the ground. The aboveground biomass yield (ABM_tDMha), expressed in tDM/ha, was calculated based on 180 

the fresh weight and dry weight of one plant (dry matter per ha) after the winter harvest late February.  181 

The composition traits related to biomass quality were determined. For each plant, a representative sample of 182 

approximately 500g of fresh matter was dried at 55°C for 4 days in a well-ventilated oven, and ground using a 183 

hammer mill grinder for it to pass through a 1 mm grid. Each resulting dry powder sample was then analyzed using 184 

the Near-infrared spectroscopy (NIRS) method for spectral assessment. NIR spectra were measured using an 185 

Antaris II – Thermo spectrometer and expressed in absorbance with a wavenumber range between 4000 cm-1 and 186 

10000 cm-1 and a resolution of 4 cm-1. The corresponding spectra of the whole population were then analyzed 187 

using a Principal Component Analysis (PCA), in order to determine a calibration sample that included contrasted 188 

genotypes which best reflected the whole population for the year under consideration. This calibration sample was 189 

then biochemically analyzed in the Laboratoire Agronomique de Normandie (LANO), using the Van Soest method 190 

[47]. Each trait was estimated through NIRS predictions carried out by Partial Least Square (PLS) regression on 191 

near-infrared absorption spectra while considering the calibration sample. The validation of the predictions was 192 

then carried out based on independent samples of the population. Calibration and validation parameters are given 193 

in Table 2 for a range of biochemical composition traits for all the population genotypes. The following traits were 194 

considered, according to the total dry matter content or cell wall content: Neutral Detergent Fiber, which 195 

corresponded to the cell wall content (coded NDF_%DM), Acid Detergent Fiber (ADF_%DM), Cellulose 196 

(CL_%DM; CL_%CW), Hemicelluloses (HEM_%DM; HEM_%CW), Acid Detergent Lignin (ADL_%DM; 197 

ADL_%CW) and Ash (Ash_%DM).  198 

 199 

Statistical analysis 200 

Phenotyping data was analyzed for each location separately. Two Linear Mixed Models [48] were carried out for 201 

the unbalanced datasets: Model 1 for the age effect modeling according to each year and Model 2 for the climate 202 

effect modeling according to each age (Fig.1). For the staggered-start design in Estrées-Mons, 159 genotypes were 203 

included, with 82 in common between the G1 and G2 groups of genotypes.  As for the staggered-start design in 204 

Orléans, 106 genotypes were considered, with 59 in common between G1 and G2.  205 

All production and composition traits were normally distributed and no data transformations were thus required 206 

prior to the analysis. To account for the age effect modeling (Model 1), a Linear Mixed Model was applied to each 207 
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trait studied, considering each location and each year in which the progeny grew. It initially consisted of a full 208 

statistical model which took into account block and spatial effects using the “breedR” package implemented in the 209 

R software [49]. It accounted for the environment heterogeneity within each trial among the blocks and diagnosed 210 

spatially distributed patterns of remaining residual variations using variograms. The remlf90 function of the 211 

package, based on restricted maximum likelihood estimations, was used to estimate all variance components of 212 

the progeny.  213 𝑌𝑖𝑗𝑘𝑙 = 𝜇 + 𝛼𝑖 + 𝛽𝑗 + (𝛼𝛽)𝑖𝑗 + 𝛿𝑙 + 𝜀𝑖𝑗𝑘𝑙  (1) 214 

where Yijkl represents the phenotypic value measured on plant k of genotype i at age j in block l; µ is the overall 215 

mean; αi is the random effect of genotype i; βj is the fixed effect of age j; (αβ)ij is the random interaction between 216 

genotype i and age j; δl is the effect of block l and εijkl is the random residual for plant k of genotype i at age j in 217 

block l.  An autoregressive spatial component was included in the model based on x and y coordinates in each plot 218 

in order to decompose the residual εijkl into a spatially dependent parameter, θikl, for plant k of genotype i in block 219 

l, and an independent remaining residual [50].  220 

This full model was compared with a sub-model with no decomposition of the residual term into spatially 221 

dependent and independent effects. It was also compared with another sub-model with no block effect but with 222 

the decomposition of the residual term into spatially dependent and independent effects. Based on the Akaike 223 

information criterion (AIC) [51] of each of the three models, the last one which dropped the block effect but took 224 

into account the spatial effect was found to have a lower AIC (i.e. better performance) in all data sets (Fig. S1) and 225 

was retained afterwards. In addition, each model detailed hereafter was initially tested on balanced datasets by 226 

considering the 82 common genotypes between G1 and G2 in Estrées-Mons. Then, each model was tested on 227 

unbalanced datasets using all genotypes, which were common and non-common between G1 and G2. As models 228 

applied to balanced and unbalanced datasets yielded very similar results, all the analyses were finally carried out 229 

on unbalanced datasets, thus including more genotypes. The Model 1 finally used was written as follows:  230 𝑌𝑖𝑗𝑘 = 𝜇 + 𝛼𝑖 + 𝛽𝑗 + (𝛼𝛽)𝑖𝑗 + 𝜀𝑖𝑗𝑘  (1) 231 

where all the terms are described as previously without taking into account the block effect.  232 

To account for the climate effect modeling (Model 2), the following Linear Mixed Model was applied to each 233 

studied trait, considering each location and each age of the progeny:  234 𝑌𝑖𝑘𝑙 = 𝜇 + 𝛼′𝑖 + 𝛾𝑙 + (𝛼′𝛾)𝑖𝑙 + 𝜀′𝑖𝑘𝑙 (2) 235 

where each term is similar to Model 1 except that age effect βj is replaced by climate effect γl of year l, and the 236 

interaction between genotype i and age j (αβ)ij by the interaction between genotype i and climate effect of year l 237 
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(α’γ)il. Note that the terms 𝛼′𝑖, 𝜀′𝑖𝑘𝑙and θ’ik were different from the effects given by the previous Model 1 because 238 

they were estimated based on different datasets.  239 

 The ratio of the genetic variance to the genotype x age interaction variance and the ratio of the genetic variance 240 

to the genotype x climate interaction variance were respectively computed based on corresponding variance 241 

components estimated using Model 1 and Model 2. For each trait, these ratios made it possible to determine the 242 

part of genetic determinism mainly due to stable genetic effect or genotype x age and genotype x climate interaction 243 

effects.  244 

According to the two previous models, individual plant broad-sense heritability sensu lato values (𝐻𝑠𝑙2 ) were 245 

estimated using the following formulas: 246 

For the age effect modeling according to each year (Model 1), 247 𝐻𝑠𝑙2 = 𝜎𝛼2𝜎𝛼2+𝜎𝛼𝛽2 +𝜎𝜀2 (3) 248 

where 𝜎𝛼2 is the variance attributed to the genotype, 𝜎𝛼𝛽2  is the variance of the genotype x age interaction and 𝜎𝜀2 is 249 

the residual variance.  250 

For the climate effect modeling according to each age (Model 2), 251 𝐻𝑠𝑙2 = 𝜎𝛼2′𝜎𝛼′2 +𝜎𝛼′𝛾2 +𝜎𝜀′2  (4)  252 

Here, each term is similar to the previous formula, except 𝜎𝛼′𝛾2 which is the variance of the genotype x climate 253 

interaction.  254 

According to the two previous models again, progeny-mean broad-sense heritability values [52, 53] were also 255 

estimated for the age effect modeling (Model 1) and the climate effect modeling (Model 2), respectively, as: 256 𝐻𝑃𝑖2 = 𝜎𝛼2𝜎𝛼2+𝜎𝛼𝛽2𝐽 +𝜎𝜀2𝐽𝐾 (5)  257 

𝐻𝑃𝑖2 = 𝜎𝛼′2𝜎𝛼′2 +𝜎𝛼′𝛾2𝐿 +𝜎𝜀′2𝐿𝐾  (6) 258 

 259 

Where 𝐽 is the number of ages considered, 𝐿 is the number of years with associated climates and K is the mean 260 

number of replicates per genotype.  261 

Genetic and phenotypic correlations between traits were then assessed, considering a given year with the age 262 

effect modeling (Model 1) or a given age with the climate effect modeling (Model 2). Genetic correlations were 263 

estimated using Equation 9 described in Howe et al. (2000) [54].   264 



10 

 

To calculate phenotypic correlations with individual values, Pearson correlation coefficients were computed 265 

using R package “stats” and visualized using the “corrplot” R package [55].  266 

 By considering the weather indicators determined for the five periods of the plant cycle for each year and each 267 

location, a Principal Component Analysis (PCA) and a subsequent Hierarchical Clustering on Principle 268 

Components (HCPC) were carried out using the “FactoMineR” R package [56].   269 

 270 

Results 271 

Biomass composition traits were generally less heritable than biomass production traits 272 

with substantial variations according to climate conditions and ages for all traits 273 

For each trait, the means of individual plant broad-sense heritability (𝐻𝑠𝑙2 ) and the means of progeny-mean broad-274 

sense heritability (𝐻𝑃𝑖2 ) were computed based on heritability values determined using each age effect for each year, 275 

or each climate effect for each age, with Model 1 or Model 2, respectively. Each location was considered separately 276 

(Table S1). This made it possible to know how much a trait was heritable, before analyzing their evolution while 277 

considering the age effect throughout the years or the climate effect throughout the ages. In Estrées-Mons, the 278 

biomass production traits were moderately to highly heritable, with means of individual plant broad-sense 279 

heritability ranging from 0.42 to 0.62 for estimates of Model 1 and from 0.43 to 0.52 for estimates of Model 2 280 

(Table 3). Biomass composition traits were generally less heritable, ranging from 0.29 to 0.44 for estimates of 281 

Model 1 and from 0.26 to 0.47 of Model 2. In Orléans, the ranges were similar to those in Estrées-Mons, for 282 

estimates of both models and trait types (Table 3).  283 

By considering the means of progeny-mean broad-sense heritability (𝐻𝑃𝑖2 ), which were more meaningful at 284 

clonal level, traits were highly heritable for both models and both locations, with the corresponding means ranging 285 

from 0.60 to 0.88 (Table S1). According to those means, the progeny-mean broad-sense heritability was around 286 

1.5 to 2.5 higher than individual plant broad-sense heritability, most often with a higher difference for composition 287 

traits.  288 

   289 

Lower genetic variances along with larger interaction variances explained the lower 290 

heritability values for biomass production traits at young plant ages 291 

According to Model 1 which considered the age effect for successive years, lower genetic variances were observed 292 

for most of the production traits in 2016 than for the subsequent years in both locations (Fig. 2a; Table 3). This 293 
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year corresponded to younger plants, that were 2 years old and 1 year old according to G1 and G2, respectively. 294 

The corresponding genotype x age interaction variance (i.e. age effect) was larger for these young plant ages (Fig. 295 

2a) as highlighted by the lower ratio of the genetic variance to genotype x age interaction variance (Table 3). This 296 

ratio was even lower than 1 for aboveground biomass yield and lower than 2 for plant stem number and plant 297 

circumference in Orléans, respectively meaning that the extent of the genotype x age interaction variance was 298 

higher than the genetic variance or corresponded to more than 50% of it (Fig. 2a; Table 3). Accordingly, the 299 

resulting individual plant broad-sense heritability values (𝐻𝑠𝑙2 ) of production traits were generally lower in 2016 300 

while they increased throughout the years. Canopy height, plant maximum height and aboveground biomass yield 301 

continuously increased until they reached a maximal heritability level above 0.50 in 2018 for both locations (Fig. 302 

2a; Table S1). However, plant stem number in both locations and plant circumference in Estrées-Mons reached a 303 

maximum level one year earlier, in 2017, with values of 0.45, 0.56 and 0.49, for each case respectively (Fig. 2a; 304 

Table S1). When comparing the individual plant broad-sense heritability values obtained in 2018 to those obtained 305 

in 2016 in Estrées-Mons, the increase varied from 10% to 30% except for the plant stem number. In Orléans, this 306 

increase ranged from 30% to 80% (Table S1). Biomass composition traits were not so highly subjected to genotype 307 

x age interaction: consequently, the heritability values were higher in 2018 for Orléans, mainly because of an 308 

increase in genetic variance (Fig. 2b; Fig. S2a; Table 3; Table S1).  309 

Model 2 was used to model the climate effect for successive ages: lower genetic variances were highlighted 310 

for a major part of production traits at age 1 than at older plant ages in both locations (Fig. 3a; Table 3). For this 311 

age, the genotype x climate interaction variance (i.e. climate effect) was evaluated according to G1 plants observed 312 

in 2015 and G2 plants in 2016: the associated ratio of genetic variance to genotype x climate interaction variance 313 

was often lower than for other ages, meaning that young plants were the most subjected to climate variations (Table 314 

3). Thus, the related individual plant broad-sense heritability values (𝐻𝑠𝑙2 ) were generally higher at age 2 or age 3. 315 

They increased to reach a maximum level above 0.50 at age 3 for canopy height and plant maximum height in 316 

both locations (Fig. 3a; Table S1). For the plant stem number and aboveground biomass yield, the maximal 317 

heritability was reached at age 3 in Orléans, with values of 0.56 and 0.53, respectively. In Estrées-Mons, these 318 

traits showed the highest values, 0.47 and 0.50 respectively, at age 2. When comparing the individual plant broad-319 

sense heritability values obtained at age 3 to those obtained at age 1, the increase ranged from 20% to 100% in 320 

each location, except for the plant stem number in Estrées-Mons (Table S1).  321 

   322 
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Most of the production traits showed large interaction variances according to age and 323 

climate in both locations while all composition traits showed large interaction variances 324 

according to climate in Orléans  325 

The ratio of the genetic variance to genotype x age interaction variance, determined according to Model 1, was 326 

relatively low for most of the production traits evaluated from 2016 to 2018 in both locations. For the plant stem 327 

number, plant circumference and aboveground biomass yield, this ratio ranged from 1.9 to 6.1 in Estrées-Mons 328 

and from 0.9 to 3.6 in Orléans (Table 3). The lower the ratio values, the more genotype x age interaction variance 329 

was associated to the genetic determinism of a trait, which meant that genotype x age interaction variances were 330 

substantial for these traits and conditions (Fig. 2a; Table 3).  331 

The ratio of the genetic variance to genotype x climate interaction variance, determined using Model 2, was 332 

also generally low for the production traits evaluated from age 1 to age 3 and for both locations.  In Estrées-Mons, 333 

it ranged from 2.2 to 5.0 when considering both heights at age 1 and age 2, while it ranged from 1.9 to 5.5 for plant 334 

stem number, plant circumference and aboveground biomass yield when considering all ages. In Orléans, the 335 

ranges of this ratio were relatively similar concerning the same traits (Table 3).  336 

In contrast to Estrées-Mons, the biomass composition traits evaluated in Orléans showed large interaction 337 

variances according to the climate effect (Fig. 3b; Fig. S2b), as highlighted by the ratio ranging from 1.0 to 5.7 338 

(Table 3). This ratio was especially low in 2017, which contributed to a decrease in heritability values compared 339 

to 2018 (Fig. 3b; Fig. S2b; Table 3; Table S1).  340 

Accordingly, most of the production traits showed large interaction variances according to age and climate in 341 

both locations, while all composition traits showed large interaction variances according to climate in Orléans. 342 

Therefore, the corresponding heritability values were lowered.  343 

 344 

The climate conditions that occurred during the plant cycle explained the climate effect 345 

between different years 346 

For each location, a Principal Component Analysis (PCA) was conducted to identify the weather indicators that 347 

contribute to the climate effect on the different traits observed over time. In Estrées-Mons, the first two principal 348 

components (PCs) accounted for 87.5% of the total variation in the correlation matrix, with PC1 explaining 75.2 349 

% and PC2 explaining 12.3 %. In Orléans, those values were respectively 91.9%, 78.8% and 13.1% (Fig. 4a and 350 

4c).  351 
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For both locations, eight weather indicators had high positive loadings (>0.9) on the right-hand position of the 352 

PC1 first principal component (Fig. 4a and 4c). Those indicators were related to temperature (MinT, MeanT, MaxT 353 

for the air and MinTs for the soil), Penman potential evapotranspiration (ETPP), photosynthetically active radiation 354 

(PAR) and vapor-pressure deficit (VPD and maximal VPD_M). They were also highly correlated with each other. 355 

MeanH had a high negative loading (<-0.9), on the left-hand position of the PC1 first principal component (Fig. 356 

4a and 4c). For both PCA, the PC2 second principal component was explained by the sum of precipitation 357 

calculated for each period and each year (Prec_S) as well as by the corresponding mean precipitation (Prec_M).  358 

As for Estrées-Mons, the clustering of the coordinates on the first two PCA components of the individuals (i.e. 359 

periods according to year) divided them into six distinct clusters (Fig. 4b). Cluster 2 and cluster 4 were the only 360 

ones to include four years of a single period, which corresponded to Period 5 (from senescence to the date of the 361 

first frost day of the year) and Period 2 (from emergence to floral transition), respectively. Cluster 1 included the 362 

three available years for Period 1 before emergence. The year 2018 was very warm for Period 2, Period 4 and 363 

Period 5, which contrasted with all other years for each of these periods, especially in 2017 (Fig. 4b). This was 364 

particularly observed for two climate indicators related to air and soil temperatures (Table S3a). Therefore, these 365 

contrasted climate conditions between those years, for most of the periods related to the yield-building phase, 366 

partially accounted for the higher genotype x climate interaction variances observed for plant stem number, plant 367 

circumference and aboveground biomass yield.     368 

In Orléans, the years of Period 1 and Period 5 were spread over two clusters (Fig. 4d). By definition, Period 5 369 

stages in year N (from senescence in year N to winter harvest in year N+1) overlapped with Period 1 stages in N+1 370 

(from senescence in year N-1 to emergence in year N). Three clusters included the four years of a single period. 371 

The climatic conditions that occurred in 2015 were relatively rainy before floral transition and after panicle 372 

heading, and very warm and dry during the floral transition (i.e. Period 3) (Table S3b).  Such conditions during 373 

the floral transition were highly contrasted with the year 2016, for which lower temperatures and higher 374 

precipitation were observed than for other years. For Period 5, the year 2016 also contrasted with years 2015 and 375 

2017, with lower precipitation and temperatures (Fig. 4d, Table S3b). Thus, the climatic variations between 2016 376 

and other years were likely to affect plant growth differently and contributed to explaining the genotype x climate 377 

interaction, which was especially highlighted for plant stem number, plant circumference and aboveground 378 

biomass yield at ages 1 and 2.   379 

 380 



14 

 

Except for hemicelluloses, strong correlations were positive within biomass production 381 

traits and biomass composition traits, while they were moderate between both types of 382 

traits 383 

The genetic and phenotypic correlations were calculated in both locations, for each year – using age effect 384 

modeling (Model 1) – and each age – using climate effect modeling (Model 2). As they were relatively similar in 385 

all cases, they were illustrated in two cases: in the first case with year 2017 in Estrées-Mons (Fig. 5), the 386 

correlations corresponded to the relationships between the traits according to the age effect modeling (between 387 

age 3 for G1 and age 2 for G2) and in the second case, with age 3 in Orléans (Fig. 6), they corresponded to the 388 

relationships between the traits according to the climate effect modeling (2017 for G1 and 2018 for G2).  389 

The biomass production traits were positively correlated with each other, whether at a genetic or at a phenotypic 390 

level. The strongest correlations were observed between both plant heights (above 0.6), between the canopy height 391 

and aboveground biomass yield (above 0.7) and, above all, between the plant circumference (C50_cm) and 392 

aboveground biomass yield (above 0.9). 393 

The biomass composition traits were positively correlated with each other, except hemicelluloses and ash. 394 

Relatively strong correlations (above 0.49) were mainly highlighted, except for lignin (%CW) which was less 395 

correlated with NDF, cellulose in %DM and cellulose in %CW (from 0.29 to 0.49). The correlations were 396 

sometimes lower when the biomass composition traits were expressed in %CW.  397 

Most of the biomass production traits were moderately and positively correlated with the biomass composition 398 

traits, the threshold of 0.5 never being exceeded for phenotypic correlations. The relationships were sometimes 399 

stronger at a genetic level than at a phenotypic level, especially with NDF, ADF and cellulose (%DM and %CW), 400 

for which they were sometimes just above the threshold of 0.5. Excepting ash content, the hemicelluloses content 401 

(in %DM or %CW) was negatively correlated with all the other traits, including biomass production traits.  402 

 403 

Discussion 404 

The genetic parameters of biomass production and composition traits estimated for the M. sinensis population, 405 

highlighted moderate to high individual plant broad-sense heritability values (𝐻𝑠𝑙2 ) according to the age effect per 406 

year and the climate effect per age, for each location considered. These values mainly increased over time, 407 

depending on genetic, genotype x age and genotype x climate interaction variances as well as residual variances. 408 

Contrasted climate conditions between the years and identified throughout the plant cycle for each year made it 409 
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possible to explain the high genotype x climate interaction variance highlighted for some traits. Finally, genetic 410 

and phenotypic correlations between biomass production and composition traits were assessed according to 411 

specific years and ages. Strong and positive correlations were observed within biomass production traits and within 412 

biomass composition traits, except for hemicelluloses, while moderate correlations were highlighted between these 413 

two types of traits.  414 

Therefore, three main points will be discussed in this section: (1) the contrast between young and old plant 415 

ages for genetic parameters thanks to the staggered-start design and its consequences on the miscanthus breeding-416 

cycle; (2) higher heritability values for biomass production traits than biomass composition traits and (3) the 417 

moderate correlations observed between biomass production and composition traits.  418 

 419 

The contrast between young and old plant ages for genetic parameters thanks to the 420 

staggered-start design and its consequences on breeding-cycle duration 421 

Using our staggered-start design, the genotypic and environmental variability was assessed based on genetic 422 

variance, genotype x age and genotype x climate interaction variances and residual variance. For most traits in 423 

both locations, the genetic variance was generally lower for the first year of evaluation according to the age effect 424 

(Model 1) or for the first age of evaluation according to the climate effect (Model 2). Accordingly, this variance 425 

often increased throughout the years and ages: this can be due to the fact that, while genotypes grow, their 426 

differences increase, resulting in higher genetic variability for each trait studied. According to each model, 427 

genotype x age and genotype x climate interaction variances were highlighted and were larger for young plant 428 

ages than for older plant ages, especially for biomass production traits: this was illustrated by the lower ratios of 429 

genetic variance to genotype x age interaction variance and the lower ratios of genetic variance to genotype x 430 

climate interaction variance. However, most of the production traits, especially plant stem number, plant 431 

circumference and aboveground biomass yield, also showed large genotype x age interaction variances for 432 

successive years and large genotype x climate interaction variances for successive ages, in both locations.  Biomass 433 

composition traits showed large genotype x climate interactions for two successive ages studied in Orléans. These 434 

interaction variances rarely overtook the genetic variances in our study, meaning that genetic determinism is 435 

mainly led by stable genetic effects for each trait. Nevertheless, those interactions revealed that some genotypes 436 

evaluated in the population responded differently: (1) for different plant ages (i.e. the age effect) in the same year, 437 

with corresponding climate conditions or (2) in different climate conditions (i.e. the climate effect) for the same 438 

age. Segura et al. [42] dissected apple tree architecture into genetic, ontogenetic and environmental effects: in 439 
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accordance with our study, they highlighted genotype x age and genotype x year interactions according to a 440 

staggered-start design, suggesting specific genetic determinism for ontogenetic and climate effects. Dong et al. 441 

[40] considered the genotype x year interaction to assess the broad-sense heritability of miscanthus production 442 

traits and found a substantial effect for plant height, plant circumference and culm-associated traits in one of their 443 

mapping populations. Kar et al. [57] evaluated the broad-sense heritability of miscane production traits (i.e. hybrids 444 

between sugarcane and miscanthus) and found substantial genotype x year variances, especially for the stem length 445 

and number of stems. Such findings are consistent with our study, even the genotype x year interaction variances 446 

presented in these last studies were not decomposed into age and climate effects as in the present study. 447 

Moderate to high individual plant broad-sense heritability values and high progeny-mean broad-sense 448 

heritability values were found for biomass production and composition traits in both locations. The low genetic 449 

variances found for the first year or first age evaluated, in combination with large genotype x age interactions or 450 

large genotype x climate interactions, tend to decrease associated heritability values. Thus, trait heritability values 451 

mostly increase throughout years and ages. These observations throughout years or ages were made possible thanks 452 

to the staggered-start design established in each location. On the one hand, each single year was evaluated with its 453 

corresponding climate (i.e. climate conditions that occurred during the year considered) and the age effect was 454 

modeled based on the different ages between G1 and G2 groups. On the other hand, each age was evaluated and 455 

the climate effect was modeled according to the different climate conditions between the year considered for G1 456 

and the year considered for G2 (G1 and G2 having the same age). Our results are consistent with the majority of 457 

previous studies: Slavov et al. [35] evidenced an increase in broad-sense heritability values for most biomass 458 

production and composition traits, by studying an M. sinensis population during three years. Clark et al. [38] 459 

evaluated accessions from different miscanthus species in six locations: an increase in broad-sense heritability 460 

values was observed for most biomass production traits, when considering broad-sense heritability for all locations 461 

between the second and third year. Gifford et al. [39] and Dong et al. [40] also reported higher broad-sense 462 

heritability values from year 2 to year 3 after establishment, when considering biomass production traits in M. 463 

sinensis biparental populations. However, Van der Weijde et al. [58] found that the broad-sense heritability values 464 

of biomass composition traits decreased between the second and third year after the establishment on an M. sinensis 465 

biparental population. The evolution of heritability estimates is specific to each population and environment tested 466 

[59]. As a perennial crop, miscanthus is subjected to changes in conditions from one year to the next, depending 467 

on each environment considered. However, such changes highlighted between years can be due to plant age or 468 

climate conditions: to our knowledge, the present study is the first to allow the assessment of the broad-sense                              469 
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heritability of traits throughout years (i.e. each year with its corresponding climate when the age effect was taken 470 

into account) or throughout ages (i.e. each age when the climate effect was taken into account). Broad-sense 471 

heritability values are important to consider in a plant-breeding program, in order to start initial selections and 472 

provide genetic progress [52]. Because higher broad-sense heritability values were highlighted throughout years 473 

and ages, progress through selection would be greater as plants got older, especially for biomass production traits. 474 

Accordingly, this increases the duration of the selection process. 475 

This study highlights the advantage of the staggered-start design in decomposing the year effect into climate 476 

and age effects to efficiently assess the genetic parameters in the perennial Miscanthus sinensis. In particular, it 477 

shows that the genotype x age and genotype x climate interaction variances are larger for young plant ages than 478 

for old plant ages, especially for biomass production traits. In addition, genetic variance as well as broad-sense 479 

heritability values increase across age-spectrums. Such information must therefore be considered as important to 480 

miscanthus breeding.  481 

 482 

Higher heritability values were observed for biomass production compared to biomass 483 

composition traits 484 

 485 

Broad-sense heritability values and their means over years or ages were mainly higher for biomass production 486 

traits than biomass composition traits. For individual plant broad-sense heritability means over years or ages, 487 

biomass production traits were moderately to highly heritable, ranging from 0.42 to 0.62, while biomass 488 

composition traits were moderately heritable and ranged from 0.26 to 0.47. According to the progeny-mean broad-489 

sense heritability means, both types of traits were highly heritable and the trends between them were similar to 490 

those of individual plant broad-sense heritability: means ranged from 0.67 to 0.88 for biomass production traits 491 

and from 0.60 to 0.80 for biomass composition traits. Contrary to our study, previous studies generally showed 492 

that biomass composition traits were more heritable than biomass production traits. According to their M. sinensis 493 

population evaluated over the course of three years, Slavov et al. [35] found higher broad-sense heritability means 494 

for biomass composition traits than biomass production traits, with means of 0.67 and 0.60, respectively. Petit et 495 

al. [60] studied the genetic variability of morphological, flowering and biomass quality traits in hemp (Cannabis 496 

sativa L.) in three locations during one season: biomass composition traits were generally more heritable than 497 

biomass production traits.  498 
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Thus, the lower broad-sense heritability values observed for the biomass composition traits in our study are 499 

probably due to lower variability caused by genetic differences among the progeny (i.e. genetic variance) than for 500 

biomass production traits. In addition, it appears that biomass composition traits are frequently more affected by 501 

environmental effects (especially when focusing on the residual variance compared to other variances).  Broad-502 

sense heritability estimates make it possible to predict the response to selection [59]. The higher the heritability, 503 

the more the genetic improvement will be possible through breeding. According to the biomass composition traits 504 

evaluated in our population, it may take longer than for the biomass production traits to transmit the genetic 505 

progress from one generation to the next.  506 

According to the staggered-start design, the means of heritability values over years and ages are higher for 507 

biomass production traits than for composition traits. This shows that the potential genetic improvement of biomass 508 

production traits is greater in the present study. Biomass composition traits are more affected by multiple-509 

environment effects, which hamper the expression of the genetic effect in both locations studied. Thus, the 510 

improvement of biomass composition traits has to be carefully considered in breeding programs, in order to meet 511 

the specific requirements of each bioconversion routes.  512 

 513 

Moderate correlations were highlighted between biomass production and composition 514 

traits 515 

The genetic and phenotypic correlations showed that biomass production and composition traits were moderately 516 

correlated in both locations. Even positive and strong correlations were highlighted within the biomass production 517 

traits and within most of the biomass composition traits, for each year according to the age effect (Model 1) or 518 

each age according to the climate effect (Model 2), the correlations between both types of traits were moderate. In 519 

accordance with our study, Slavov et al. [34] reported moderate correlations between most of the biomass 520 

production and composition traits, considering each evaluated year of their M. sinensis population. Petit et al. 521 

(2020) [60] also found moderate correlations between biomass production and composition traits in hemp. The 522 

correlations among traits provide information about the opportunity to improve a given trait along with another 523 

trait, which is potentially possible when the correlation is positive. When negative, the improvement of a trait takes 524 

place to the detriment of the other trait considered. Strong correlations can favor the improvement of both traits 525 

together, when positive, or be unfavorable when negative. Genetic correlations are most interesting to interpret, 526 

because the effect of the environment is not considered [52]. While it would be possible to easily improve biomass 527 

production traits or most of the biomass composition traits separately, the improvement of both types of traits 528 
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together would be challenging due to their moderate correlations. In addition, hemicelluloses would be difficult to 529 

improve with the other biomass production and composition traits, due to their negative correlations (in %DM and 530 

%CW). This was also reported by Slavov et al. [34] and Van der Weijde et al. [58].  531 

 Morphological traits contribute to the improvement of biomass production in order to enhance yield, regardless 532 

of the age or climate effect considered. However, the improvement of biomass yield for newly-bred plants is not 533 

concomitant of the improvement of their biomass hemicelluloses content. The improvement of biomass production 534 

traits does not generate a substantial increase in the other desirable components, due to the moderate genetic 535 

correlations observed. Thus, the adjustment of biomass composition traits regarding age and climate conditions 536 

must be carefully considered by miscanthus breeders, in order to select a biomass that is suited to the end-use 537 

targeted.   538 

 539 

Conclusion 540 

In this study, moderate to high individual plant broad-sense heritability and high progeny-mean broad-sense 541 

heritability values were assessed for biomass production and composition traits. These heritability values changed 542 

in relation to the variance components estimated for each year according to the age effect modeling (Model 1) or 543 

each age according to the climate effect modeling (Model 2), when considering each staggered-start design per 544 

location. Lower genetic variances associated with substantial genotype x age and genotype x climate variances 545 

were observed for young plant ages, which tended to decrease heritability values, especially for biomass production 546 

traits. Such large interaction variances, compared to genetic variances, were highlighted according to the ratio of 547 

genetic variance to genotype x age interaction variance and the ratio of genetic variance to genotype x climate 548 

interaction variance. Heritability values generally increased through time for most of the traits, which suggested 549 

an improved genetic progress when plants get older and implied an increase in the duration of the selection process. 550 

However, these values were sometimes lowered by large genotype x age interaction variances for successive years, 551 

especially in the case of the plant stem number, plant circumference and aboveground biomass yield in both 552 

locations. Similarly, large genotype x climate interactions for successive ages were found for most biomass 553 

production traits in both locations and biomass composition traits in Orléans.  554 

Overall, biomass production traits were more heritable than biomass composition traits, which means that the 555 

response to selection would be better for biomass production traits in our population. Also, even high genetic and 556 

phenotypic correlations were highlighted among biomass production and composition traits separately, moderate 557 

correlations were diagnosed between biomass production and composition. In contrast, hemicelluloses and ash 558 
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contents were negatively correlated with other traits. Thus, miscanthus breeders have to consider these parameters 559 

in order to design breeding programs that follow the requirements of each bioconversion route. The next step of 560 

this study will be QTL detection for biomass production and composition traits, while considering the age and 561 

climate effects evaluated thanks to the staggered-design in each location.  562 
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Abbreviations 586 

ABM_tDMha: Aboveground biomass yield 587 

ADF_%DM: Acid Detergent Fiber 588 

ADL_%DM – ADL_%CW: Acid Detergent Lignin 589 

Ash_%DM: Ash  590 

CH_cm: Canopy height  591 

CGDD: Cumulated growing degree-days  592 

CL_%DM – CL_%CW: Cellulose  593 

CW: Cell wall  594 

C50_cm: Plant circumference 595 

DM: Dry matter  596 

ETPP: Penman potential evapotranspiration 597 

GBFOr: Unité expérimentale Génétique Biomasse Forestières Orléans 598 

GCIE: Unité expérimentale Grandes Cultures Innovation Environnement 599 

GnpIS: Multispecies integrative information system 600 

GWAS: Genome-wide association study 601 H𝑠𝑙2  : Individual plant broad-sense heritability 602 H𝑃𝑖2  : Progeny-mean broad-sense heritability 603 

HEM_%DM – HEM_%CW: Hemicelluloses 604 

HMax_cm: Plant maximum height 605 

IJPB: Institut Jean-Pierre Bourgin  606 

MaxT: Air maximum temperature 607 

Mal: Malepartus 608 

MeanH: Mean humidity 609 

MeanT: Air mean temperature 610 

MinT: Air minimum temperature  611 

MinTs: Soil minimum temperature  612 

NDF_%DM: Neutral Detergent Fiber  613 

PAR: Photosynthetically active radiation 614 

PCA: Principal Component Analysis 615 
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Prec_M: Mean precipitation 616 

Prec_S: Cumulated precipitation 617 

PSNb: Plant stem number 618 

QTL: Quantitative trait Loci 619 

Sil: Silberspinne  620 

URGI: Unité de Recherche Génomique-Info 621 

VPD: Vapor-pressure deficit 622 

VPD_M: Maximum vapor-pressure deficit  623 
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  781 

Illustration Captions 782 

Fig. 1 For each location considered separately, the corresponding staggered-start design was analyzed according 783 

to the age effect modeling per year (a) and the climate effect modeling per age (b). Two models (Model 1 and 784 

Model 2) were used, considering a given year or a given age. For example, (a) the year 2017 was considered for 785 

G1 and G2, with the age effect modeled according to 3-year-old genotypes in G1 and 2-year-old in G2. In this 786 

case, plants of different ages grew in the same climate during a single year. While for example (b), 3-year-old 787 

genotypes were considered, according to genotypes of G1 which grew in year 2017 and genotypes of G2 which 788 

grew in year 2018. For this case, plants of the same age grew in two different climate conditions, related to each 789 

year considered for each group. Below each group name, the group year establishment is specified between 790 

brackets 791 

Fig. 2 Individual plant broad-sense (H𝑠𝑙2 ) and progeny-mean broad-sense (H𝑃𝑖2 ) heritability values assessed for 792 

each year according to the age effect and considering locations separately. Each heritability value depended on the 793 

associated genetic variance, genotype x age interaction variance and residual variance. The genotype x age 794 
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interaction variance between G1 and G2 allowed to know the age effect for each year. For example, considering 795 

2016, G1 was 2 years old and G2 was 1 year old. These heritability values (right y-axis) and variance components 796 

(left y-axis) were assessed for biomass production (a) and composition (b) traits. See Materials and Methods 797 

section for trait name. Blanks in the plots are due to non-available data 798 

 799 

Fig. 3 Individual plant broad-sense (H𝑠𝑙2 ) and progeny-mean broad-sense (H𝑃𝑖2 ) heritability values assessed for 800 

each age according to the climate effect and considering locations separately. Each heritability value depended on 801 

the associated genetic variance, genotype x climate interaction variance and residual variance. The genotype x 802 

climate interaction variance between G1 and G2 allowed to know the climate effect for each age. For example, 803 

plants of age 1 were evaluated for G1 in 2015 and G2 in 2016. These heritability values (right y-axis) and variance 804 

components (left y-axis) were assessed for biomass production (a) and composition (b) traits. See Materials and 805 

Methods section for trait name. Blanks in the plots are due to non-available data 806 

Fig. 4 (a) and (c) Principal Component Analysis (PCA) plots of the weather indicators for both locations, according 807 

to the first and the second principal components, PC1 and PC2, respectively. (b) and (d) Clustering of the 808 

coordinates on the two first PCA components of the individuals, for five periods according to four years in two 809 

locations. The following indicators were used: air minimum temperature (MinT), air maximum temperature 810 

(MaxT), air mean temperature (MeanT), soil minimum temperature (MinTs), mean precipitation (Prec_M), 811 

cumulated precipitation (Prec_S), mean humidity (MeanH), vapor-pressure deficit (VPD), maximum vapor-812 

pressure deficit (VPD_M), Penman potential evapotranspiration (ETPP), photosynthetically active radiation 813 

(PAR) and cumulated growing degree-days (CGDD) 814 

Fig. 5 Genetic and phenotypic correlations (respectively above and below the diagonal) calculated in Estrées-815 

Mons for the year 2017. Biomass production and composition traits were considered. See Materials and Methods 816 

section for trait name. Displayed correlations are significant with a p-value < 0.05, while non-significant 817 

correlations are in blanks 818 

Fig. 6 Genetic and phenotypic correlations (respectively above and below the diagonal) calculated in Orléans for 819 

the age 3. Biomass production and composition traits were considered. See Materials and Methods section for trait 820 

name. Displayed correlations are significant with a p-value < 0.05, while non-significant correlations are in blanks 821 
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Table 1 A staggered-start design was established in each of the two locations, Estrées-Mons and Orléans. For each 822 

staggered-start design, the number of M. sinensis genotypes per group (G1 and G2) are displayed. Common 823 

genotypes between groups within each location are also detailed 824 

Table 2 Characteristics of NIRS calibrations developed for composition traits in miscanthus. Traits considered 825 

were Neutral Detergent Fiber (NDF_%DM), Acid Detergent Fiber (ADF_%DM), Cellulose (CL_%DM; 826 

CL_%CW), Hemicelluloses (HEM_%DM; HEM_%CW), Acid Detergent Lignin (ADL_%DM; ADL_%CW) and 827 

Ash content (Ash_%DM). Traits were expressed according to the percentage of dry matter (%DM) or the 828 

percentage of cell wall (%CW) of the plants. The standard error of prediction (SEP) is also displayed, with the 829 

number (n) of samples used for the calibration and validation steps and the associated correlations (r) 830 

Table 3 For each trait in each year, Model 1 was used to determine the genetic variance  831 (𝜎α2), the genotype x age interaction variance (𝜎αβ2 ) and the associated ratio was then computed (𝜎α2/𝜎αβ2 ). Mean 832 

individual broad-sense heritability (H𝑠𝑙2 ) was assessed according to the heritability in each year. For each trait in 833 

each age, Model 2 was then used to determine the genetic variance (𝜎α′2 ), the genotype x climate interaction 834 

variance (𝜎α′γ2 ) and the associated ratio was also computed (𝜎α′2 /𝜎α′γ2 ). Bold values are used to highlight results 835 

found for young ages. The mean individual broad-sense heritability was determined for each age. Nb. Y: Number 836 

of years. Nb. A: number of ages. See Materials and Methods for trait name 837 

 838 

Supplemental Data 839 

Fig. S1 Spatial effects illustrated for (a) Plant maximum height (HMax_cm), (b) Aboveground biomass yield 840 

(ABM_tDMha) and (c) Cellulose (CL_%DM) in Estrées-Mons for plants of year 2017. These effects were 841 

determined using the x-axis and y-axis coordinates of the field, in each model assessed with breedR software. 842 

Legend with “z” represents the values of spatial effects: red color for positive effects, white for neutral effects and 843 

blue for negative effects 844 

Fig. S2 Individual plant broad-sense (H𝑠𝑙2 ) and progeny-mean broad-sense (H𝑃𝑖2 ) heritability values assessed for 845 

each year according to the age effect (Model 1) and for each age according to the climate effect (Model 2) and 846 

considering locations separately. These heritability values (right y-axis) and variance components (left y-axis) 847 

were assessed for biomass composition traits expressed in %CW and for ash content (Ash_%DM). Blanks in the 848 

plots are due to non-available data 849 
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Table S1 Individual plant broad-sense heritability values (H𝑠𝑙2 ) and progeny-mean broad-sense heritability values 850 

(H𝑃𝑖2 ) for each year according to the age effect (Model 1) and for each age according to the climate effect (Model 851 

2). Means of each heritability were computed for successive years or successive ages, considering each location 852 

separately. Nb. Y: Number of years. Nb. A: number of ages  853 

Table S2 Description of the five periods used to assess the weather indicators. Each growth stage date (in calendar 854 

day number) was determined by mean Malepartus growth stages for each location 855 

Table S3 Mean values of weather indicators assessed in five periods for four years in two locations (a. and b.). 856 

The following indicators were used: air minimum temperature (MinT), air maximum temperature (MaxT), air 857 

mean temperature (MeanT), soil minimum temperature (MinTs), mean precipitation (Prec_M), cumulated 858 

precipitation (Prec_S), mean humidity (MeanH), vapor-pressure deficit (VPD), maximum vapor-pressure deficit 859 

(VPD_M), Penman potential evapotranspiration (ETPP), photosynthetically active radiation (PAR) and cumulated 860 

growing degree-days (CGDD) 861 

 862 

 863 

 864 



Figures

Figure 1

For each location considered separately, the corresponding staggered-start design was analyzed
according to the age effect modeling per year (a) and the climate effect modeling per age (b). Two
models (Model 1 and Model 2) were used, considering a given year or a given age. For example, (a) the
year 2017 was considered for G1 and G2, with the age effect modeled according to 3-year-old genotypes
in G1 and 2-year-old in G2. In this case, plants of different ages grew in the same climate during a single
year. While for example (b), 3-year-old genotypes were considered, according to genotypes of G1 which
grew in year 2017 and genotypes of G2 which grew in year 2018. For this case, plants of the same age
grew in two different climate conditions, related to each year considered for each group. Below each
group name, the group year establishment is speci�ed between brackets



Figure 2

Individual plant broad-sense (H2sl) and progeny-mean broad-sense (H2pi)

 heritability values assessed for each year according to the age effect and considering locations
separately. Each heritability value depended on the associated genetic variance, genotype x age
interaction variance and residual variance. The genotype x age interaction variance between G1 and G2
allowed to know the age effect for each year. For example, considering 2016, G1 was 2 years old and G2
was 1 year old. These heritability values (right y-axis) and variance components (left y-axis) were
assessed for biomass production (a) and composition (b) traits. See Materials and Methods section for
trait name. Blanks in the plots are due to non-available data



Figure 3

Individual plant broad-sense (H2sl) and progeny-mean broad-sense (H2pi)

 heritability values assessed for each age according to the climate effect and considering locations
separately. Each heritability value depended on the associated genetic variance, genotype x climate
interaction variance and residual variance. The genotype x climate interaction variance between G1 and
G2 allowed to know the climate effect for each age. For example, plants of age 1 were evaluated for G1 in
2015 and G2 in 2016. These heritability values (right y-axis) and variance components (left y-axis) were
assessed for biomass production (a) and composition (b) traits. See Materials and Methods section for
trait name. Blanks in the plots are due to non-available data



Figure 4

(a) and (c) Principal Component Analysis (PCA) plots of the weather indicators for both locations,
according to the �rst and the second principal components, PC1 and PC2, respectively. (b) and (d)
Clustering of the coordinates on the two �rst PCA components of the individuals, for �ve periods
according to four years in two locations. The following indicators were used: air minimum temperature
(MinT), air maximum temperature (MaxT), air mean temperature (MeanT), soil minimum temperature
(MinTs), mean precipitation (Prec_M), cumulated precipitation (Prec_S), mean humidity (MeanH), vapor-
pressure de�cit (VPD), maximum vapor-pressure de�cit (VPD_M), Penman potential evapotranspiration
(ETPP), photosynthetically active radiation (PAR) and cumulated growing degree-days (CGDD)



Figure 5

Genetic and phenotypic correlations (respectively above and below the diagonal) calculated in Estrées-
Mons for the year 2017. Biomass production and composition traits were considered. See Materials and
Methods section for trait name. Displayed correlations are signi�cant with a p-value < 0.05, while non-
signi�cant correlations are in blanks



Figure 6

Genetic and phenotypic correlations (respectively above and below the diagonal) calculated in Orléans
for the age 3. Biomass production and composition traits were considered. See Materials and Methods
section for trait name. Displayed correlations are signi�cant with a p-value < 0.05, while non-signi�cant
correlations are in blanks
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