1 Brown A, Tumuhimbise R, Amah D, Uwimana B, Nyine M, Mduma, H, et al. Bananas and Plantains (Musa spp.). In Campos H, Caligari PDS, editors. Genetic improvement of tropical crops. Springer, Cham. 2017. p. 219–40
2 Heslop-Harrison J S, Schwarzacher T. Domestication, genomics and the future for banana. Ann Bot. 2007; 100:1073–1084
3 Nowakunda K, Tushemereirwe W. Farmer acceptance of introduced banana genotypes in Uganda. Afr Crop Sci J. 2004; 12:1–6
4 Swennen R, Blomme G, van Asten P, Lepoint P, Karamura E, Njukwe E, et al. Mitigating the impact of biotic constraints to build resilient banana systems in Central and Eastern Africa. In: Vanlauwe B, Van Asten P, Blomme G, editors. Agro-Ecological Intensification of Agricultural Systems in the African Highlands. New York: Routledge; 2013. p. 85–104
5 Nakato G V, Christelova P, Were E, Nyine M, Coutinho T A, Dolezel J, et al. Sources of resistance in Musa to Xanthomonas campestris pv. musacearum, the causal agent of banana Xanthomonas wilt. Plant Pathol. 2018; 68:49–59. doi: 10.1111/ppa.12945
6 Arango Isaza R E, Diaz-Trujillo C, Dhillon B, Aerts A, Carlier J, Crane C F, et al. Combating a global threat to a clonal crop: banana black Sigatoka pathogen Pseudocercospora fijiensis (synonym Mycosphaerella fijiensis) genomes reveal clues for disease control. PLoS Genet. 2016; doi: 10.1371/journal.pgen.1005876
7 Alakonya AE, Kimunye J, Mahuku G, Amah D, Uwimana B, Brown A, et al. Progress in understanding Pseudocercospora banana pathogens and the development of resistant Musa germplasm. Plant Pathol. 2018; 67:759–770. doi: 10.1111/ppa.12824
8 Viljoen A, Mahuku G, Massawe C, Ssali R T, Kimunye J, Mostert G, et al. Banana diseases and pests: Field guide for diagnostics and data collection. International Institute of Tropical Agriculture, Ibadan, Nigeria; 2017
9 Simmonds N W. Bananas, MUSA cvs. In: Simmonds NW, editor. Breeding for durable resistance in perennial crops. FAO Technical Papers 70. Food and Agriculture Organization, Rome; 1986. p. 17–24
10 Rowe P R. Breeding bananas and plantains for resistance to fusarial wilt: the track record. In: Ploetz R C, editor. Fusarium wilt of bananas. APS, St. Paul, MN. 1990. p. 115–119
11 Batte M, Swennen R, Uwimana B, Akech V, Brown A, Tumuhimbise R, Hovmalm H P, Mulatu Geleta M, Ortiz R. Crossbreeding East African highland bananas: lessons learnt relevant to the botany of the crop after 21 years of genetic enhancement. Front Plant Sci. 2019; 10:81. https://doi.org/10.3389/fpls.2019.00081
12 Gowda M, Longin C F H, Lein V, Reif J C. Relevance of specific versus general combining ability in winter wheat. Crop Sci. 2012; 52:2494–2500. doi:10.2135/cropsci2012.04.0245
13 Beche E, Lemes da Silva C, Pagliosa E S, Benin G. Hybrid performance and heterosis in early segregant populations of Brazilian spring wheat. Aust J Crop Sci. 2013; 7:51–57
14 Jones D F. Gene action in heterosis. Genetics. 1957; 42:93–103
15 Lamkey K R, Edwards JW. The quantitative genetics of heterosis. In: Coors JG, Pandey S, editors. The genetics and exploitation of heterosis in crops, edited by Crop Science Society of America, Madison, Wisconsin, 1999. p. 31–48
16 Alam MF, Khan MR, Nuruzzaman M. Genetic basis of heterosis and inbreeding depression in rice (Oryza sativa L.). J Zhejiang UNIV-SC. 2004; 4:406–411
17 Hochholdinger F, Hoecker N. Towards the molecular basis of heterosis. Trends Plant Sci. 2007; 12:427–432
18 Birchler JA, Yao H, Chudalayandi S, Vaiman D, Veitia RA. A review of heterosis: perspective. Plant Cell. 2010; 22:2105–2112
19 Tao Z, Xian-Lin N, Kai-Feng J, Hua-Feng D, Qing H, Qian-h-Hua Y, Li Y, Xian-Qi W, Ying-Jiang C, Jia-Kui Z. Relationship between heterosis and parental genetic distance based on molecular markers for functional genes related to yield traits in rice. Rice Science. 2010; 17:288–295. https://doi.org/10.1016/S1672-6308(09)60029-9
20 Hinze L L, Lamkey K R. Absence of epistasis for grain yield in elite maize hybrids. Crop Sci. 2003; 43:46–56
21 van Ginkel M, Ortiz R. Cross the best with the best, and select the best: HELP in breeding selfing crops. Crop Sci. 2018; 58:1–14. doi: 10.2135/cropsci2017.05.0270
22 Goff S A. A unifying theory for general multigenic heterosis: Energy efficiency, protein metabolism, and implications for molecular breeding. New Phytol. 2011; 189:923937. doi:10.1111/j.1469-8137.2010.03574.x
23 Huang X, Yang S, Gong J, Zhao Y, Feng Q, Gong H, et al. Genomic analysis of hybrid rice varieties reveals numerous superior alleles that contribute to heterosis. Nat Commun. 2015; 6:6258. doi:10.1038/ncomms7258
24 Kaeppler S. Heterosis: Many genes, many mechanisms—End the search for an undiscovered unifying theory. ISRN Bot. 2012; doi:10.5402/2012/682824
25 Goldringer I, Brabant P, Gallais A. Estimation of additive and epistatic genetic variances for agronomic traits in a population of doubled-haploid lines of wheat. Heredity. 1997; 79:60–71. doi:10.1038/hdy.1997.123
26 Aastveit K. Heterosis and selection in barley. Genetics. 1964; 49:159–164
27 Smith E L, Lambert J W. Evaluation of early generation testing in spring barley. Crop Sci. 1968; 8:490–493. doi:10.2135/cropsci1968.0011183X000800040029x
28 Xiao J, Li J, Yuan L, Tanksley SD. Dominance is the major genetic basis of heterosis in rice as revealed by QTL analysis using molecular markers. Genetics. 1995; 140:745–754
29 Garcia AA F, Wang S, Melchinger A E, Zeng Z B. Quantitative trait loci mapping and the genetic basis of heterosis in maize and rice. Genetics. 2008; 180:1707–1724. doi:10.1534/genetics.107.082867
30 He Q, Zhang K, Xu C, Xing Y. Additive and additive x additive interaction make important contributions to spikelets per panicle in rice near isogenic (Oryza sativa L.) lines. J Genet Genomics. 2010; 37:795–803. doi:10.1016/S1673-8527(09)60097-7
31 Tenkouano A, Crouch J H, Crouch H K, Ortiz R. Genetic diversity, hybrid performance, and combining ability for yield in Musa germplasm. Euphytica. 1998; 102:281–288
32 Groose R W, Talbert L E, Kojis W P, Bingham E T. Progressive heterosis in autotetraploid alfalfa: studies using two types of inbreds. Crop Sci. 1989; 29:1173–1777
33 Ortiz R. Secondary polyploids, heterosis, and evolutionary crop breeding for further improvement of the plantain and banana (Musa spp. L) genome. Theor Appl Genet. 1997; 94:1113–1120
34 Coors J G, Pandey S. The genetics and exploitation of heterosis in crops. Crop Science Society of America, Madison, Wisconsin; 1999
35 Perrier X, De Langhe E, Donohue M, et al. Multidisciplinary perspectives on banana (Musa spp.) domestication. Proceedings of the National Academy of Sciences of the USA. 2011; 108: 11311–11318
36 Bakry F, Horry JP. Advances in genomics: applications to banana breeding. Acta Hortic 2016; 1114: 171–180
37 Sardos J, Perrier X, J. Doležel J, et al. DArT whole genome profiling provides insights on the evolution and taxonomy of edible Banana (Musa spp.). Ann Bot. 2016; 118: 1269–1278 doi:10.1093/aob/mcw170
38 Kitavi M, Downing T, Lorenzen J, Karamura D, Onyango M, Nyine M, et al. The triploid East African Highland Banana (EAHB) genepool is genetically uniform arising from a single ancestral clone that underwent population expansion by vegetative propagation. Theor Appl Genet. 2016; 129:547–561
39 Peng J, Richards DE, Hartley NM, Murphy GP, Devos KM, Flintham JE, et al. ‘Green revolution’ genes encode mutant gibberellin response modulators. Nat. 1999; 400:256–261
40 Marcón F, Martínez EJ, Rodríguez GR, et al. Genetic distance and the relationship with heterosis and reproductive behavior in tetraploid bahiagrass hybrids. Mol Breeding. 2019; 39: 89. https://doi.org/10.1007/s11032-019-0994-3
41 Sant V J, Patankar A G, Sarode N D, Mhase L B, Sainani M N, Deshmukh R B, Ranjekar P K, Gupta V S. Potential of DNA markers in detecting divergence and in analysing heterosis in Indian elite chickpea cultivars. Theor Appl Genet. 1999; 98: 1217–1225
42 Joyce T A, Abberton M T, Michaelson-Yeates T P T, Forster J W. Relationships between genetic distance measured by RAPD-PCR and heterosis in inbred lines of white clover (Trifolium repens L.). Euphytica. 1999; 107:159–165
43 Xu S, Liu J, Liu G. The use of SSRs for predicting the hybrid yield and yield heterosis in 15 key inbred lines of Chinese maize. Hereditas. 2004; 141:207–215
44 Dias L, Marita J, Cruz C, Barros E, Salomão T. Genetic distance and its association with heterosis in cacao. Braz Arch Biol Technol. 2003; 46:339–347
45 Boeven P H G, Longin C F H, Würschum T. A unified framework for hybrid breeding and the establishment of heterotic groups in wheat. Theor Appl Genet. 2016; 129:1231–1245. doi:10.1007/s00122-016-2699-x
46 Luo X, Ma C, Yi B, Tu J, Shen J, Fu T. Genetic distance revealed by genomic single nucleotide polymorphisms and their relationships with harvest index heterotic traits in rapeseed (Brassica napus L.). Euphytica. 2016; 209:41–47. doi:10.1007/s10681-015-1629-3
47 Tian H Y, Channa S A, Hu S W. Relationships between genetic distance, combining ability and heterosis in rapeseed (Brassica napus L.). Euphytica. 2016; 213:1. doi:10.1007/s10681-016-1788-x
48 Mobambo KN, Gauhl F, Vuylsteke D, Ortiz R, Pasberg-Gauhl C, Swennen R. Yield loss in plantain from black sigatoka leaf spot and field performance of resistant hybrids. Field Crop Res. 1993; 35:35–42
49 Craenen K, Ortiz R. Influence of black Sigatoka disease on the growth and yield of diploid and tetraploid hybrid plantains. Crop Protect. 1998; 17:13–18
50 Christelová P, Valárik M, Hřibová, Van den houwe I, Channelière S, Roux N, Doležel J. A platform for efficient genotyping in Musa using microsatellite markers. AoB Plants. 2011; doi:10.1093/aobpla/plr024
51 R Core Team. R: a language and environment for statistical computing. R Foundation for statistical computing, Vienna, Austria. 2018. http://www.R-project.org/
52 Ward JH. Hierarchical grouping to optimize an objective function. J Am Stat Assoc. 1963; 58:236–244
53 Murtagh F, Legendre P. Ward’s hierarchical agglomerative clustering method: which algorithms implement Ward’s criterion? J Classif. 2014; 31:274–295