1 Lent, C.S., Tougaw, P.D., Porod, W., Bernstein, G.H.: Quantum cellular automata. Nanotechnology 4, 49–57 , 1993.
2 Wilson, M, Kannangara, K, Smith, G, Simmons, M, Raquse, “B: Nanotechnology: basic science and emerging technologies. Chapman and Hall, London”, 2002.
3 Chandra, Jangam Siva, Kandula Suresh, and Bahniman Ghosh. Clocking Scheme Implementation for Multi-Layered Quantum Dot Cellular Automata Design, Journal of Low Power Electronics, vol. 10, no. 2, pp. 272-278, 2014.
4 Karim, Fazal, and Konrad Walus. Efficient simulation of correlated dynamics in quantum-dot cellular automata (QCA), IEEE Transactions on Nanotechnology, Vol. 13, no. 2, pp. 294-307, 2014.
5 Hashemi, S., Tehrani, M., Navi, K., "An efficient quantum-dot cellular automata full-adder,” Sci. Res. Essays 7(2), 177–189, Sci, Res, Essays, vol. 7, no. 2, pp. 177-189, 2012.
6 A. Roohi, S. Sayedsalehi, H. Khademolhosseini, K. Navi., "Design and evaluation of a reconfigurable fault tolerant quantum-dot cellular automata gate," J. Comput. Theor. Nanosci., vol. 10, pp. 380-388, 2013.
7 B. Sen, A. Rajoria, B.K. Sikdar. “Design of Efficient full adder in quantum-dot cellular automata,” Sci. World J. 2013 (2013) 10, Sci. Word, vol. 10, 2013.
8 Roohi, A., DeMara, R.F., Khoshavi, N., "Design and evaluation of an ultra-area-efficient faulttolerant QCA full adder," Microelectron. J., vol. 46, no. 6, pp. 531-542, 2015.
9 Mohammadi, M., Gorigin, S., "An efficient design of full adder in quantum-dot cellular automata technology," Microelectron. J., vol. 50, pp. 38-43, 2016.
10 Huakun Du, Hongjun Lv, Yongqiang Zhang, Fei Peng, Guangjun Xie. "Design and analysis of new fault-tolerant majority gate for quantum-dot cellular automata," J Comput Electron, 2016.
11 Dharmendra Kumar, Debasis Mitra. "Design of a practical fault-tolerant adder in quantumdot cellular automata," Microelectronics. Journal, vol. 53, pp. 90-104, 2016.
12 Sen, B., Sahu, Y., Mukherjee, R., Nath, R.K., Sikdar, B.K., "On the reliability of majority logic structure in quantum-dot cellular automata," Microelectron. J., vol. 47, pp. 7-18, 2016.
13 M. A. Reed, J. N. Randall, R. J. Aggarwal, R. J. Matyi, T. M. Moore, and A. E. Wetsel. “Observation of discrete electronic states in a zero-dimensional semiconductor nanostructure”, Phys. Rev. Lett. Vol. 60, pp. 535-539, 1988.
14 U. Meirav, M. A. Kastner, and S. J Wind. “Singleelectron charging and periodic conductance resonances in GaAs nanostructures” Phys. Rev. Lett. ,Vol. 65, No.6, pp. 771-774, 1990.
15 B. Sen, et al., Modular Design of testable reversible ALU by QCA multiplexer with increase in programmability, Microelectron. J, 2014, http://dx.doi.org/10.1016/j.mejo.2014.08.012i
16 Ahmadpour. SS , Mosleh. M, A novel fault-tolerant multiplexer in quantum-dot cellular automata technology, The Journal of Supercomputing, Volume 74, Issue 9, pp 4696–4716, 2018.
17 Hasan Hosseinzadeh, Saeed Rasouli Heikalabad. A novel fault tolerant majority gate in quantum-dot cellular automata to create a revolution in design of fault tolerant nanostructures, with physical verification, Microelectronic Engineering, Volume 192, Pages 52-60, 2018.
18 Lent CS, Tougaw PD. A device architecture for computing with quantum dots. Proc IEEE 85(4):541–557, 1997.
19 Tougaw PD, Lent CS. Logical devices implemented using quantum cellular automata. J Appl Phys 75(3):1818–1825, 1994.
20 Walus K et al. QCADesigner: a rapid design and simulation tool for quantum-dot cellular automata. IEEE Trans Nanotechnol 3(1):26–31, 2004.
21 Mengbo Sun, Hongjun Lv, Yongqiang Zhang, Guangjun Xie. The Fundamental Primitives with Fault-Tolerance in Quantum-Dot Cellular Automata, Journal of Electronic Testing, Volume 34, Issue 2, pp 109–122, 2018.
22 Momenzadeh M, Ottavi M, Lombardi F. Modeling QCA defects at molecular-level in combinational circuits. In: 20th IEEE International Symposium on Defect and Fault Tolerance in VLSI Systems, 2005. DFT 2005.
23 Das K, De D. QCA defect and fault analysis of diverse nanostructure for implementing logic gate. International journal of recent trends in. Eng Technol 3(1), 2010.
24 Dysart TJ, M Kogge P, S Lent C. An analysis of missing cell defects in quantum-dot cellular automata, 2017.
25 Beard MJ. Design and simulation of fault-tolerant quantum-dot cellular automata (QCA) NOT gates. Dissertation, Wichita State University, 2006.
26 Sen, B., Dutta, M., Mukherjee, R. et al. Towards the design of hybrid QCA tiles targeting high fault tolerance, Journal of Computational Electronics, Volume 15, Issue 2, pp 429–445, 2016.
27 Huang, J., Momenzadeh, M., Lombardi, F. On the tolerance to manufacturing defects in molecular QCA tiles for processing-by-wire. J. Electron. Test.23(2–3), 163–174, 2007. doi:10.1007/ s10836-006-0548-6
28 Du H et al. Design and analysis of new fault-tolerant majority gate for quantum-dot cellular automata. J Comput Electron 15(4):1484–1497, 2016.
29 Nuriddin S., Jun-C. j., A novel controllable inverter and adder/subtractor in quantum-dot cellular automata using cell interaction based XOR gate, Microelectronic Engineering, Vol. 222, 2020, 111197.
30 Rahmani Y., Heikalabad S.R., Mosleh M., Efficient structures for fault-tolerant majority gate in quantum-dot cellular automata, Optical and Quantum Electronics, 53, 45, 2021.