1. Bartsch RP, Liu KKL, Bashan A, Ivanov PC. Network Physiology: How Organ Systems Dynamically Interact. PLoS One 2015;10. https://doi.org/10.1371/JOURNAL.PONE.0142143.
2. Pfurtscheller K, Bauernfeind G, Müller-Putz GR, Urlesberger B, Müller W, Pfurtscheller G. Correlation between EEG burst-to-burst intervals and HR acceleration in preterm infants. Neurosci Lett 2008;437:103–6. https://doi.org/10.1016/J.NEULET.2008.03.079.
3. Piper D, Schiecke K, Leistritz L, Pester B, Benninger F, Feucht M, et al. Synchronization analysis between heart rate variability and EEG activity before, during, and after epileptic seizure. Biomed Tech (Berl) 2014;59:343–55. https://doi.org/10.1515/BMT-2013-0139.
4. Sattin D, Duran D, Visintini S, Schiaffi E, Panzica F, Carozzi C, et al. Analyzing the Loss and the Recovery of Consciousness: Functional Connectivity Patterns and Changes in Heart Rate Variability During Propofol-Induced Anesthesia. Front Syst Neurosci [Internet]. 2021 [citado 17 de outubro de 2023];15. Disponível em: https://www.frontiersin.org/articles/10.3389/fnsys.2021.652080
5. Bernardi L, Porta C, Sleight P. Cardiovascular, cerebrovascular, and respiratory changes induced by different types of music in musicians and non-musicians: the importance of silence. Heart 2006;92:445–52. https://doi.org/10.1136/HRT.2005.064600.
6. Orini M, Bailón R, Enk R, Koelsch S, Mainardi L, Laguna P. A method for continuously assessing the autonomic response to music-induced emotions through HRV analysis. Med Biol Eng Comput 2010;48:423–33. https://doi.org/10.1007/S11517-010-0592-3.
7. Hartikainen K, Rorarius M, Mäkelä K, Yli-Hankala A, Jäntti V. Propofol and isoflurane induced EEG burst suppression patterns in rabbits. Acta Anaesthesiol Scand 1995;39:814–8.
8. Schnabel RB, Hasenfuß G, Buchmann S, Kahl KG, Aeschbacher S, Osswald S, et al. Heart and brain interactions. Herz. 1o de março de 2021;46(2):138–49.
9. Rajesh P, Umamaheswari K. Coherence analysis between heart and brain of healthy and unhealthy subjects. Em: 2017 11th International Conference on Intelligent Systems and Control (ISCO) [Internet]. 2017 [citado 17 de outubro de 2023]. p. 351–6. Disponível em: https://ieeexplore.ieee.org/abstract/document/7856015
10. Signal Processing Techniques for Coherence Analysis Between ECG and EEG Signals with a Case Study | SpringerLink [Internet]. [citado 17 de outubro de 2023]. Disponível em: https://link.springer.com/chapter/10.1007/978-981-33-6984-9_48
11. EEG and HRV markers of sleepiness and loss of control during car driving | IEEE Conference Publication | IEEE Xplore [Internet]. [citado 17 de outubro de 2023]. Disponível em: https://ieeexplore.ieee.org/document/4649724
12. Clerico A, Tiwari A, Gupta R, Jayaraman S, Falk TH. Electroencephalography Amplitude Modulation Analysis for Automated Affective Tagging of Music Video Clips. Front Comput Neurosci [Internet]. 2018 [citado 17 de outubro de 2023];11. Disponível em: https://www.frontiersin.org/articles/10.3389/fncom.2017.00115
13. Ulrich T. Envelope Calculation from the Hilbert Transform. 17 de março de 2006;
14. Sheen YT. On the study of applying Morlet wavelet to the Hilbert transform for the envelope detection of bearing vibrations. Mech Syst Signal Process. 1o de julho de 2009;23(5):1518–27.
15. Luccas FJC, Anghinah R, Braga NIO, Fonseca LC, Frochtengarten ML, Jorge MS, et al. [Guidelines for recording/analyzing quantitative EEG and evoked potentials. Part II: Clinical aspects]. Arq Neuropsiquiatr 1999;57:132–46. https://doi.org/10.1590/S0004-282X1999000100026.
16. Otero, T.M., Barker, L.A. (2014). The Frontal Lobes and Executive Functioning. In: Goldstein, S., Naglieri, J. (eds) Handbook of Executive Functioning. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8106-5_3
17. M. -P. Hosseini, A. Hosseini and K. Ahi, "A Review on Machine Learning for EEG Signal Processing in Bioengineering," in IEEE Reviews in Biomedical Engineering, vol. 14, pp. 204-218, 2021, doi: 10.1109/TBME.2020.2969915.
18. Bahmer A and Gupta DS (2018) Role of Oscillations in Auditory Temporal Processing: A General Model for Temporal Processing of Sensory Information in the Brain? Front. Neurosci. 12:793. doi: 10.3389/fnins.2018.00793 - Google Search
19. Neto OP, Oliveira Pinheiro A, Pereira VL, Pereira R, Baltatu OC, Campos LA. Morlet wavelet transforms of heart rate variability for autonomic nervous system activity. Appl Comput Harmon Anal. 1o de janeiro de 2016;40(1):200–6.
20. Cysarz D, Lange S, Matthiessen PF, Leeuwen P van. Regular heartbeat dynamics are associated with cardiac health. Am J Physiol-Regul Integr Comp Physiol. janeiro de 2007;292(1):R368–72.
21. A. Hyvärinen. Fast and Robust Fixed-Point Algorithms for Independent Component Analysis. IEEE Transactions on Neural Networks 10(3):626-634, 1999.
22. Mognon A, Jovicich J, Bruzzone L, Buiatti M. ADJUST: An automatic EEG artifact detector based on the joint use of spatial and temporal features. Psychophysiology. 2011;48(2):229–40.
23. Thayer JF, Åhs F, Fredrikson M, Sollers JJ, Wager TD. A meta-analysis of heart rate variability and neuroimaging studies: Implications for heart rate variability as a marker of stress and health. Neurosci Biobehav Rev 2012;36:747–56. https://doi.org/10.1016/J.NEUBIOREV.2011.11.009. -
24. Jurysta F, van de Borne P, Migeotte PF, Dumont M, Lanquart JP, Degaute JP, et al. A study of the dynamic interactions between sleep EEG and heart rate variability in healthy young men. Clinical Neurophysiology 2003;114:2146–55. https://doi.org/10.1016/S1388-2457(03)00215-3.
25. Grinsted A, Moore JC, Jevrejeva S. Application of the cross wavelet transform and wavelet coherence to geophysical time series. Nonlinear Process Geophys 2004;11:561–6. https://doi.org/10.5194/NPG-11-561-2004. -
26. Pinto Neto O, Pinto IRCA, Pinto O. The relationship between thunderstorm and solar activity for Brazil from 1951 to 2009. J Atmospheric Sol-Terr Phys. 1o de junho de 2013;98:12–21.
27. Wang Y, Neto OP, Weinrich MM, Castro R, Wright T, Kennedy DM. The influence of distal and proximal muscle activation on neural crosstalk. PLoS One 2022;17. https://doi.org/10.1371/JOURNAL.PONE.0275997.
28. Topographic EEG/MEG plot - File Exchange - MATLAB Central [Internet]. [citado 17 de outubro de 2023]. Disponível em: https://www.mathworks.com/matlabcentral/fileexchange/72729-topographic-eeg-meg-plot
29. Nakajima Y, Tanaka N, Mima T, Izumi SI. Stress Recovery Effects of High- and Low-Frequency Amplified Music on Heart Rate Variability. Behavioural Neurology 2016;2016. https://doi.org/10.1155/2016/5965894.
30. Veternik M, Tonhajzerova I, Misek J, Jakusova V, Hudeckova H, Jakus J. The impact of sound exposure on heart rate variability in adolescent students. Physiol Res 2018;67:695–702.
31. Calamassi D, Pomponi GP. Music Tuned to 440 Hz Versus 432 Hz and the Health Effects: A Double-blind Cross-over Pilot Study. Explore (NY) 2019;15:283–90. https://doi.org/10.1016/J.EXPLORE.2019.04.001. -
32. Hori K, Yamakawa M, Tanaka N, Murakami H, Kaya M, Hori S. Influence of sound and light on heart rate variability. J Hum Ergol (Tokyo) 2005;34:25–34. -
33. Hülsdünker T, Riedel D, Käsbauer H, Ruhnow D, Mierau A. Auditory Information Accelerates the Visuomotor Reaction Speed of Elite Badminton Players in Multisensory Environments. Front Hum Neurosci [Internet]. 2021
34. Collins A, Koechlin E. Reasoning, Learning, and Creativity: Frontal Lobe Function and Human Decision-Making. PLOS Biol. 27 de março de 2012;10(3):e1001293.
35. McKay CM, Lim HH, Lenarz T. Temporal Processing in the Auditory System. J Assoc Res Otolaryngol. 1o de fevereiro de 2013;14(1):103–24.
36. Sounds and words are processed separately and simultaneously in the brain | ScienceDaily [Internet]. [citado 17 de outubro de 2023]. Disponível em: https://www.sciencedaily.com/releases/2021/08/210818130509.htm
37. An Overview of Heart Rate Variability Metrics and Norms - PMC [Internet]. [citado 17 de outubro de 2023]. Disponível em: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5624990/
38. Intrinsic Neural Timescales in the Temporal Lobe Support an Auditory Processing Hierarchy | Journal of Neuroscience [Internet]. [citado 17 de outubro de 2023]. Disponível em: https://www.jneurosci.org/content/43/20/3696
39. Stuldreher et al. (2020) found that physiological synchrony in EEG, electrodermal activity, and heart rate - Google Search [Internet]. [citado 17 de outubro de 2023].
40. Blood AJ, Zatorre RJ. Intensely pleasurable responses to music correlate with activity in brain regions implicated in reward and emotion. Proc Natl Acad Sci U S A 2001;98:11818–23. https://doi.org/10.1073/PNAS.191355898. - Google Search [Internet]. [citado 17 de outubro de 2023].
41. Bigliassi M, Karageorghis CI, Wright MJ, Orgs G, Nowicky AV. Effects of auditory stimuli on electrical activity in the brain during cycle ergometry. Physiol Behav. 1o de agosto de 2017;177:135–47.
42. Alba et al. (2019) Frontiers | The Relationship Between Heart Rate Variability and Electroencephalography Functional Connectivity Variability Is Associated With Cognitive Flexibility (frontiersin.org) - Google Search [Internet]. [citado 17 de outubro de 2023].