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Abstract 

Senescence classification is an acknowledged challenge within the field, as markers are cell-

type and context dependent. Currently, multiple morphological and immunofluorescence 

markers are required for senescent cell identification. However, emerging scRNA-seq 

datasets have enabled increased understanding of the heterogeneity of senescence. Here we 

present SenPred, a machine-learning pipeline which can identify senescence based on single-

cell transcriptomics. Using scRNA-seq of both 2D and 3D deeply senescent fibroblasts, the 

model predicts intra-experimental and inter-experimental fibroblast senescence to a high 

degree of accuracy (>99% true positives). We position this as a proof-of-concept study, with 

the goal of building a holistic model to detect multiple senescent subtypes. Importantly, 

utilising scRNA-seq datasets from deeply senescent fibroblasts grown in 3D refines our ML 

model leading to improved detection of senescent cells in vivo. This has allowed for detection 
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of an in vivo senescent cell burden, which could have broader implications for the treatment 

of age-related morbidities.   

Introduction 

Senescence is a fundamental cellular programme defined as a stable cell cycle arrest. The lack 

of universal senescence markers is a well-recognised challenge within the field. Hallmarks of 

senescence are both cell-type and trigger dependent, and no single marker alone is sufficient 

to confirm senescence in all contexts1,2. It is therefore necessary to assess multiple markers 

encompassing cellular morphology, effectors of cell cycle arrest, the senescence associated 

secretory phenotype (SASP), mitochondrial changes, chromatin remodelling, and lysosomal 

markers such as senescence associated beta galactosidase (SA--Gal)1–3. However, choosing 

appropriate markers for a particular experiment often relies on either literature precedent 

using the specific cell type and trigger, or lengthy optimisation and marker validation. Recent 

work has sought to address this by focusing on the development of accessible, stepwise, and 

standardised workflows for the classification and subsequent characterisation of 

senescence2,4. Kohli et al. proposed a two-step approach to senescence detection, firstly 

focusing on more general lysosomal changes (SA--Gal) and cell cycle arrest (lack of EdU 

incorporation, and immunocytochemistry for Ki67, p16 and p21), and secondly on subtype 

specific proinflammatory SASP changes4.  

 

This seminal work has allowed for a more systematic and streamlined approach to senescence 

detection. The outcome of these approaches continues to depend upon the senescence 

context, meaning prior knowledge of the subtype is required to determine a senescent-cell 

state. Understanding the nuanced changes between senescence subtypes could allow for 

context-specific senescence detection and would enable unbiased classification of datasets 

where the senescent cell status is unknown. Furthermore, this understanding would remove 

the likelihood of detecting false positive and false negative data, which is crucial for 

progression within the senescence field. With the emergence of high-throughput screening 

methodologies, and ‘omics’ based sequencing technologies, our understanding of senescent 

cell subtypes is rapidly expanding. This necessitates the development of tools which can 

utilise this data to classify senescence in novel datasets. 
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Machine learning (ML) methodologies are widely used to classify distinct cellular states5. The 

data must have a state of ground-truth, so prior knowledge of the input class is required. The 

data can then be divided into training and testing datasets. The training dataset can be used 

to build the model, and the unseen testing dataset can be used to evaluate model 

performance based on a variety of metrics such as classification accuracy6. These ML models 

can then be applied to classify novel datasets. ML has been successfully applied to senescence 

classification in a small number of contexts (reviewed in Hughes, Wallis & Bishop 20235). For 

example, Heckenbach et al. have developed their model ‘Xception’ using neural networks, 

which can accurately classify a cell as senescent based on its nuclear morphology7. Alongside 

morphology, RNA sequencing data has also been used to build predictive models based on 

mRNA expression levels of senescent versus proliferative cells8–11. Jochems et al. used an 

elastic net model to accurately classify therapy-induced senescent cancer cells grown in a 2D 

monolayer11. Importantly, the group stratified the cells into those which had undergone 

short- and long-term treatments and found that treatment time strongly influenced the 

transcriptome of the cells. When applying their model to in vivo patient derived xenografts 

treated with the senescence inducer SHP099, all xenografts were classified as ‘not senescent’. 

However, the group describe that the use of bulk RNA sequencing datasets could explain why 

they were potentially unable to detect senescence signatures in vivo. 

 

Therefore, we asked if using single-cell transcriptomics alongside ML could improve senescent 

cell detection, particularly within heterogeneous in vivo contexts. Initially, we performed 

single-cell RNA sequencing of deeply senescent human dermal fibroblast (HDF) cells from a 

two-dimensional monolayer to build a ML model of senescence. We established that the 

model can accurately detect fibroblast senescence in independent 2D in vitro datasets, and 

in line with work by Jochems et al., we demonstrate that temporal kinetics is an important 

consideration when building transcriptomic senescent cell models. Interestingly, we find that 

fibroblasts grown in a two-dimensional monolayer cannot generate an accurate model of in 

vivo senescence. Therefore, to more faithfully replicate conditions in vivo, we performed 

single cell RNA sequencing of cells grown in a three-dimensional matrix. We demonstrate that 

the 3D ML model enabled the detection of senescent fibroblasts in vivo. Here, we present 

SenPred, a proof-of-concept pipeline, which could facilitate the generation of a holistic ML 

model, encompassing a multitude of senescence contexts.  
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Results 

Generating and evaluating machine learning models of replicative fibroblast 

senescence 

In an effort to develop a ML model of senescence classification we cultured human dermal 

fibroblasts (HDFs) to replicative senescence (passage 39) and allowed them to reach a deeply 

senescent state over a further three weeks in culture (DS; P39+3). Single cell RNA sequencing 

(scRNA-seq) was carried out on Early Proliferative (EP) and Deeply Senescent (DS) HDFs 

cultured in two-dimensional monolayer (extensive model validation previously reported in 

Wallis et al.5) (Figure 1a). Using k-nearest neighbours (KNN), seven independent clusters were 

identified in the EP and DS HDF dataset (Figure 1b). Overlaying these clusters with the 

originating cell populations showed distinct clustering of EP and DS fibroblasts, highlighting 

the discrete mRNA profiles of the two populations, together with inherent heterogeneity 

within both the EP and DS fibroblast populations (Figure 1c). Given that the EP and DS states 

were transcriptionally distinct, we proceeded to build a ML model to distinguish the two 

conditions.  

 

The scRNA-seq data was split into training (80%) and testing (20%) datasets, for model 

development and evaluation. Four ML models were explored, including Support Vector 

Machine (SVM; Figure 1d) and Multiple Discriminant Analysis (MDA; Figure 1e). The MDA 

confusion matrix highlighted a marginally higher percentage of true positive DS cells (0.49% 

higher than the SVM model). Both the SVM and MDA models have an ROC score of 1, and a 

sensitivity of 0.999, but the MDA had higher specificity than SVM (1 versus 0.99, respectively). 

KNN and Generalised Linear Model (GLM) were also tested but had marginally lower 

evaluation metrics (ROC: 0.998, Sens: 0.978, Spec: 0.992; and ROC: 0.999, Sens: 0.996, Spec: 

0.994, respectively). For this reason, the MDA model was selected for subsequent work. 

Comparing the known classification of the testing dataset (Figure 1f), with the MDA model 

predictions (Figure 1g) shows a striking prediction accuracy of 99.79%. Although intra-

experimental, this testing data is previously ‘unseen’, suggesting model overfitting is unlikely 

and instead the two classification outcomes are transcriptionally distinct. This work 
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demonstrates that it is possible to build a MDA ML model of senescence classification, which 

can accurately predict fibroblast deep senescence in two-dimensional monolayer.  

 

Testing the models on an external dataset reveals importance of temporal senescence 

kinetics  

To test the MDA ML model’s performance, we used an independent publicly available dataset 

from Chan et al. (GEO - #GSE175533), which included scRNA-seq data for increasing 

population doubling levels (PDLs) of WI-38 fibroblasts13. These fibroblasts ranged from PDL25 

to PDL50, the latter of which Chan et al. described as being in an early senescent state. The 

transcriptional differences of the PDL50 senescent cells were apparent when the cells are 

clustered and plotted onto a UMAP (Figure 2a), with the majority of the PDL46 and PDL50 

cells clustering away from the main bulk of the population. Applying our MDA ML model to 

the WI-38 fibroblast dataset shows an enrichment for DS predictions in the UMAP locations 

of the early senescent PDL50 cells (Figure 2b). However, only 19.19% of the PDL50 cells are 

predicted to be DS (Figure 2c). To further investigate this, the PDL50 cells were isolated and 

clustered independently, producing eight clusters (Figure 2d). Intriguingly, cluster five was 

largely enriched for DS predicted cells, suggesting that this subpopulation of cells were 

transcriptionally similar to the DS cells in the original HDF model.  

 

We hypothesised that the low percentage of DS prediction in the PDL50 cells could be due to 

temporal differences in the two experiments. The DS cells used to build the MDA ML model 

had undergone three weeks of culture after reaching replicative senescence, to establish and 

deepen their phenotype. Conversely, the PDL50 WI-38 fibroblast cells from Chan et al. were 

sequenced immediately upon reaching their Hayflick limit (Figure 2e). To test this hypothesis, 

we applied Monocle3 trajectory analysis to the PDL50 cells14. Cluster five (the cluster enriched 

for cells which were predicted to be DS – Figure 2f), fell at the end of the predicted trajectory, 

suggesting that the model was detecting deeply senescent but not early senescent fibroblasts 

(Figure 2g) within the PDL50 population. Cells at PDL50 likely represent a heterogeneous 

population, where some cells have reached the Hayflick limit earlier and deepened their 

senescent phenotype. To confirm this, we examined the expression of known cell cycle arrest 

markers CDKN1A (p21) and CDKN2A (p16). Alcorta et al. reported an initial increase of p21 
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during the early stages of cell cycle arrest of human diploid fibroblasts, with a gradual increase 

of p16 expression as the senescence phenotype deepens15. Intriguingly, this was also 

apparent in the PDL50 cells, with those cells predicted to be DS having lower expression levels 

of CDKN1A (Figure 2h) and higher expression levels of CDKN2A mRNA (Figure 2i) than the 

remaining PDL50 population. This supports our hypothesis that the MDA ML model is able to 

detect deeply senescent but not early senescent fibroblasts. 

 

To build a ML model which could encompass early replicative senescent fibroblasts (ES), the 

PDL50 cells from Chan et al.13 were incorporated into the model as an additional ES classifier. 

First, clustering the ES, EP, and DS cells revealed a more successive pattern, with the ES cells 

bridging the gap between the EP and DS cells (Figure 3a-b). This was confirmed using 

Monocle3 trajectory analysis (Figure 3c). This is perhaps unsurprising, as we have previously 

identified the ES cells to contain a heterogeneous mix with a small proportion of DS cells. The 

MDA confusion matrix highlights more than 90.2% true positives for all intra-experimental 

predictions, with the lowest percentage of true positives being for the ‘early senescent’ or ES 

cells (Figure 3d), which could again be explained by the heterogeneity of this population. 

Applying this model, the WI-38 cells at PDL25 through to PDL50 were able to be classified as 

either EP, ES, or DS (Figure 2a, Figure 3e). Unsurprisingly, the PDL50 cells had the highest 

predicted percentage of ES cells (66.6%). The percentage of predicted PDL50 cells then 

incrementally decreased with decreasing PDL number, with 15.7% of PDL25 cells being 

predicted to be ES (Figure 3f). This suggests that even at the earlier passages, the population 

of fibroblasts is heterogeneous, and that individual cells are on their own trajectories. Finally, 

for completeness, this ML predictive model for ES, EP, and DS cells was tested on the EP and 

DS HDF cells alone, identifying a small percentage (10.06%) of the EP cells as early senescent 

(Figure 3g). However, within the DS cells, only 0.39% were predicted to be ES, indicating that 

the DS cells are a more homogenous population. 

 

Testing the models using in vivo data 

To investigate whether the EP/ES/DS model can detect senescence in vivo, the models were 

tested on two independent publicly available whole skin scRNA-seq datasets from Tabib et 

al.16 (data kindly provided by corresponding author) and Sole-Boldo et al.17 (#GSE130973). 
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Clustering the fibroblasts from Tabib et al. revealed five clusters (Figure 4a), which did not 

appear to stratify based on the age of the donors (Figure 4b), or by their predicted senescence 

state (Figure 4c). Importantly, the age of donor and senescent cell burden did not distinctly 

correlate. Even in the youngest donor fibroblasts, 63.1% of cells were predicted to be deeply 

senescent (Figure 4d).  

 

Analysis of the second whole skin scRNA-seq data from Sole-Boldo et al17 generated similar 

findings. Clustering these fibroblasts formed 11 distinct clusters (Figure 4e), and these did 

appear to have some age-associated influences (Figure 4f). Particularly, the 53-year-old donor 

clustered alone, which could suggest fibroblast abnormality for this individual, or perhaps 

issues with tissue isolation and processing. Intriguingly, this abnormality was also reflected in 

the percentage predictions of EP, ES, and DS cells, with the 53-year-old donor having a very 

high prediction of ES cells (Figure 4g-h). Again, although the proportion of predicted DS cells 

is slightly lower in the dataset from Sole-Boldo et al. compared with Tabib et al., the 

combination of DS and ES predicted cells makes up a minimum of 49.44% of the fibroblasts in 

all donors. Evidence within the literature suggests that senescent fibroblasts within human 

skin in vivo make up approximately 10% of the fibroblast population12. The disparity between 

the model prediction and literature reports suggests that the model is not accurately able to 

identify senescent fibroblasts in vivo. 

 

Building in vitro 3D models improves senescent cell detection in vivo 

 

In recent years, the limitations of culturing cells in a two-dimensional monolayer have been 

widely reported. Most importantly, cells cultured in a monolayer do not replicate the 

complexities and depth of the extracellular matrix in vivo, which can have wide implications 

on cell growth and signalling processes18,19. Consequently, three-dimensional organotypic 

models have been developed in an effort to recapitulate in vivo cell behaviour more 

accurately. For this reason, we built a 3D fibroblast matrigel-collagen dermal gel containing 

either EP or DS HDFs, which underwent 10X scRNA-seq (Figure 5a). Firstly, clustering of these 

cells revealed six distinct groups, and a clear separation of EP and DS cells (Figure 5b-c), 

highlighting the transcriptomic differences between EP and DS cells are maintained in three-



 

8 

 

dimensional culture. Next, a MDA ML model was built to classify the cells from the dermal 

gels as EP or DS, and intra-experimental testing revealed over 97.92% true positives (Figure 

5d). Promisingly, applying this ML model to the dataset from Tabib et al.16 revealed a more 

physiological level of senescence prediction, with the maximum percentage of senescent 

fibroblasts being predicted in the 63-year-old (21.34%) (Figure 5e-f). It is important to 

highlight that the lack of ground-truth for the in vivo data means it was not possible to 

evaluate model accuracy in vivo., At present, this is likely to be an ongoing challenge when 

classifying in vivo data, due to the lack of a universal senescence marker in vitro or in vivo. 

 

The three-dimensional ML model was also applied to the fibroblast data from Sole-Boldo et 

al.17. The predicted senescent cell burden in these individuals was higher than the individuals 

from the Tabib dataset (2.78-32.79% and 7.62-21.34%, respectively) (Figure 5g-h). The data 

from Sole-Boldo et al. indicated more of an age-related trend, with the older donors having a 

higher percentage DS prediction compared to the younger donors (27.36% for the 70-year-

old donor compared to 15.47% for the 25-year-old donor) (Figure 5g). Again, the 53-year-old 

donor shows an abnormal profile, perhaps reflective of the clustering data in Figure 4f.  

 

Mine et al. reported that papillary fibroblasts change with age compared to reticular 

fibroblast, including increasing secretion of keratinocyte growth factor, increased age-related 

contraction of collagen gels, and decreased population doublings and clonogenic capacity 

with age20, suggesting that papillary fibroblasts are likely to be the fibroblast subtype to 

undergo replicative senescence in vivo. Therefore, we investigated the proportion of 

senescent cells within the four fibroblast subtypes defined by Sole-Boldo et al.: secretory 

reticular, pro-inflammatory, secretory papillary, and mesenchymal. Promisingly, the secretory 

papillary fibroblasts from Sole-Boldo et al. had the highest percentage of senescence 

prediction (40.25%), providing increased confidence that the ML model is detecting senescent 

cells in vivo (Figure 5i).  

 

In summary, the SenPred pipeline allows generation of an unbiased predictive model of 

senescence. Using scRNA-seq data from cells with a known senescence classification, ML 

models can be generated and evaluated both intra- and inter-experimentally (Figure 5j). 

These models can then be applied to classify senescence within unknown datasets. 
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Importantly, using scRNA-seq data generated from cells grown in 3D allows detection of 

senescent cells in vivo.    

Discussion 

The term ‘senescence’ encompasses a wide variety of cellular outcomes, which display 

diverse context-dependent states1–3. For this reason, there is no universal marker of 

senescence, and we believe that characterisation and classification of senescence should 

focus on identifying specific senescent cell subtypes. It is also important to consider the 

heterogeneity of these subtypes, and particularly the heterogeneity of in vivo aged tissue, 

where the minority of cells within the tissue are likely to be senescent12. The emergence of 

scRNA-seq datasets has allowed for greater understanding of this heterogeneity at the 

transcriptomic level. However, the lack of a single established senescence marker means 

identifying senescent cells within these datasets is arduous and requires prior knowledge of 

the specific senescent cell subtype. Recently, the SenNet Consortium was established 

(www.sennetconsortium.org), which aims to provide an atlas of senescence characterisation 

and mapping. With the growth of this database, it is important to have a tool which will allow 

rapid classification of senescence based on the characterisation atlas. Although AI and ML are 

emerging techniques for the classification of cellular subtypes, particularly within whole 

tissues or disease states, to date ML has not been used to classify senescence based on scRNA-

seq data. Previously published work focussed on morphological classification, or using bulk 

RNA sequencing datasets which perhaps miss the nuanced nature of senescence7–11. 

 

Within this work, we develop a ML model which can successfully classify deeply senescent 

fibroblast in both internal and external in vitro datasets. Applying the ML model based on 

scRNA-seq from in vitro data was unable to successfully determine senescence in fibroblasts 

from in vivo tissues. However, sequencing cells which were grown in a 3D environment more 

closely recapitulated reported senescent cell numbers in vivo, and also detected senescence 

in the expected fibroblast subtypes. Evaluation of model performance in vivo presents a clear 

limitation of this study, whereby the state of ‘ground truth’ is not known. The opportunity to 

use spatial transcriptomics alongside a classic senescence marker, although perhaps reductive 

based on the nuanced nature of senescence, may allow a more accurate evaluation of model 

performance in vivo. The advantages of multi-modal AI could be further explored, combining 

http://www.sennetconsortium.org/
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multiple ‘omics’ datasets to improve senescence prediction. The limited sample sizes of the 

in vivo datasets is a further limitation, with biological variability having a strong influence on 

the trend of senescence with age. With the emergence of larger datasets, this could improve 

the evaluation of the models and allow statistical power to detect directionality of senescence 

prediction. Physiological assessments of the donors would also strengthen the approach, as 

it would allow comparisons of biological versus chronological age.  

 

We position this study as proof-of-concept, with the future aspiration to build a more holistic 

ML model in line with work by the SenNet consortium, whereby the model could detect 

multiple subtypes of senescence based on multiple triggers and cell types. This could then be 

applied to novel datasets and would allow rapid classification of the subtypes of senescence 

within tissues. A holistic senescence prediction model would have multiple clinical benefits, 

including predicting individual patient senescent cell burden and trajectory and the likelihood 

of senescence-associated age-related diseases. Alongside this, the model could be used to 

test senolytic activity by measuring clearance of senescent cells. This would support work by 

Smer-Barreto et al., using ML to discover novel senolytics21. In conclusion, we believe ML is a 

valuable tool which can contribute towards the collective goal of the senescence field to 

characterise and classify senescence. 

 

Methods 

Cells and reagents 

Primary human dermal fibroblasts (HDFs) were a kind donation from anonymous healthy 

patients under standard ethical practise, reference LREC No. 09/HO704/69. HDFs were 

cultured in DMEM with 4mM L-glutamine (41966-029, Life Technologies) supplemented with 

10% foetal bovine serum (1001/500, Biosera), in the absence of antibiotics, and maintained 

at 37°C, 5% CO2, 95% humidity. Cells were seeded at 4,000 cells/cm2 for passage 1-19, 7,500 

cells/cm2 for passage 20-25, and 10,000 cells/cm2 for passage 26 onwards.  HDFs were serially 

passaged and were classified as Early Proliferative (EP) up to passage 13, and Deeply 

Senescent (DS) beyond passage 39+3. All cells were routinely tested for mycoplasma and were 

shown to be negative. 
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Dermal gels were generated by suspending HDFs in rat-tail collagen 1 (Corning) supplemented 

with Matrigel (Corning), FCS (1001/500, Biosera), 10X DMEM (11430-030, Invitrogen), and pH 

balanced with 4M NaOH in the absence of antibiotics. HDF-gel mix was added dropwise to 

transwells to give a final cell density of 10,000 HDFs per gel. Nine gels were constructed per 

condition. Dermal gels were maintained at 37°C, 5% CO2, 95% humidity.  

 

Single cell RNA sequencing 

For 2D samples, cells were grown in 6-well plates at 7,000/cm2 for 72 hours. Cells were 

collected, and resuspended in HBSS (Thermofisher), and immediately sorted into single cell 

oil droplet suspension. To extract the cells from 3D dermal gels, gels were incubated with 

collagenase D (Sigma) at 37°C for 1 hr. Collagenase activity was subsequently inhibited by 

HBSS addition. Gels were strained and centrifuged to capture cell pellets, which were 

resuspended in HBSS before sorting into single cell oil droplet suspension. 

 

Library generation and sequencing was performed using the v2 Chromium Single Cell 3’ Kit 

(10X genomics). Samples were sequenced using the Illumina NextSeq 500 High Output Run 

Sequencing platform using paired end sequencing and aligned to the human genome 

(GRCh37) using Cell Ranger (10x Genomics).  

 

Cell-level filtering and normalisation 

All subsequent data analysis was performed using R (version 4.2.2) in RStudio (2022.07.2 Build 

576), running under macOS Monterey 12.0.1. Matrix, gene, and barcode .gz data files were 

loaded and converted into a Seurat object22. Unless otherwise stated, default parameters 

from Seurat V4.3.0.1 were applied. To remove low quality cells, the data was filtered using 

the following metrics (Supplementary Figure S1): 

- nCount_RNA > 1000 

- nFeature_RNA > 400 

- percent.mt <= 12 

 



 

12 

 

Data was normalised using LogNormalize, which normalises individual gene expression of a 

cell to total gene expression of this cell and multiplies by the default scale factor (10,000). 

This data is then log transformed. 

 

In vivo data cell-level filtering and normalisation 

Cell level filtering and normalisation of datasets from Tabib et al. and Solé-Boldo et al. was 

performed using Seurat R package version 3.2.2 in R version 4.0.3. To remove low quality cells, 

the data was filtered using the following metrics: 

- nCount_RNA > 500 

- nFeature_RNA > 250 

- nFeature_RNA <7500 

- percent.mt <= 5 

- log10genes_per_UMI <0.8 

 

Data was normalised using ScTransform23, and the sctransform normalized counts for each 

sample were then integrated24, using the top 3000 most variable genes in the 

SelectIntegrationFeatures() function. Then, the FindIntegrationAnchors() function was 

applied with default parameters to identify the anchors across the different samples in each 

dataset. The anchors were then passed to the IntegrateData() function to create a single 

normalized and integrated Seurat object. All subsequent in vivo data analysis was performed 

in line with in vitro data analysis. 

 

Dimensionality reduction and differential gene expression analysis  

The top 2000 variable genes were identified using the FindVariableFeatures function24, and 

these were subsequently scaled to ensure a mean expression of 0 and variance of 1 across all 

cells. K-nearest neighbour algorithms were used based on PCA distance, followed by the 

Louvain algorithm to determine clusters. The resolution of all cluster-based functions was 

determined systematically using the Clustree package25. These clusters were visualised on 

UMAP plots. To identify differentially expressed genes (DEGs) in the clusters, FindAllMarkers 

default Seurat function was implemented. Genes must be detected in >25% of cells in at least 

1 cluster and have a logFC greater than 0.25. 
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Machine learning senescence classifier 

The ScPred package developed by the Powell group was used to build ML models to classify 

senescence (https://github.com/powellgenomicslab/scPred/)26. Unless otherwise stated, 

default parameters of ScPred V1.9.2 were used. Data was separated into training (80%) and 

testing (20%) datasets. ScPred ML models were then built on training data using all principal 

components, using a variety of methods including Support Vector Machines with Radial Basis 

Function Kernel (SVM), Mean Decrease in Accurary (MDA), K-nearest neighbours (KNN), and 

Generalised Linear Model (GLM). The models were evaluated based on their classification of 

the testing dataset through a variety of methods, including ROC, sensitivity, and specificity, 

and the best performing model (MDA) was taken forwards. For the MDA model, a fivefold 

cross-validation was used. These models could then be applied to classify senescence in 

alternative datasets. 

 

Trajectory analysis 

Monocle3 V1.3.1 was used to analyse the trajectory of the PDL50 cells14,27,28. All default 

parameters were used unless otherwise stated. The earliest principal node was calculated 

using the function get_earliest_principal_node, where the node most surrounded by EP cells 

was selected. The cells were then ordered based on pseudotime.  

 

Package dependencies 

All packages and versions used in this code are available at the following URL: 

https://github.com/bethk-h/SenPred_HDF. (Please note, the repository is currently private 

but will be made public upon paper publication). 

 

Data Availability 

To be submitted to suitable database upon publication. Data from Solé-Boldo et al.17 and 

Chan et al.13 was accessed using the Gene Expression Omnibus (GEO #GSE130973 - Solé-

Boldo, GEO #GSE175533 - Chan). The pre-processed dataset, including the raw UMI data 

matrix and associated metadata from Tabib et al., was acquired from the corresponding 

author, Robert Lafyatis (lafyatis@pitt.edu) in 2018. 

https://github.com/bethk-h/SenPred_HDF
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Code Availability 

All code for this project is accessible via the following URL: https://github.com/bethk-

h/SenPred_HDF. (Please note, the repository is currently private but will be made public upon 

paper publication). Full code will be shared with editors and reviewers upon request.  

  

https://github.com/bethk-h/SenPred_HDF
https://github.com/bethk-h/SenPred_HDF
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Figures 

 

 
Figure 1. Machine learning models can accurately discriminate between Early Proliferative 

(EP) and Deeply Senescent (DS) human dermal fibroblasts.  (a) Schematic illustration the 

position of Early Proliferative (EP) and Deeply Senescent (DS) Human Dermal Fibroblasts (HDFs) 

on the Hayflick curve. The samples were grown in a 2D monolayer before s ingle -cell RNA 

sequencing (scRNA-seq). (b) Uniform Manifold Approximation Projection (UMAP) of 
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transcriptomic signatures of EP and DS fibroblasts. ( c) UMAP in (b) overlayed with sample type. 

(d) Support Vector Machine (SVM) model confusion matrix generated from testing dataset,  

highlighting true positives and true negatives (green),  and false positives and false negatives 

(red). (e) Multiple Discriminant Analysis (MDA) model confusion matrix generated from testing 

dataset, highlighting true posit ives and true negatives (green), and false positives and false 

negatives (red).  ( f)  20% testing dataset clustered into a UMAP and overlayed with sample type. 

(g) UMAP in (f) overlayed based on prediction using MDA model, with the ScPred package.  
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Figure 2. The machine learning model can detect deeply senescent but not early senescent 

fibroblasts .  (a) UMAP of scRNA-seq data from fibroblasts from external dataset (Chan et al. 13) 

at different Population Doubling Levels (PDL).  (b) UMAP in (a) overlayed based on prediction 

from the MDA model. (c) Barplot representing the percentage of cells which are predicted to 

be Deeply Senescent (DS) at each PDL, using the MDA model. (d)  UMAP of the PDL50 cells  from 

Chan et al. 13 .  (e) Schematic i llustrating position on the Hayfl ick curve of Early Proliferative (EP) 

and Deeply Senescent (DS) Human Dermal Fibroblasts (HDFs), and PDL50 or ‘early senescent’  
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cells.  (f) UMAP in (d) overlayed based on prediction from the MDA model. (g) Monocle3 

trajectory plot of UMAP in (d),  overlayed with  predicted pseudotime trajectory. ( h) PDL50 

UMAP from (d), overlayed with expression of CDKN1A. ( i) PDL50 UMAP from (d), overlayed with  

expression of CDKN2A.  
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Figure 3. Building a machine learning model incorporating Early Senescent (ES) cells highlights 

high levels of heterogeneit y throughout progressive population doublings .  (a) UMAP of 

combined scRNA-seq data from EP and DS HDFs, and PDL50 WI -38 fibroblasts from Chan et al.13 .  

(b) UMAP in (a) overlayed with sample type. (c) Pseudotime trajectory of UMAP in (b).  (d) 

Confusion matrix of MDA model of EP, ES, and DS cells, highlighting true positives and true 

negatives (green),  and false positives and false negatives (red).  (e) UMAP of al l WI-38 PDLs 

from Chan et al .13  (Figure 2a),  overlayed with prediction from EP/ES/DS model.  (f) Barplot 

showing percentage of predicted ES cells at each PDL. ( g) Barplot showing percentage of 

predicted ES cells within the EP and DS populations.  
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Figure 4. The machine learning models cannot accurately be applied to in vivo  datasets.  (a)  

UMAP of scRNA-seq of in vivo  fibroblasts from Tabib et al.16 .  (b) UMAP shown in (a), overlayed 

with donor age. (c) UMAP shown in (a), overlayed with MDA EP/ES/DS model prediction. (d) 

Barplot showing percentage model prediction of EP/ES/DS cells for each donor  in (b). (e) UMAP 

of scRNA-seq of in vivo  f ibroblasts from Solé-Boldo et al .17 .  (f) UMAP shown in (e), overlayed 



 

21 

 

with donor age. (g) UMAP shown in (e), overlayed with MDA EP/ES/DS model prediction.  (h) 

Barplot showing percentage model prediction of EP/ES/DS cells for each donor in (f).  

 

 

Figure 5. A ML model built from 3D dermal gels more accurately recapitulates senescence in 

vivo. (a) Schematic i llustration the position of Early Proliferative (EP) and Deeply Senescent 

(DS) Human Dermal Fibroblasts (HDFs) on the Hayflick curve. The samples were grown in a 3D 
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Matrigel-collagen matrix before single-cell RNA sequencing (scRNA -seq). (b) UMAP clustering 

of scRNA-seq of HDFs grown in a 3D matrigel matrix. ( c) UMAP in (b), overlayed with sample 

type. (d) Confusion matrix of MDA model of EP and DS 3D cells, highlighting true positives 

and true negatives (green), and false positives and false negatives (red). ( e) Barplot showing 

percentage of predicted DS cells for Tabib et al.16 at each donor age. ( f) UMAP in Figure 4a, 

overlayed with 3D ML model prediction. ( g) Barplot showing percentage of predicted DS cells 

for Solé-Boldo et al .1 7 at each donor age. (h) UMAP in Figure 4e, overlayed with 3D ML model 

prediction. ( i) Barplot showing percentage of predicted DS cells for Solé -Boldo et al.  for each 

fibroblast subtype.  (j) Flowchart showing the steps of the SenPred pipeline.  
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Figure S1. Quality control and filtering of scRNA -seq. (a) Number of cells sequenced before 

and after filtering. (b) Number of genes (nFeature_RNA) versus number of unique molecular 

identifiers (UMIs) (nCount_RNA), coloured by the percentage of mitochondrial RNA. (c) 

Density plot of nFeature_RNA for all samples. (d) Density plot of nCount_RNA for al l samples. 

(e) Density plot of the percentage.mt for al l samples. The black l ine represents chosen 

filtering cut offs in all cases.   


