[1] F. Weng, C. Chen, H. Yu, Research status of laser cladding on titanium and its alloys: A review. Mater. Des., 58 (2014), pp. 412-425
[2] A. Karolczuk, M. Kowalski, R. Bański, F. Żok, Fatigue phenomena in explosively welded steel-titanium clad components subjected to push-pull loading. Int. J. Fatigue, 48 (2013), pp. 101-108.
[3] W.B. Lee, C.Y. Lee, W.S. Chang, Y.M. Yeon, S.B. Jung, Microstructural investigation of friction stir welded pure titanium. Mater. Lett., 59 (26) (2005), pp. 3315-3318
[4] N. Kahraman, B. Gulenc, F. Findik, Corrosion and mechanical-microstructural aspects of dissimilar joints of Ti6Al4V and Al plates. Int. J. Impact Eng., 34 (2007), pp. 1423-1432
[5] Z. Sun, I. Annergren, D. Pan, T.A. Mai, Effect of laser surface remelting on the corrosion behavior of commercially pure titanium sheet. Mater. Sci. Eng. A, 345 (1-2) (2003), pp. 293-300
[6] S.T. Auwal, S. Ramesh, F. Yusof, S.M. Manladan, A review on laser beam welding of titanium alloys. Int. J. Adv. Manuf. Technol., 971 (4) (2018), pp. 1071-1098
[7] M. Gao, C. Chen, L. Wang, Z. Wang, X. Zeng, Laser-Arc Hybrid Welding of Dissimilar Titanium Alloy and Stainless Steel Using Copper Wire. Mater. Trans. A, 46(5) (2015), pp. 2007-2020
[8] T. Wang, B. Zhang, J. Feng, and Q. Tang, Effect of a copper filler metal on the microstructure and mechanical properties of electron beam welded titanium-stainless steel join. Mater. Charact., 73 (2012), pp. 104-113
[9] R. Soltani Tashi, S.A.A. Akbari Mousavi, M. Mazar Atabaki, Diffusion brazing of Ti-6Al-4V and austeTiNic stainless steel using silver-based interlayer. Mater. Des., 54 (2014), pp. 161-167
[10] M.K. Lee, J.J. Park, J.G. Lee, and C. K. Rhee, Phase-dependent corrosion of titanium-to-stainless steel joints brazed by Ag-Cu eutectic alloy filler and Ag interlayer. J. Nucl. Mater., 439 (1-3) (2013), pp. 168-173
[11] A. Elrefaey, W. Tillmann, Correlation between microstructure, mechanical properties, and brazing temperature of steel to titanium joint. J. Alloys Compd., 487 (1-2) (2009), pp. 639-645.
[12] E. Norouzi, M. Atapour, M. Shamanian, A. Allafchian, Effect of bonding temperature on the microstructure and mechanical properties of Ti-6Al-4V to AISI 304 transient liquid phase bonded joint. Mater. Des., 99 (2016), pp. 543-551
[13] S. Zakipour, A. Halvaee, A. A. Amadeh, M. Samavatian, A. Khodabandeh, An investigation on microstructure evolution and mechanical properties during transient liquid phase bonding of stainless steel 316L to Ti-6Al-4V. J. Alloys Compd., 626 (2015), pp. 269-276
[14] V.Srikanth, A.Laik, G.K. Dey, Joining of stainless steel 304L with Zircaloy-4 by diffusion bonding technique using Ni and Ti interlayers. Mater. Des., 126 (2017), pp. 141-154.
[15] S. Kundu, S. Sam, S. Chatterjee, Interface microstructure and strength properties of Ti-6Al-4V and microduplex stainless steel diffusion bonded joints. Mater. Des., 32 (2011), pp. 2997-3003.
[16] M. Ghosh, S. Chatterjee, Diffusion bonded transition joints of titanium to stainless steel with improved properties. Mater. Sci. Eng. A, 358(1-2) (2003), pp. 152-158.
[17] D.H. Yang, Z.A. Luo, G.M. Xie, M.K. Wang, R. D. K. Misra, Effect of vacuum level on microstructure and mechanical properties of titanium-steel vacuum roll clad plates. J. Iron Steel Res. Int., 25 (1) (2018), pp. 72-80.
[18] H. R. Akramifard, H. Mirzadeh, M. H. Parsa, Cladding of aluminum on AISI 304L stainless steel by cold roll bonding: Mechanism, microstructure, and mechanical properties. Mater. Sci. Eng. A, 613 (2014), pp. 232-239.
[19] D. S. Zhao, J.C. Yan, Y.J. Liu, Heat resistance of hot roll bonded titanium alloy-stainless steel transition joint. Trans. Nonferrous Met. Soc. China, 23 (7) (2013), pp. 1966-1970.
[20] S. Kundu, S. ChatterjeeInterfacial microstructure and mechanical properties of diffusion-bonded titanium–stainless steel joints using a nickel interlayer. Mater. Sci. Eng. A, 425 (1-2) (2006), pp. 107-113.
[21] H. Arik, M. Aydin, A. Kurt, M. Turker, Weldability of Al4C3-Al composites via diffusion welding technique. Mater. Des., 26 (2005), pp. 555-560.
[22] M. Ghosh, K. Bhanumurthy, G.B. Kale, J. Krishnan, S. Chatterjee, Diffusion bonding of titanium to 304 stainless steel. J. Nucl. Mater., 322 (2-3) (2003), pp. 235-241
[23] M. Ghosh, S. Chatterjee, Diffusion bonded transition joints of titanium to stainless steel with improved properties. Mater. Sci. Eng. A, 358 (1-2) (2003), pp. 152-158
[24] Z. Yazdani, M.R. Toroghinejad, H. Edris, A.H.W. Ngan, A novel method for the fabrication of Al-matrix nanocomposites reinforced by mono-dispersed TiAl3 intermetallic via a three-step process of cold-roll bonding, heat-treatment and accumulative roll bonding. J. Alloys Compd., 747 (2018), pp. 217-226
[25] M.M. Mahdavian, H. Khatami-Hamedani, H. R. Abedi, Macrostructure evolution and mechanical properties of accumulative roll bonded Al/Cu/Sn multilayer composite. J. Alloys Compd., 703 (2017), pp. 605-613
[26] H.G. Dong, Z.L. Yang, G.S. Yang, C. Dong, Vacuum brazing of TiAl alloy to 40Cr steel with Ti60Ni22Cu10Zr8 alloy foil as filler metal. Mater. Sci. Eng. A, 561 (2013), pp. 252-258.
[27] T.S. Lin, H.X. Li, P. He, H.M. Wei, L. Li, J.C. Feng, Microstructure evolution and mechanical properties of transient liquid phase (TLP) bonded joints of TiAl intermetallics. Intermetallics, 37 (2013), pp. 59-64
[28] T.F. Song, X.S. Jiang, Z.Y. Shao, Y.J. Fang, M.H. Zhu, Microstructure and mechanical properties of vacuum diffusion bonded joints between Ti-6Al-4V titanium alloy and AISI316L stainlesssteel using Cu/Nb multi-interlayer. Vacuum, 145 (2017), pp. 68-76
[29] M.Hosseini, H.Danesh Manesh, Bond strength optimization of Ti/Cu/Ti clad composites produced by roll-bonding. Mater. Des., 81 (2015) , pp. 122-132
[30] M. Balasubramanian, Characterization of diffusion-bonded titanium alloy and 304 stainless steel with Ag as an interlayer. Int. J. Adv. Manuf. Technol., 82 (2016), pp. 153-162
[31] D.S. Zhao, J.C. Yan, C.W. Wang, Y. Wang, S.Q. Yang, Interfacial structure and mechanical properties of hot roll bonded joints between titanium alloy and stainless steel using copper interlayer. Sci. Technol. Weld. Joining, 13 (2008), pp. 765-768.
[32] J.C. Yan, D.S. Zhao, C.W. Wang, S.Q. Yang, Vacuum hot roll bonding of titanium alloy and stainless steel using nickel interlayer. J. Mater. Sci. Technol., 25 (2009), pp. 914-918
[33] S. Zakipour, A. Halvaee, A.A. Amadeh, M. Samavatian, A. Khodabandeh, An investigation on microstructure evolution and mechanical properties during transient liquid phase bonding of stainless steel 316L toTi-6Al-4V. J. Alloys Compd. , 626 (2015), pp. 269-276
[34] M. Balasubramanian, Application of Box-Behnken design for fabrication of titanium alloy and 304 stainless steel joints with silver interlayer by diffusion bonding. Mater. Des., 77 (2015) , pp. 161-169
[35] Massalski TB. Binary alloy phase diagrams. 2nd ed. Materials Park(OH): ASM International; 1990.
[36] M. M. Verdian, K. Raeissi, M. Salehi, S. Sabooni, Characterization and corrosion behavior of TiNi-Ti2Ni-TiNi3 multiphase intermetallics produced by vacuum sintering. Vacuum, 86 (2011), pp. 91-95.
[37] L.F. Hu,Y.Z. Xue, F.G. Shi, Intermetallic formation and mechanical properties of Ni-Ti diffusion couples. Mater. Des., 130 (2017), pp. 175-182.
[38] B. Feng, Y. Xin, R. Hong, H. Yu, Y. Wu, Q. Liu, The effect of architecture on the mechanical properties of Mg-3Al-1Zn rods containing hard Al alloy cores. Scr. Mater., 98 (2015), pp. 56-59.
[39] X.B. Wang, J.V. Humbeeck, B. Verlinden, S. Kustov, Thermal cycling induced room temperature aging effect in Ni-rich TiNi shape memory alloy. Scr. Mater., 113 (2016), pp. 206-208
[40] Q.C. Fan, Y.H. Zhang, Y.Y. Wang, M.Y. Sun, Y.H. Wen, Influences of transformation behavior and precipitates on the deformation behavior of Ni-rich TiNi alloys. Mater. Sci. Eng. A, 700 (2017), pp. 269-280
[41] ASTM-D 1002-10 standards, ASTM, PA, 2010.
[42] ASTM-D 1876-01 standards, ASTM, PA, 2015.
[43] M. Verdier, I. Groma, L. Flandin, J.Lendavi, Y. Brechet, P. GuyotDislocation densities and stored energy after cold rolling of Al-Mg alloys: investigations by resistivity and differential scanning calorimetry. Scripta Mater., 37 (1997), 449-454.
[44] A.A. Shirzadi GhoshouniDiffusion Bonding Aluminium Alloys and Composites: New Approaches and Modeling (doctoral thesis) University of Cambridge (1998)
[45] J.P. Oliveira, A.J. Cavaleiro, N. Schell, A. Stark, F.M. Braz Fernandes, Effects of laser processing on the transformation characteristics of TiNi: A contribute to additive manufacturing. Scr. Mater., 152 (2018), pp. 122-126.
[46] J.J. Marattukalam, V.K. Balla, M. Das, S. Bontha, S.K. Kalpathy, Effect of heat treatment on microstructure, corrosion, and shape memory characteristics of laser deposited TiNi alloy. J. Alloys Compd., 744 (2018), pp. 337-346..
[47] J. Beres, A. Polar, J.E. Indacochea, Joining YSZ to 444 SS by in situ alloying in a N-Ti filler metal for SOFC applications; J.J. Stephens, K.S. Weil (Eds.), Proceeding of the 3rd international brazing and soldering conference, American Welding Society, San Antonio (2006), pp. 125-132.
[48] T.B. Massalski, H. Okamoto, P.R. Subramanian, L. KacprzakBinary. Alloy phase diagrams. (2nd ed.), ASM Intl, OH (1990)
[49] Y.Q. Deng, G.M. Sheng, C. Xu, Evaluation of the microstructure and mechanical properties of diffusion bonded joints of titanium to stainless steel with a pure silver interlayer. Mater. Des., 46 (2013), pp. 84-87.
[50] K. BataloviĆ, V. Kotesk, and D. StojiĆ. Hydrogen storage in martensite Ti-Zr-Ni alloy: A density functional theory study. J. Phys. Chem. C, 117(51) (2013), pp. 26914-26920.
[51] D. Toprek, J. Belosevic-cavor, and V. Koteski, Ab iTiNio studies of the structural, elastic, electronic and thermal properties of TiNi2 intermetallic. J. Phys. Chem. Solids, 85 (2015), pp. 197-205.
[52] Q. Chen, Z. Huang, Z. Zhao, and C. Hu, First-principles study on the structural, elastic, and thermodynamics properties of Ni3X (X: Al, Mo, Ti, Pt, Si, Nb, V, and Zr) intermetallic compounds. Appl. Phys. A, 116(3) (2013), pp. 1-12.
[53] B. Li, L. Rong, Y. Li, V.E. GjunterFabrication of cellular TiNi intermetallic compounds. J. Mater. Res., 15 (1) (2000), pp. 10-13
[54] L. Battezzati, P. Pappalepore, F. Durbiano, I. Gallino, Solid state reactions in Al/Ni alternate foils induced by cold rolling and annealing. Acta Mater., 47 (6) (1999), pp. 1901-1914.
[55] X. Shao, X.L. Guo, Y.F. Han, Z.J. Lin, J. Qin, W.J. Lu, D. Zhang, Preparation of TiNi films by diffusion technology and the study of the formation sequence of the intermetallics in Ti-Ni system, J. Mater. Res., 29 (22) (2017), 2707-2716.
[56] Y. Zhang, X. Cheng, H. Cai, Fabrication, characterization and tensile property of a novel Ti2Ni/TiNi micro-laminated composite, Mater. Des. 92 (2016), 486-493.
[57] E.A. Brandes (ed.), Smithells Metals Reference Book, Butterworth, London, 1983.
[58] K. Otsuka, X. RenPhysical metallurgy of Ti-Ni-based shape memory alloys Prog. Mater Sci., 50 (2005), pp. 511-678
[59] D.L. Ye, J.H. HuUtility Inorganic Materials Thermodynamics Data Handbook (second ed.), Metallurgy Industry Press, Beijing (2002)
[60] P. Villars, A. Prince, H. Okamoto, Hand book of Ternary Phase Alloys, vol. 7, ASM Int., Mater. Park, Ohio (1995) pp. 8903-8928.
[61] T. B. Massalski (ed.), Binary Phase Diagrams, American Society for Metals, Metals Park, OH, 1986.
[62] V. Raghavan,, J. Phase Equilb. Diff., 31 (2010), pp. 186-189.
[63] N. Orhan, T.I. Khan, M. Eroglu, Diffusion Bonding of a Microduplex Stainless Steel to Ti-6Al-4V, 45 (2001), pp. 441-446.
[64] Y. Ma, H. Li, L. Yang, A. Hu, Reaction-assisted diffusion bonding of Ti6Al4V alloys with Ti/Ni nanostructured multilayers. J. Mater. Sci. Technol., 262 (2018), pp. 204-209.
[65] C.H. Muralimohan, M. Ashfaq, R. Ashiri, V. Muthupandi, K. Sivaprasad, Analysis and Characterization of the Role of Ni Interlayer in the Friction Welding of Titanium and 304 AusteTiNic Stainless Steel. Mater. Trans. A, 47 (2016), pp. 347-359.
[66] A.Yıldız, Y. Kaya, N. Kahraman, Joint properties and microstructure of diffusion-bonded grade 2 titanium to AISI 430 ferritic stainless steel using pure Ni interlayer. Int. J. Adv. Manuf. Technol., 86 (2016), pp. 1287-1298.
[67] J. Liu, J. Cao, X. Song, Y. Wang, J. Feng, Evaluation on diffusion bonded joints of TiAl alloy to Ti3SiC2 ceramic with and without Ni interlayer: Interfacial microstructure and mechanical properties. Mater. Des., 57 (2014) , pp. 592-597.
[68] Y.Q. Deng, G.M. Sheng, C. Xu, Evaluation of the microstructure and mechanical properties of diffusion bonded joints of titanium to stainless steel with a pure silver interlayer. Mater. Des., 46 (2013), pp. 84-87.
[69] S. Hinotani, Y. Ohmori, The Microstructure of Diffusion-bonded Ti/Ni Interface. Trans. Jpn. Inst. Mater., 29 (1988), pp. 116-124.
[70] Benedictus, R., Böttger, A., and Mittemeijer, E.: Thermodynamic model for solid-state amorphization in binary systems at interfaces and grain boundaries. Phys. Rev. B 54(13), 9109 (1996).
[71] Li, Y., Cui, L., Shi, P., and Yang, D.: Phase transformation behaviors of prestrained TiNi shape memory alloy fibers under the constraint of a hard substrate. Mater. Lett. 49(3), 224 (2001).
[72] De Boer, F., Boom, R., Mattens, W., Miedema, A., and Niessen, A.: Cohesion in Metals. Transition Metal Alloys: Cohesion and Structure (North-Holland, Amsterdam, 1989); Chap. 2.
[73] A. Miedema, P. De Chatel, and F. De Boer: Cohesion in alloys-fundamentals of a semi-empirical model. Physica B 1 C 100(1), 1 (1980).
[74] A. Miedema: On the heat of formation of solid alloys. II. J. Less-Common Met. 46(1), 67 (1976).
[75] J. Liu, Y. Su, Y. Xu, L. Luo, J. Guo, and H. Fu: First phase selection in solid Ti/Al diffusion couple. Rare Met. Mater. Eng. 40(5), 753 (2011)
[76] S. Kundu, S. Chatterjee, Structure and properties of diffusion bonded transition joints between commercially pure titanium and type 304 stainless steel using a nickel interlayer. J. Mater. Sci., 42 (2007), pp. 7906-7912.
[77] S. Kundu, S. Chatterjee, D. Olson, B. Mishra, Effects of intermetallic phases on the bond strength of diffusion-bonded joints between titanium and 304 stainless steel using nickel interlayer. Mater. Trans. A, 38 (2007), pp. 2053-2060.
[78] N. Chawla, K.K. ChawlaMetal matrix composites, Springer Science Business Media, Inc., New York (2006)