The production of [18F]1 in multidose quantities is viable using either of the three synthetic pathways discussed here. However, given their different nature, the challenges associated with the three production methods are rather different.
The nucleophilic methods rely on the production of fluorine-18 in a [18O]H2O-filled liquid target via the 18O(p,n)18F nuclear reaction. The handling of the target material, as well as the target itself, is straightforward, and such setups generally deliver stable performances over long periods. The generation of radiofluorine gas for the electrophilic method on the other hand requires significantly more care and maintenance. While the nuclear reaction itself is the same, the target needs both pre- and post-bombardment treatment. After longer standstill or target maintenance, the Al targets require passivation by irradiation of gas mixtures containing natural fluorine gas. Prior to filling the target with [18O]O2, the target is optionally flushed with Ne and then evacuated for 30 min (see Supplemental Table 1 for details). The [18O]O2-filled target is then subjected to proton irradiation for 60 min. The produced fluorine-18 is adsorbed on the walls of the target and following a completed bombardment, [18O]O2 can be recovered from the target using a cryotrap. In order to purify the recovered target gas of [18O]H2O, unavoidably produced during target irradiation, a 4 Å molecular sieve trap is placed between the target and the cryotrap. The produced radioactivity is recovered by a second, shorter proton bombardment on a noble gas-natural fluorine mixture (0.5-1% F2 in either Ar or Ne, see Supplemental Table 1 for details). However, if the molecular sieve trap has exceeded its capacity, the recirculated target gas will contain traces of water, and as a result only small amounts of non-reactive 18F radioactivity is delivered to the synthesis unit. As the presence of water furthermore degrades the target Al-F passivation, regular replacement of the molecular sieve trap is of utmost importance. Finally, the noble gas-fluorine gas mixture has a limited shelf life of one year, as the F2 content slowly deteriorates.
The above considerations regarding target maintenance and care seem to detract from the feasibility of the electrophilic pathway. However, the chemical simplicity of the electrophilic substitution reaction and subsequent deprotection results in a production failure rate significantly below that observed for both nucleophilic approaches, see Fig. 1A. The relative high failure rate of the cartridge-based nucleophilic method, employed at OUH, is in part due to a recurrent deviation where the trapping on the HR-P cartridge failed. This cartridge serves to separate the crude [18F]1 from impurities while concomitantly removing excess hydrochloric acid employed in the hydrolysis step (23), and as a result, these failed batches suffered from very low yield and very acidic pH (1.8–2.6). This issue is expected to be remedied by transfer of the synthesis to the GE FASTlab platform. This transfer is in progress at OUH, and preliminary data indeed suggest a more reliable and robust synthesis. Despite the cartridge-related problem of the method, the use of cartridges for purification of the radiopharmaceutical, as opposed to the HPLC purification employed in the methods at both AUH and HUH, certainly counts as an advantage from the point-of-view of equipment maintenance and in compliance with good manufacturing practice (GMP).
As for the nucleophilic substitution method employed at HUH, the main reason for failed productions was out-of-specifications (OOS) on the radioactivity concentration end-of-synthesis. Permitted daily exposure considerations, regarding the concentrated citrate buffer used as product formulation, enforces a lower limit of 111 MBq/ml, equivalent to 2.78 GBq of product. The main loss of activity, resulting in low yield and possible OOS, happened during the synthetic steps ix and x (see Scheme 1), namely the alkylation and the subsequent acid hydrolysis. During the cassette pre-treatment (i.e. prior to receiving any activity) dichloromethane (DCM) is added to the vial containing the solid reagents for the alkylation reaction (Supplemental Fig. 14) to dissolve the contents. It was discovered that the addition of the solvent tends to be rather vigorous, which at times results in suspended solids sticking to the bottom of the vial (the vial is upside down when mounted on the cassette). In some cases, this led to an incomplete addition of reagents during the alkylation step, and as a result, a large fraction of radioactivity would remain in reactor 2 after the transfer to the HPLC injection loop. As the crude reaction mixture is diluted with WFI prior to injection into the loop, it is suspected that the incomplete alkylation reaction leads to one or more water-insoluble radiolabeled byproducts. The problem can be reliably remedied by gently tapping the alkylation vial following addition of DCM. Notwithstanding this manual operation, the inter-operator variation in RCYs is negligible, and the four main operators at HUH are within error indistinguishable in this respect. Despite having relieved the problem of incomplete alkylation, the RCYs, on average, declined steadily from the first quarter of 2019 onwards as seen in Fig. 2A. This problem turned out to be rooted in deterioration of the build-in vacuum pump of the Trasis AiO system. Indeed, the chemical conditions employed in the preparation of [18F]1 are significantly harsher than those employed to produce many common radiotracers, and the chemical wear and tear on the reusable parts of the system is consequently significant. The problem worsened through 2019 and into 2020, where more than half of all productions produced yields at least one standard deviation below the mean during the full production period. Replacement of the vacuum pump during the third quarter of 2020 resolved the issue, as seen by the sharp increase in average RCY in Fig. 2A.
While occasionally producing low yields, the average RCY of the multistep nucleophilic method employed at HUH is significantly higher than the two other methods discussed here (see Fig. 1B). However, the RCY of the electrophilic method used at AUH is reduced compared to its maximum practical potential (~ 25% non-decay corrected) for a couple of technical reasons. The initial procedure prescribes CFCl3 (i.e. Freon 11) as the reaction solvent (17) for the fluorination reaction. As Freon was identified as major source for reduction of the ozone layer in 1990s, its sale was already limited when production of [18F]1 at AUH commenced in 1997. Chloroform was found to be a viable substitute, although a loss of up to 25% of the incoming activity might be observed during trapping in this solvent. Subsequently, the major loss of radioactivity occurs on the Sep-Pak silica classic cartridges, placed between the fluorination and hydrolysis vessels (see Supplemental Figs. 1 and 2 for details), reflecting the formation of [18F]F− during the fluorination reaction. Another loss is associated with the acid hydrolysis step. Despite extended reaction times (20 min) at elevated temperatures, the hydrolysis does not reach completion, with only ~ 80% [18F]3 being converted into [18F]1. It is suspected that the somewhat uncommon use of hydroiodic acid for hydrolysis of Boc-protection groups to be the source of the incomplete conversion. However, 57% HI was found necessary to hydrolyze the phenolic O-methyl groups of the mercury precursor originally used in the manufacturing of [18F]1 at AUH (24), and in order to limit the number of changed parameters associated with the change variation submitted to the Danish Medicines Agency upon substituting 2 for the mercury precursor, it was decided to leave the hydrolysis medium unchanged. Additionally, the yield suffered significantly from a change in production facility during 2019 with a concomitant increase in distance from the cyclotron to the GMP production laboratory (see Fig. 2B). This stresses the sensitivity of the gas target setup, as compared to the liquid targets employed for the nucleophilic approaches.
While superior in terms of RCY, the nucleophilic method employed at HUH suffers from the weakness that the stereocenter is introduced during the synthesis and controlling the enantiopurity of the [18F]1 drug product is consequently crucial. While the chiral phase-transfer catalyst employed in alkylation step strongly favors the formation of levodopa analogue [18F]1, a smaller amount of the dextrodopa analogue 6-[18F]F-d-DOPA will form during the reaction. If the alkylation was carried out at ambient temperature, an enantiomeric purity of 96.7 ± 0.8% (n = 13) was obtained, in excess of the specification limit of ≥ 95% in place at HUH. However, it was discovered that cooling the reaction mixture to − 20°C using an acetone/dry ice bath increased the enantioselectivity of the alkylation thereby furnishing an enantiomeric purity of 98.6 ± 0.4% (n = 107). The methods employed at AUH and OUH on the other hand utilize enantiopure precursors 2 and 4, respectively, and given a sufficient purity of the starting material, obtaining the necessary enantiomeric purity of produced [18F]1 is a non-issue. The use of enantiopure precursors has the added advantage of simplifying the QC procedure as only a single HPLC analysis needs to be completed prior to parametric release, as opposed to the two separate HPLC analyses carried out routinely for every batch at HUH.
The molar activities of [18F]1 obtained from the nucleophilic methods are naturally vastly superior to that of the electrophilic one, given the carrier-added nature of the latter. The difference between the two approaches is roughly a factor of 4000 (see Fig. 1C), with the average molar activity observed at AUH being 52 ± 15 MBq/µmol. Interestingly, the molar activities at OUH and HUH both fall in the hundreds of GBq/µmol range (236 ± 28 GBq/µmol and 189 ± 56 GBq/µmol, respectively). Although the difference is significant (see Fig. 1C), the comparable magnitudes imply that the fluorine-19-loads in the two single-use cassette-based setups are similar. The Baeyer-Villiger oxidation route employed at OUH was recently implemented on the non-cassette based FlexLab module (iPHASE technologies, Australia) (23) leading to batches of [18F]1 with a molar activity in excess of 400 GBq/µmol. The higher molar activity compared to that of the cassette-based approaches reported on here, points to the single-use plastic part as a source of cold fluorine, although, considering the maximum theoretical molar activity of ~ 63 TBq/µmol, fluoride abstraction from the fluoropolymer cyclotron-tubing along with fluoride traces in the oxygen-18 enriched target water provide for the major contributions. Indeed, according to typical supplier specifications at HUH, the natural fluoride content of the target water may be as high as ~ 10 nmol/ml. Generally, the molar activity of [18F]1 for clinical use should be as high as possible, considering a report on serious adverse effects to the subject following an injection of low-molar-activity [18F]1 (Am = 6 MBq/µmol) (25) prepared according to the destannylation procedure described by de Vries et al. (26).
From 2017 until March 2020 a total of 59 patients and 19 healthy volunteers underwent PET/CT scans with [18F]1 at HUH. Some subjects had repeated examinations up to 10 times, totaling 134 performed scans. The composition of the subjects is given in Fig. 3A. Slightly more than half were oncological subjects, of which subjects with either medullary thyroid carcinoma (or suspected recurrent disease) or pheochromocytoma made up the largest subsets. As for the non-oncologic subjects, all but one were participants in a clinical study examining presynaptic dopamine synthesis capacity in the striatum. Figures 3B-D show a dynamic 2.5-hour [18F]1 scan of the brain in a patient with schizophrenia (22 yo female). High tracer uptake is seen in the striatum with a high target-to-background ratio. Time activity curves (see Fig. 3D) can be used to model and quantify dopamine synthesis capacity. Further details on the results of the clinical trial will be the subject of future communications.
During the same time period at OUH, a total of 84 PET/CT scans with [18F]1 was performed. The composition of the subjects is given in Fig. 4A. Most scans were performed on infants with congenital hyperinsulinism. The PET/CT scan is used to determine if the child has a focal pancreatic lesion as a course of the disorder and hence is candidate for curative surgery. Figures 4B and C, summarize the clinical PET/CT imaging of a girl, 3.5 month of age, admitted to OUH from Sweden with severe hyperinsulinism. The PET/CT scan with [18F]1 showed a minuscule lesion with uptake in the cauda of pancreas. This was surgically enucleated, which lead to immediate rise in blood glucose (on the operating table). In a few days the subject was completely out of medication and declared cured of congenital hyperinsulinism without sign of brain damage. The remainder of PET/CT scans with [18F]1 at OUH were performed on patients with adrenal diseases like pheochromocytomas and carcinomas, and to a lesser degree, paragangliomas and medullary thyroid carcinomas.
At AUH, scans with [18F]1 have been carried out since 1998. Currently, the tracer is used for imaging of dopamine synthesis in patients with Parkinson’s disease as well as tumor diagnostics in patients with pheochromocytoma, paraganglioma, insulinoma, medullar thyroidal cancer, neuroblastoma, and hyperinsulinism. Additionally, PET/CT-scans with [18F]1 are employed in various research projects mainly in the field of neurology. Roughly, 85% of the patients at AUH are scanned on oncology indications, whereas the remainder are scanned on neurological indications. At the introduction of [18F]1 in 1998, however, the ratio between oncological and neurological subjects was in reverse, with Parkinsonians patients making up the main group of subjects. This interestingly reflects a shift in the application of [18F]1 as PET tracer over the time period considered and again attests to the versatility of [18F]1 for a wide range of indications.